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P r e f a c e

It has been over 10 years since Rocket Science for Traders was published. In 
those days, technical analysis was primarily the province of futures traders, 

while portfolio theory and fundamental analysis comprised the conventional 
wisdom for equity traders. However, there have been profound changes in 
the marketplace since that time. Futures trading has lost popularity because 
of scandals involving segregated customer accounts, the stock market’s re-
lentless trend upward has been broken with the result that buy-and-hold 
is no longer a valid investment strategy, and new trading vehicles such as 
exchange-traded funds (ETFs) have evolved. In addition, commission rates 
have decreased, and the Internet has made electronic trading available to 
everyone. All this has caused investors to be more involved in the trading 
process and interested in self-directed trading. Major brokerage houses have 
responded by including technical analysis tools in their trading platforms.

This is a technical resource book written for self-directed traders who 
want to understand the scientific underpinnings of the filters and indicators 
they use in their trading decisions rather than to use the trading tools on 
blind faith. There is plenty of theory and years of research behind the unique 
solutions provided in this book, but the emphasis is on simplicity rather than 
mathematical purity. In particular, the solutions use a pragmatic approach 
to attain effective trading results. The concepts are presented so they can be 
understood with only a background in algebra. The writing style in the book 
is intentionally terse so the reader doesn’t need to wade through a moun-
tain of words to find the ideas being presented. EasyLanguage computer 
code is used to calculate and display the indicators. From my viewpoint, 
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Easy Language is just a dialect of Pascal with key words for trading. There-
fore, the code should be nearly as readable as English.

cycles are unique because they are one of the few characteristics of mar-
ket data that can be scientifically measured. However, cycle measurement is 
extremely complex. In the most general sense, there is a triple infinity of 
parameters–period, phase, and amplitude–that must be identified simulta-
neously to completely describe the cycles. Additionally, market cycles are 
ephemeral and are often buried in pure noise. So the compromises begin. 
One of the first realizations that a trader must make is that cycles cannot be 
the basis of trades all the time. Sometimes the cycle swings are swamped by 
trends, and it is folly to try to fight the trend. However, the cyclic swings can 
be helpful to know when to buy on a dip in the direction of the trend. Tra-
ditional indicators such as Stochastics, relative strength index (rSI), moving 
average convergence/divergence (MAcD), and commodity channel index 
(ccI) are subject to the same constraints, and therefore this book will lead 
to a greater understanding of all technical indicators.

Most important, Cycle Analytics for Traders will allow traders to think of 
their indicators and trading strategies in the frequency domain as well as 
their motions in the time domain. This new viewpoint will enable them to 
select the most efficient filter lengths for the job at hand. The descriptions 
are written for understanding at several different levels. Traders with little 
mathematical background will be able to assess general market conditions 
to their advantage. More technically advanced traders will be able to create 
indicators and strategies that automatically adapt to measured market condi-
tions by using combinations of computer code that are described.

So what should a trader take away from this book? These are a few of the 
new concepts that I have ranked in priority:

 ■ An awareness of Spectral Dilation, and how to eliminate it or to use it to 
your advantage.

 ■ How to use automatic gain control (AGc) to normalize indicator ampli-
tude swings.

 ■ Thinking of prices in the frequency domain as well as in the time domain.

 ■ An awareness that all indicators are statistical rather than absolute, as 
implied by their single-line displays.

 ■ Several advanced cookbook filters. These include the SuperSmoother, roof-
ing filter, even better sinewave, decycler, and Hilbert Transform  Indicator.
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 ■ Several different methods of estimating market spectra and sifting out 
the dominant cycle, with the autocorrelation periodogram being the pre-
ferred method.

 ■ How to use transforms to improve the display and interpretation of in-
dicators.

The concepts I have developed and derived from scientific principles are 
new and useful aids to short-term trading. Ultimately, trading comes down 
to buying and selling decisions. These decisions are never easy, and in the 
final chapter I unite the concepts with a few tips and tricks that I have ac-
quired in my years of trading. Above all, trading should be approached as a 
statistical process. Even with a good performance of 60 percent winning 
trades, 60 percent is a lot closer to 50–50 than it is to 100 percent regarding 
a single event. Therefore, the performance judged by a few trades is invalid, 
and I would encourage readers to stick with a trading strategy they have 
developed with a profitable history, albeit hypothetical, and let the statistics 
be the light to success in the long run.

As evidence of my warped sense of humor, each chapter starts with a 
“Tom Swifty” pun that encapsulates the entire content of the chapter and 
I hope serves as an anchor for the reader’s memory. I think the computer 
code is often the most succinct and efficient method of describing a con-
cept. Accordingly, my style is to be brief, with plenty of poetic license with 
mathematical notation in an effort to convey the concepts to most traders. 
Each chapter concludes with the significant points to remember from that 
chapter.

I wish you all good trading.
John F. Ehlers
August 2013
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C h a p t e r  1

1

Unified Filter 
Theory

“It is too complex,” said Tom simply.

Simplicity is at the heart of the concept of linear systems. Input data 
are supplied to the system, and the system provides the resultant as an 

 output. There is only one input and only one output. However, the system 
between the input and output can be as complex as desired. The output 
divided by the input is the transfer response of the system. It is this transfer 
response that describes the action of the system.

In this chapter you will find the difference between nonrecursive filters and 
recursive filters, and combinations of the two, enabling you to select the best 
filter for each application. In addition, you will find that the responses in the 
time domain and in the frequency domain are intimately connected. When 
designing filters for trading, it is beneficial to consider the response in both 
of these domains. It is important to remember that no filter is predictive— 
filter responses are computed on the basis of historical data samples.

By thinking in terms of the transfer responses, you will easily make the 
transition between filter theory and programming the filters in your trading 
platform.

 ■ Transfer Response 

Consider a four-bar simple moving average. The input data are the last four 
samples of price. The filter output is one-fourth of the most recent price 
data plus one-fourth of the data sample delayed by one bar plus one-fourth 
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of the data sample delayed by two bars plus one-fourth of the data sample 
delayed by three bars. If we allow the symbol Z −1 to represent one unit of 
delay, then we can write an equation for the transfer response of a simple 
moving average (SMA) as:

 (Output / Input Data) = 1/4 + Z −1/4 + Z −2/4 + Z −3/4 (1-1)

The values of ¼ are called the coefficients of the filter. In general, the 
filter coefficients sum to 1, so the ratio of the input to the output is 1 if the 
input is a constant. If we choose to generalize the filter to be other than an 
SMA, the values of the coefficients can be arbitrarily assigned. Further, we 
can extend the filter to have any arbitrary length. In this case, the filter trans-
fer response can be written as:

 H(z) = b0 + b1 * Z −1 + b2 * Z −2 + b3 * Z −3 + b4 * Z −4 + ..........+ bN * Z −N

 (1-2)

The interesting thing about this equation is that we have now written the 
transfer response as a generalized algebraic polynomial. The polynomial can 
have as high an order as desired.

The filter generality can be extended by writing the transfer response as 
the ratio of two polynomials as:

H z
b b Z b Z b Z b Z

( )
* * * * .......

=
+ + + + +− − − −

0 1
1

2
2

3
3

4
4 ... *

* * * * ..

+
+ + + + +

−

− − − −
b Z

a a Z a Z a Z a Z
N

N

0 1
1

2
2

3
3

4
4 ....... *+ −a ZN

N

 (1-3)

This equation completely describes the transfer response of any filter. 
The only thing that differentiates one filter from another is the selection of 
the coefficients of the polynomials. It is immediately apparent that the more 
fancy and complex the filter becomes, the more input data is required. This 
is really bad for filters used in trading because using more data means the fil-
ter necessarily has more lag. Minimizing lag in trading filters is almost more 
important than the smoothing that is realized by using the filter. Therefore, 
filters used for trading best use a relatively small amount of input data and 
should be not be complex.

Although mathematicians will cringe at the notation, filter computations 
can perhaps be better understood by simplifying Equation 1-3 as:

Output

Input

Numerator

a Denominator0

=
+
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Clearing fractions by cross multiplying, we get an equation useful for 
programming:

a0 * Output + Denominator * Output = Numerator * Input

a0 * Output = Numerator * Input − Denominator * Output

 Output = (Numerator * Input − Denominator * Output) / a0 (1-4)

Equation 1-4 says that the filter output is comprised of two parts. The 
first part, the numerator term, uses only input data values. If that is the 
only term used in the filter, the filter is said to be nonrecursive. The second 
part, the denominator term, consists of previously computed values of the 
output. Filters using any previously computed values of the output are said 
to be recursive. The distinction is important because it is difficult to create 
recursive filters in some computer languages used for trading. Parentheti-
cally, the coefficient a0 is usually unity to keep things simple.

 ■ Nonrecursive Filters

A nonrecursive filter is one where the output response depends only on the 
input data and does not use a previous calculation of the output to partially 
determine the current value of the output. nonrecursive filters have wide 
applications and therefore have acquired many different names. Among the 
aliases are:

 ■ Moving average filters

 ■ Finite impulse response (FIr) filters

 ■ Tapped delay line filters

 ■ Transversal filters

SMA filters are a special case of moving average filters where all the filter 
coefficients have the same value.

One of the most important filter characteristics to a trader is how much 
lag the filter introduces at the output relative to the input. A nonrecur-
sive filter whose coefficients are symmetrical about the center of the filter 
 always has a lag equal to the degree of the filter divided by two. For  example, 
a nonrecursive filter of degree six will have a three-bar delay. This delay 
is  constant for all frequency components. Since lag is very important, and 
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since lag is directly related to filter degree, filters used for trading most gen-
erally are simple and are of low degree.

If the a0 coefficient equals one and all the other “a” coefficients are zero, 
the most general transfer response is just the simple polynomial in the nu-
merator. From the fundamental theorem of algebra, the polynomial can be 
factored into as many complex roots as it has degrees. In other words, the 
transfer response can be written as:

 H(z) = (c0 + Z −1) * (c1 + Z −1) * (c2 + Z −1) * (c3 + Z −1) * ... * (cN + Z −1) 
 (1-5)

The coefficients may be complex numbers rather than real numbers. In 
this case, the roots of the polynomial are called the zeros of the transfer re-
sponse. For example, the four-bar SMA transfer response is a polynomial of 
degree three and therefore has three roots factored as:

 H z Z Z Z( ) ( / )*( )*( )*( )= + + − − −− − −1 4 1 1 11 1 1  (1-6)

This transfer response has one real root and two complementary imagi-
nary roots. If we substitute an exponential as exp(−j2π  f) = Z −1, in the real root  
portion of  Equation 1-5, we get using DeMoivre’s theorem: 

 

Z

e

e e

Cos f

1 0

1 0

2
0

( ) 0

j f

j f j f

1

2

2 /2 2 /2

+ =

+ =

+
=

=π

π

π π

−

−

−
 (1-7)

This equation can be true only when the frequency is half the sampling 
frequency. Half the sampling frequency is the highest frequency that is al-
lowable in sampled data systems without aliasing, and is called the nyquist 
frequency. In our case, the sampling is done uniformly at once per bar, so 
the highest possible frequency we can filter is 0.5 cycles per bar, or a pe-
riod of two bars. Equation 1-7 shows that the zero in the transfer response 
occurs exactly at the nyquist frequency. We have succeeded in completely 
canceling out the highest possible frequency in the four-bar SMA.
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We can see the frequency characteristic of the transfer response by start-
ing with a five-element SMA and then generalizing.

H z
Z Z Z Z

( ) =
+ + + +− − − −1

5

1 2 3 4

Multiplying both sides of this equation by Z −1 and subtracting that multi-
plicand from both sides of the equation, we obtain

H z Z
Z

H z
Z

Z

H z
Z Z

Z Z

( )(1 )
1

5

( )
1

5(1 )

( )
5*( )

1
5

5

1

5
2

5
2

1
2

1
2

− = −

=
−
−

=
−

−

−
−

−

−

−

−

We get the frequency response of this five-element SMA by making the 
substitution Z −1 = exp(−j2π  f  ), where f is the sampling frequency. Then,

H f
e e

e e

H f
Sin f
Sin f

(2 )
5*( )

(2 )
(5 /2)
5 ( )

j f j f

j f j f

5 /2 5 /2

2 /2 2 /2=
−
−

=

π

π
π

π

π π

π π

−

−

The equality of the exponential expressions and the sine equivalent will 
be recognized by readers familiar with complex variables as DeMoivre’s 
theorem. For readers without this math background, please accept it on 
faith.

Generalizing this result for an N-length SMA, we have the transfer re-
sponse of an SMA in the frequency domain expressed as:

H f
Sin N f

NSin f
(2 )

( /2)

(2 /2)
=π

π

π

But since the nyquist frequency is half the sampling frequency, the trans-
fer response in the frequency domain is

 H f
Sin N f

NSin f
(2 )

( )

( )
=π

π

π
 (1-8)

where f = frequency relative to the sampling frequency
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The important conclusion from this discussion is that we can think of the 
transfer response with equal validity in the time domain or in the frequency 
domain.

When we plot the response of the four-element SMA as a function of 
frequency in Figure 1.1, we see that we not only have a zero at the nyquist 
frequency, but also at a frequency of 0.25.

The horizontal axis is plotted in terms of frequency rather than the cycle 
period that is most familiar to traders. Frequency and period have a recip-
rocal relationship, so a frequency of 0.25 cycles per bar corresponds to a 
four-bar period. The vertical axis is the amplitude of the output relative to 
the  amplitude of the input data in decibels. A decibel (dB) is a logarithmic 
measure of the power in the output. Figure 1.1 shows that there are zeros 
in the filter transfer response in the frequency domain as well as in the time 
domain.

The concept of thinking of how a filter works in the frequency domain as 
well as how it works in the time domain is central to the understanding of 
the indicators that will be developed. low frequencies near zero are passed 
from input to output with little or no attenuation. Since higher frequencies 
are blocked from being passed to the output, the SMA is a type of low-pass 

FiguRe 1.1 Frequency Response of a Four-Bar Simple Moving Average
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filter—passing low frequencies and blocking higher frequencies. low-pass 
filters are data smoothers that remove the higher-frequency jitter in the in-
put data that often makes the data hard to interpret. The penalty traders pay 
for this smoothing is the lag introduced in the transfer response.

low-pass filters are not the only filters that can be generated with the 
generalized transfer response of Equation 1-3. Suppose we arrange to have 
the coefficients to be as:

b0 = 0.5

b1 = −0.5

a0 = 1

All other coefficients are equal to zero.
Then the frequency response of the filter is shown in Figure 1.2.
In this case, the higher frequencies are passed, and the lower frequencies 

are severely attenuated by the filter. This is an example of a high-pass filter. 
Since trends can be viewed as pieces of a very long cycle, a high-pass filter 
is basically a detrender because the low-trend frequencies are rejected in its 
transfer response.

FiguRe 1.2 Frequency Response of a Two-Bar Difference Filter
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Since the coefficients of a simple high-pass filter are equivalent to just tak-
ing the difference of two consecutive samples of input data, the difference 
operation can be viewed as analogous to a derivative function in the calculus. 
This concept enables a high-pass filter to be used in several different ways in 
trading to attempt to create a predictive waveform. If the input data are as-
sumed to be in a trend, then the difference between any two data samples is 
constant. In this case, adding the difference to the current bar data predicts 
the value of the input data for the next sample. Alternatively, if the input 
data are assumed to be a quiescent sine wave, a trader can use the relation-
ship from calculus as:

 
d sin ft

dt f
Cos ft

( (2 )) 1

2
(2 )=

π

π
π  (1-9)

If the frequency of the sine wave is known, the high-pass filter not only 
provides a waveform that leads the input data waveform by 90 degrees, but 
also provides the means to normalize the output amplitude to the amplitude 
of the input data.

returning to Equation 1-2 for a generalized nonrecursive filter, and fac-
toring out a Z −N/2 term, we obtain:

H(z) = (b0Z
N/2 + b1 * Z N−1/2 + .  .  .  .  . + 1 + .  .  .  .’+ b(N−1)Z −(N−1)/2 

 + bN * Z −N/2) * Z −N/2 (1-10)

Since Z −N/2 is a pure delay term, and since exp(−j2π f  ) can be substituted 
for Z −1, Equation 1-10 is proof that nonrecursive filters having coefficients 
symmetrical about the center of the filter will have a constant delay at all 
frequencies. Further, that delay will be exactly half the degree of the transfer 
response polynomial.

 ■ Recursive Filters

A recursive filter is one where the output response depends not only on the in-
put data but also on previous values of the output. Strictly recursive filters are 
characterized by using only a constant in the numerator and multiple terms in 
the denominator of Equation 1-3. recursive filters also have wide applications 
and therefore have acquired many different names. Among the aliases are:

 ■ Exponential moving average filters

 ■ Infinite impulse response (IIr) filters
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 ■ ladder filters

 ■ Autoregressive filters

If the b0 coefficient is a constant and all the other “b” coefficients are zero, 
the most general transfer response is just the simple polynomial in the de-
nominator.  This polynomial can be factored into as many complex roots as it 
has degrees. In other words, the transfer response can be written as:

H(z) = b0 / ((c0 + Z −1) * (c1 + Z −1) * (c2 + Z −1) * ... * (cN + Z −1)) (1-11)

The coefficients may be complex, rather than real, numbers. In this case, 
the roots of the polynomial are called the poles of the transfer response be-
cause a zero in the denominator of the transfer response causes the transfer 
response to go to infinity at that point. One can visualize the transfer re-
sponse as the canvas of a circus tent in the context of complex numbers, and 
the poles in the transfer response are analogous to the tent poles. While it is 
possible to choose coefficients that cause the transfer function to “blow up,” 
frequencies are constrained to be real numbers, and therefore it is relatively 
easy to avoid the complex pole locations.

Consider the special case of a recursive filter where

 b0 = α

 a0 = 1

 a1 = −(1 − α)

Then, Equation 1-3 becomes

Output

Input Z

Output Z Input

Output Input Z Output

1 (1 )*

*(1 (1 )* ) *

* (1 )* *

1

1

1

=
− −

− − =

= + −

α

α

α α

α α

−

−

−

Then, using the conventional notation that Output[1] equals the output 
one bar ago:

 Output = α * Input + (1 − α) * Output[1] (1-12)

Equation 1-12 is exactly the equation for an exponential moving average 
(EMA). note that the sum of all of the coefficients on the right-hand side of 
Equation 1-11 sum to 1 so that the filter has no noise gain.
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The EMA is a type of low-pass filter, passing the lower-frequency components 
of the input data and attenuating its higher-frequency components. If alpha is 
made to be smaller, fewer of the lower-frequency components are allowed to 
pass, and the high-frequency components are attenuated to a  greater degree. 
Conversely, if alpha is made to be larger, there is less smoothing, and there-
fore more higher-frequency components of the input are allowed to pass to 
the output. There are no zeros (or poles) in the transfer response.

The lag of EMA filters will be derived in Chapter 2.

 ■ generalized Filters

A generalized filter uses both the numerator and denominator of Equation 1-3 
to achieve a wider range of responses other than low-pass filtering and high-
pass filters. Some familiar aliases for these generalized filters are:

 ■ Autoregressive moving average (ArMA) filters

 ■ Autoregressive integrated moving average (ArIMA) filters

FiguRe 1.3 Exponential Moving Average Frequency Response for α = 0.2
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