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PREFACE

This book continues the series started in 1990 by Rulph Chassaing and Darrell Horn-
ing’s Digital Signal Processing with the TMS320C25, which tracked the develop-
ment of successive generations of digital signal processors by Texas Instruments.
More specifically, each book in the series up until now has complemented a differ-
ent inexpensive DSP development kit promoted for teaching purposes by the Texas
Instruments University Program. A consistent theme in the books has been the provi-
sion of a large number of simple example programs illustrating DSP concepts in real
time, in an electrical engineering laboratory setting.

It was Rulph Chassaing’s belief, and this author continues to believe, that hands-on
teaching of DSP, using hardware development kits and laboratory test equipment to
process analog audio frequency signals, is a valuable and effective way of reinforcing
the theory taught in lectures.

The contents of the books, insofar as they concern fundamental concepts of digi-
tal signal processing such as analog-to-digital and digital-to-analog conversion, finite
impulse response (FIR) and infinite impulse response (IIR) filtering, the Fourier trans-
form, and adaptive filtering, have changed little. Every academic year brings another
cohort of students wanting to study this material. However, each book has featured a
different DSP development kit.

In 2013, Robert Owen suggested to me that hands-on DSP teaching could be
implemented using an inexpensive ARM® Cortex-M4® microcontroller. I pointed
out that a Texas Instruments C674x processor was very significantly more computa-
tionally powerful than an ARM Cortex-M4. But I also went ahead and purchased a
Texas Instruments Stellaris LaunchPad. I constructed an audio interface using a Wolf-
son WM8731 codec and successfully ported the program examples from my previous
book to that hardware platform.



xii PREFACE

This book is aimed at senior undergraduateand postgraduate electrical engineering
students who have some knowledge of C programming and linear systems theory, but
it is intended, and hoped, that it may serve as a useful resource for anyone involved
in teaching or learning DSP and as a starting point for teaching or learning more.

I am grateful to Robert Owen for first making me aware of the ARM Cortex-M4;
to Khaled Benkrid at the ARM University Program and to the Royal Academy of
Engineering for making possible a six-month Industrial Secondment to ARM dur-
ing which teaching materials for the STM32f01 platform were developed; to Gordon
McLeod and Scott Hendry at Wolfson Microelectronics for their help in getting the
Wolfson Pi audio card to work with the STM32f01 Discovery; to Sean Hong, Karthik
Shivashankar, and Robert Iannello at ARM for all their help; to Joan Teixidor Buixeda
for helping to debug the program examples; to Cathy Wicks at the TI University Pro-
gram and Hieu Duong at CircuitCo for developing the audio booster pack; and to Kari
Capone and Brett Kurzman at Wiley for their patience. But above all, I thank Rulph
Chassaing for inspiring me to get involved in teaching hands-on DSP.

Donald S. Reay

Edinburgh
2015



1
ARM® CORTEX®-M4 DEVELOPMENT
SYSTEMS

1.1 INTRODUCTION

Traditionally, real-time digital signal processing (DSP) has been implemented using
specialized and relatively expensive hardware, for example, digital signal proces-
sors or field-programmable gate arrays (FPGAs). The ARM® Cortex®-M4 processor
makes it possible to process audio in real time (for teaching purposes, at least) using
significantly less expensive, and simpler, microcontrollers.

The ARM Cortex-M4 is a 32-bit microcontroller. Essentially, it is an ARM
Cortex-M3 microcontroller that has been enhanced by the addition of DSP and
single instruction multiple data (SIMD) instructions and (optionally) a hardware
floating-point unit (FPU). Although its computational power is a fraction of that of a
floating-point digital signal processor, for example, the Texas Instruments C674x, it
is quite capable of implementing DSP algorithms, for example, FIR and IIR filters
and fast Fourier transforms for audio signals in real-time.

A number of semiconductor manufacturers have developed microcontrollers
that are based on the ARM Cortex-M4 processor and that incorporate proprietary
peripheral interfaces and other IP blocks. Many of these semiconductor manufac-
turers make available very-low-cost evaluation boards for their ARM Cortex-M4
microcontrollers. Implementing real-time audio frequency example programs on
these platforms, rather than on more conventional DSP development kits, constitutes
a reduction of an order of magnitude in the hardware cost of implementing hands-on

Digital Signal Processing Using the ARM® Cortex® -M4, First Edition. Donald S. Reay.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



2 ARM® CORTEX®-M4 DEVELOPMENT SYSTEMS

DSP teaching. For the first time, students might realistically be expected to own a
hardware platform that is useful not only for general microcontroller/microprocessor
programming and interfacing activities but also for implementation of real-time DSP.

1.1.1 Audio Interfaces

At the time that the program examples presented in this book were being developed,
there were no commercially available low-cost ARM Cortex-M4 development
boards that incorporated high-quality audio input and output. The STMicroelec-
tronics STM32F407 Discovery board features a high-quality audio digital-to-analog
converter (DAC) but not a corresponding analog-to-digital converter (ADC). Many
ARM Cortex-M4 devices, including both the STMicroelectronics STM32F407
and the Texas Instruments TM4C123, feature multichannel instrumentation-quality
ADCs. But without additional external circuitry, these are not suitable for the
applications discussed in this book.

The examples in this book require the addition (to an inexpensive ARM Cortex-M4
development board) of an (inexpensive) audio interface.

In the case of the STMicroelectronics STM32F407 Discovery board and of the
Texas Instruments TM4C123 LaunchPad, compatible and inexpensive audio inter-
faces are provided by the Wolfson Pi audio card and the CircuitCo audio booster pack,
respectively. The low-level interfacing details and the precise performance character-
istics and extra features of the two audio interfaces are subtly different. However,
each facilitates the input and output of high-quality audio signals to and from an
ARM Cortex-M4 processor on which DSP algorithms may be implemented.

Almost all of the program examples presented in the subsequent chapters
of this book are provided, in only very slightly different form, for both the
STM32F407 Discovery and the TM4C123 LaunchPad, on the partner website
http://www.wiley.com/go/Reay/ARMcortexM4.

However, in most cases, program examples are described in detail, and program
listings are presented, only for one or other hardware platform. Notable exceptions
are that, in Chapter 2, low-level i/o mechanisms (implemented slightly differently in
the two devices) are described in detail for both hardware platforms and that a handful
of example programs use features unique to one or other processor/audio interface.

This book does not describe the internal architecture or features of the ARM
Cortex-M4 processor in detail. An excellent text on that subject, including details
of its DSP-related capabilities, is The Definitive Guide to ARM® Cortex®-M3 and
Cortex®-M4 Processors by Yiu [1].

1.1.2 Texas Instruments TM4C123 LaunchPad and STM32F407 Discovery
Development Kits

The Texas Instruments and STMicroelectronics ARM Cortex-M4 processor boards
used in this book are shown in Figures 1.1 and 1.2. The program examples presented
in this book assume the use of the Keil MDK-ARM development environment, which
is compatible with both development kits. An alternative development environment,

ftp://ftp.wiley.com
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Figure 1.1 Texas Instruments TM4C123 LaunchPad.

Texas Instruments’ Code Composer Studio, is available for the TM4C123 Launch-
Pad and the program examples have been tested using this. Versions of the program
examples compatible with Code Composer Studio version 6 are provided on the part-
ner website http://www.wiley.com/go/Reay/ARMcortexM4.

The CircuitCo audio booster pack (for the TM4C123 LaunchPad) and the Wolfson
Pi audio card (for the STM32F407 Discovery) are shown in Figures 1.3 and 1.4. The
audio booster pack and the launchpad plug together, whereas the Wolfson audio card,
which was designed for use with a Raspberry Pi computer, must be connected to the
Discovery using a custom ribbon cable (available from distributor Farnell).

Rather than presenting detailed instructions here that may be obsolete as soon
as the next version of MDK-ARM is released, the reader is directed to the “get-
ting started” guide at the partner website http://www.wiley.com/go/Reay
/ARMcortexM4 and before progressing to the next chapter of this book will need to
install MDK-ARM, including the “packs” appropriate to the hardware platform being
used and including the CMSIS DSP library, download the program examples from
the website, and become familiar with how to open a project in MDK-ARM, add and

ftp://ftp.wiley.com
ftp://ftp.wiley.com


4 ARM® CORTEX®-M4 DEVELOPMENT SYSTEMS

Figure 1.2 STMicroelectronics STM32F407 Discovery.

remove files from a project, build a project, start and stop a debug session, and run
and halt a program running on the ARM Cortex-M4 processor.

Some of the example programs implement DSP algorithms straightforwardly,
and with a view to transparency and understandability rather than computational
efficiency or elegance. In several cases, ARM’s CMSIS DSP library functions are
used. These are available for both the STMicroelectronics and Texas Instruments
processors as part of the MDK-ARM development environment. In appropriate
circumstances, these library functions are particularly computationally efficient.
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Figure 1.3 AIC3104 audio booster pack.

Figure 1.4 Wolfson Pi audio card.
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This is useful in some of the program examples where the demands of running in
real-time approach the limits of what is achievable with the ARM Cortex-M4. One
difference between the two devices used in this book is that STM32F407 uses a
processor clock speed of 168 MHz, whereas the TM4C123 clock speed is 84 MHz.
As presented in the book, all of the program examples will run in real time on either
device. However, if the parameter values used are changed, for example, if the
number of coefficients in an FIR filter is increased, it is likely that the limits of the
slower device will be reached more readily than those of the faster one.

All of the program examples have been tested using the free, code size-limited,
version of MDK-ARM. The aim of hands-on DSP teaching, and the intention of this
book, is not to teach about the architecture of the ARM Cortex-M4. The device is used
because it provides a capable and inexpensive platform. Nor is it the aim of hands-on
DSP teaching, or the intention of this book, to teach about the use of MDK-ARM. The
aim of hands-on DSP teaching is to reinforce DSP theory taught in lectures through
the use of illustrative examples involving the real-time processing of audio signals in
an electrical engineering laboratory environment. That is to say where test equipment
such as oscilloscopes, signal generators, and connecting cables are available.

1.1.3 Hardware and Software Tools

To perform the experiments described in this book, a number of software and hard-
ware resources are required.

1. An ARM Cortex-M4 development board and audio interface. Either a Texas
Instruments TM4C123 LaunchPad and a CircuitCo audio booster pack or an
STMicroelectronics STM32F407 Discovery board and a Wolfson Microelec-
tronics Pi audio card are suitable hardware platforms.

2. A host PC running an integrated development environment (IDE) and with a
spare USB connection. The program examples described in this book were
developed and tested using the Keil MDK-ARM development environment.
However, versions of the program examples for the TM4C123 LaunchPad and
project files compatible with Texas Instruments Code Composer Studio IDE
are provided on the partner website http://www.wiley.com/go/Reay
/ARMcortexM4.

3. The TM4C123 LaunchPad and the STM32F407 Discovery board use slightly
different USB cables to connect to the host PC. The launchpad is supplied with
a USB cable, while the STM32F407 Discovery is not.

4. Whereas the audio booster pack and the launchpad plug together, the Wolfson
Pi audio card does not plug onto the STM32F407 Discovery board. Connec-
tions between the two can be made using a custom ribbon cable, available from
distributor Farnell.

5. An oscilloscope, a signal generator, a microphone, headphones, and various
connecting cables. Several of these items will be found in almost any electrical
engineering laboratory. If you are using the STM32F407 Discovery and Wolf-
son Pi audio card, then a microphone is unnecessary. The audio card has built-in

ftp://ftp.wiley.com
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digital MEMS microphones. The Wolfson Pi audio card is also compatible with
combined microphone and headphone headsets (including those supplied with
Apple and Samsung smartphones). Stereo 3.5 mm jack plug to 3.5 mm jack
plug cables and stereo 3.5 mm jack plug to (two) RCA (phono) plugs and RCA
to BNC adapters are the specific cables required.

6. Project and example program files from the partner website http://www
.wiley.com/go/Reay/ARMcortexM4.

REFERENCE

1. Yiu, J., “The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Processors”, Third
Edition, Elsevier Inc., 2014.

ftp://ftp




2
ANALOG INPUT AND OUTPUT

2.1 INTRODUCTION

A basic DSP system, suitable for processing audio frequency signals, comprises a
digital signal processor (DSP) and analog interfaces as shown in Figure 2.1. The
Texas Instruments TM4C123 LaunchPad and audio booster pack provide such a
system, using a TM4C123 ARM® Cortex®-M4 processor and a TLV320AIC3104
(AIC3104) codec [1]. The STMicro STM32F407 Discovery and the Wolfson audio
card provide such a system, using an STM32407 ARM® Cortex®-M4 processor
and a WM5102 codec [2]. The term codec refers to the coding of analog waveforms
as digital signals and the decoding of digital signals as analog waveforms. The
AIC3104 and WM5102 codecs perform both the analog-to-digital conversion (ADC)
and digital-to-analog conversion (DAC) functions shown in Figure 2.1.

Both the AIC3104 and WM5102 codecs communicate with their associated pro-
cessors (TM4C123 and STM32F407) using I2C bus for control (writing to the codec’s
control registers) and I2S for (audio) data transfer.

2.1.1 Sampling, Reconstruction, and Aliasing

Within DSPs, signals are represented as sequences of discrete sample values, and
whenever signals are sampled, the possibility of aliasing arises. Later in this chapter,
the phenomenon of aliasing is explored in more detail. Suffice to say at this stage
that aliasing is undesirable and that it may be avoided by the use of an antialiasing
filter placed at the input to the system shown in Figure 2.1 and by suitable design

Digital Signal Processing Using the ARM® Cortex® -M4, First Edition. Donald S. Reay.
© 2016 John Wiley & Sons, Inc. Published 2016 by John Wiley & Sons, Inc.



10 ANALOG INPUT AND OUTPUT

Analog
input
signal

Analog
output
signal

ADC DAC
Digital
signal

processor

Figure 2.1 Basic digital signal processing system.

of the DAC. In a low-pass system, an effective antialiasing filter is one that allows
frequency components at frequencies below half the sampling frequency to pass but
that attenuates greatly, or stops, frequency components at frequencies greater than or
equal to half the sampling frequency. A suitable DAC for a low-pass system is itself
a low-pass filter having characteristics similar to the aforementioned antialiasing fil-
ter. The term DAC commonly refers to an electronic device that converts discrete
sample values represented in digital hardware into a continuous analogue electrical
signal. When viewed purely from a signal processing perspective, a DAC acts as a
reconstruction filter. Although they differ in a number of respects, both the AIC3104
and WM5102 codecs contain both digital and analog antialiasing and reconstruction
filters and therefore do not require additional external filters.

2.2 TLV320AIC3104 (AIC3104) STEREO CODEC FOR AUDIO INPUT
AND OUTPUT

The audio booster pack makes use of a TLV320AIC3104 (AIC3104) codec for
analog input and output (see Figures 2.2 and 2.3). The AIC3104 is a low-power stereo

LINE1L

Register 17

(mute or
0 dB to −12 dB)

Register 15
(ADC_L PGA

gain control
0 dB to 59.5 dB)

ADC HPF

Register 107
(default or programmable

filter coefficients)

Register 12
(select/enable)

DOUTL

Σ

MIC2L

to DAC side

Analog
line input Register 19

Other  mixer
inputs not shown

PGA

LINE1LP

PGA_L

Serial data out
to TM4C123

Analog side Digital side

Figure 2.2 Simplified block diagram representation of input side of AIC3104 codec showing
selected blocks and signal paths used by the example programs in this book (left channel only).
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DINL

PGA_L

LINE1LP

DAC_L1

PGA_L

Analog side

LEFT_LOPMDAC_L

From ADC side

Other mixer
inputs not shown

Register 47
Register 46

(volume control
and mixing

0 dB to −78.3 dB)

HPLOUT

DINL

programmable
digital effects

and
de-emphasis

DAC_ATTEN

Register 43
(digital DAC_L

volume
0 dB to −63.5 dB)

Register 82
Register 81

(volume control
and mixing

0 dB to −78.3 dB)

Digital side

Register 12
(audio codec
digital filter

control)

Register 108
Passive analog signal bypass

during powerdown

Serial data in
from TM4C123

Register 86
(DAC

output gain
0 dB to 9 dB)

Analog
line output

Register 51
(DAC

output gain
0 dB to 9 dB)

Analog
headphone

output

Figure 2.3 Simplified block diagram representation of output side of AIC3104 codec show-
ing selected blocks and signal paths used by the example programs in this book (left channel
only).

audio codec, based on sigma-delta technology, and designed for use in portable
battery-powered applications. It features a number of microphone and line-level
inputs, configurable for single-ended or differential connection. On its output side, a
number of differential and high-power outputs are provided. The high-power outputs
are capable of driving headphones. A number of different sampling rates ranging
from 8 to 96 kHz are supported by the device. The analog-to-digital converter
(ADC), or coder, part of the codec converts an analog input signal into a sequence of
(16-bit, 24-bit, or 32-bit signed integer) sample values to be processed by the DSP.
The digital-to-analog converter (DAC), or decoder, part of the codec reconstructs
an analog output signal from a sequence of (16-bit, 24-bit, or 32-bit signed integer)
sample values that have been processed by the DSP and written to the DAC.

Also contained in the device are several programmable digital filters and gain
blocks. The codec is configured using a number of control registers, offering so
many options that it is beyond the scope of this text to describe them fully. However,
choices of sampling frequency, input connection, and ADC PGA gain are made
available in the example programs through the parameters passed to function
tm4c123_aic3104_init(). In addition, it is possible to write to any of the
codec control registers using function I2CRegWrite().

Later in this chapter, examples of enabling some of the internal digital filter blocks
by writing to the control registers of the AIC3104 are described. In Chapter 4, the
characteristics of the programmable digital filters within the AIC3104 are examined
in greater detail.
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Data is passed to and from the AIC3104 via its I2S serial interface. MIC IN (pink),
LINE IN (blue), LINE OUT (green), and HP OUT (black) connections are made
available via four 3.5 mm jack sockets on the audio booster pack, and these are con-
nected to the AIC3104 as shown in Figure 2.4. In addition, for reasons explained
later in this chapter, jumpers J6 and J7 on the audio booster pack allow connection of
first-order low-pass filters and scope hook test points TP2 and TP3 to LINE OUT on
the AIC3104.

2.3 WM5102 AUDIO HUB CODEC FOR AUDIO INPUT AND OUTPUT

The Wolfson audio card makes use of a WM5102 audio hub for analog input and
output. The WM5102 features a low-power, high-performance audio codec.

Data is passed to and from the WM5102 via its I2S serial interface, and the device
is configured by writing to its control registers via an I2C interface. In addition
to a number of configurable filter and gain blocks, the WM5102 codec contains a
programmable DSP. However, use of this proprietary DSP is beyond the scope of
this book.

LINE IN (pink), LINE OUT (green), and combined MIC IN and HP OUT
(black) connections are made available via three 3.5 mm jack sockets on the Wolfson
audio card.

2.4 PROGRAMMING EXAMPLES

The following examples illustrate analog input and output using either the TM4C123
LaunchPad and audio booster pack or the STM32F407 Discovery and Wolfson audio
card. The program examples are available for either platform, although in most cases,
only one platform is mentioned per example. A small number of example programs
in this chapter concern programming the internal digital filters in the AIC3104 codec
and are therefore applicable only to the Texas Instruments hardware platform. A
small number of example programs concern use of the 12-bit DAC built in to the
STM32F407 processor and are therefore applicable only to the STMicroelectronics
hardware platform.

The example programs demonstrate some important concepts associated with
analog-to-digital and digital-to-analog conversion, including sampling, reconstruc-
tion, and aliasing. In addition, they illustrate the use of polling-, interrupt-, and
DMA-based i/o in order to implement real-time applications. Many of the concepts
and techniques described in this chapter are revisited in subsequent chapters.

2.5 REAL-TIME INPUT AND OUTPUT USING POLLING, INTERRUPTS,
AND DIRECT MEMORY ACCESS (DMA)

Three basic forms of real-time i/o are demonstrated in the following examples.
Polling- and interrupt-based i/o methods work on a sample-by-sample basis, and
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Figure 2.4 Analog input and output connections on the AIC3104 audio booster pack.
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processing consists of executing a similar set of program statements at each sampling
instant. DMA-based i/o deals with blocks, or frames, of input and output samples
and is inherently more efficient in terms of computer processing requirements.
Processing consists of executing a similar set of program statements after each
DMA transfer. Block- or frame-based processing is closely linked to, but not
restricted to, use with frequency-domain processing (using the FFT) as described in
Chapter 5.

The following examples illustrate the use of the three different i/o mechanisms in
order to implement a simple talk-through function. Throughout the rest of this book,
use is made primarily of interrupt- and DMA-based methods. Compared to polling-
and interrupt-based methods, there is a greater time delay between a signal entering
the digital signal processing system and leaving it introduced by the DMA-based
method. It is possible to make use of the DMA mechanism with a frame size of just
one sample, but this rather defeats the purpose of using DMA-based i/o.

Example 2.1 Basic Input and Output Using Polling (tm4c123_loop_poll.c).

Listing 2.1 Program tm4c123_loop_poll.c.

1 // tm4c123_loop_poll.c
2

3 #include “tm4c123_aic3104_init.h”
4

5 void SSI_interrupt_routine(void){while(1){}}
6

7 int main(void)
8 {
9 AIC3104_data_type sample_data;

10 float32_t input_left, input_right;
11

12 tm4c123_aic3104_init(FS_48000_HZ,
13 AIC3104_MIC_IN,
14 IO_METHOD_POLL,
15 PGA_GAIN_6_DB);
16 while(1)
17 {
18 SSIDataGet(SSI1_BASE,&sample_data.bit32);
19 input_left = (float32_t)(sample_data.bit16[0]);
20 SSIDataGet(SSI0_BASE,&sample_data.bit32);
21 input_right = (float32_t)(sample_data.bit16[0]);
22

23 sample_data.bit32 = ((int16_t)(input_left));
24 SSIDataPut(SSI1_BASE,sample_data.bit32);
25 sample_data.bit32 = ((int16_t)(input_right));
26 SSIDataPut(SSI0_BASE,sample_data.bit32);
27 }
28 }
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The C language source file for program, tm4c123_loop_poll.c, which sim-
ply copies input samples read from the AIC3104 codec ADC to the AIC3104 codec
DAC as output samples, is shown in Listing 2.1. Effectively, the MIC IN input socket
is connected straight through to the LINE OUT and HP OUT output sockets on the
audio booster pack via the AIC3104 codec and the TM4C123 processor. Function
tm4c123_aic3104_init(), called by program tm4c123_loop_poll.c,
is defined in support file tm4c123_aic3104_init.c. In this way, the
C source file tm4c123_loop_poll.c is kept as short as possible and
potentially distracting low-level detail is hidden. The implementation details
of function tm4c123_aic3104_init() and other functions defined in
tm4c123_aic3104_init.c need not be studied in detail in order to use the
examples presented in this book.

2.5.1 I2S Emulation on the TM4C123

The TM4C123 processor does not feature an I2S interface. Instead, two synchronous
serial interface (SSI) interfaces, SSI0 and SSI1, are used to emulate a bidirectional
stereo I2S interface and to pass audio data to and from the AIC3104 codec. One SSI
interface handles the left channel and the other handles the right channel. Details of
the I2S emulation are described in application note SPMA042 [3].

2.5.2 Program Operation

Following the call to function tm4c123_aic3104_init(), program
tm4c123_loop_poll.c enters an endless while loop and repeatedly copies
left and right channel input sample values into variables input_left and
input_right, using function SSIDataGet(), before writing these sample
values to the AIC3104 DAC, using function SSIDataPut(). Function SSI-
DataGet() waits until there is data in the receive FIFO of the specified SSI
peripheral, SSI0_BASE or SSI1_BASE, and function SSIDataPut() waits
until there is space available in the transmit FIFO of the specified SSI peripheral.
In this way, the real-time operation of the program is controlled by the timing of
the I2S interface, which, in turn, is determined by the AIC3104 codec (acting as
I2S master). Functions SSIDataGet() and SSIDataPut() are defined in the
TM4C123 device family pack (DFP) installed as part of the MDK-ARM development
environment. Although the AIC3104 is configured to use 16-bit sample values,
function SSIDataGet() returns a 32-bit value and function SSIDataPut() is
passed a 32-bit value.

Function SSI_interrupt_routine() is not used by program tm4c123_
loop_poll.c but has been defined here as a trap for unexpected SSI peripheral
interrupts.

In this simple example, it is not strictly necessary to convert the 16-bit sample
values read from the AIC3104 ADC by function SSIDataGet() into 32-bit
floating-point values. However, in subsequent program examples, DSP algorithms
are implemented using floating-point arithmetic and input sample values are
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converted into type float32_t. Processing of the floating-point sample values
could be implemented by adding program statements between

input_right = (float32_t)(sample_data.bit16[0]);

and

sample_data.bit32 = ((int16_t)(input_left));

2.5.3 Running the Program

Connect a microphone to the (pink) MIC IN socket on the audio booster card and
headphones to the (green) HP OUT socket. Run the program and verify that the input
to the microphone can be heard in the headphones.

2.5.4 Changing the Input Connection to LINE IN

Change the program statement

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_MIC_IN,
IO_METHOD_POLL,
PGA_GAIN_6_DB);

to read

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_LINE_IN,
IO_METHOD_POLL,
PGA_GAIN_6_DB);

Rebuild the project and run the program again using a signal from a sound card, a
signal generator, or an MP3 player connected to the (blue) LINE IN socket as input.

2.5.5 Changing the Sampling Frequency

Change the sampling frequency used by passing parameter value FS_8000_HZ
rather than FS_48000_HZ to the codec initialization function, that is, by changing
the program statement

tm4c123_aic3104_init(FS_48000_HZ,
AIC3104_LINE_IN,
IO_METHOD_POLL,
PGA_GAIN_6_DB);

to read

tm4c123_aic3104_init(FS_8000_HZ,
AIC3104_LINE_IN,
IO_METHOD_POLL,
PGA_GAIN_6_DB);


