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Preface 
 
Our first three installments on drug synthesis, Contemporary Drug Synthesis, The Art of 
Drug Synthesis, and Modern Drug Synthesis were published in 2004, 2007, and 2010, 
respectively. They have been warmly received by the chemistry community. The current 
title, Innovative Drug Synthesis, is our fourth installment of Wiley’s Drug Synthesis 
Series.  
 This book has six sections. Section I, “Infectious Diseases” covers five drugs; 
Section II, “Cancer” reviews five drugs, three of which are kinase inhibitors; Section III 
covers one drug that targets cardiovascular and metabolic diseases; Section IV on central 
nervous system diseases concerns four classes of recent drugs; Section V summarizes a 
new anti-inflammatory drug; and Section VI covers two additional drugs.  
 In addition to a detailed account of the drug synthesis, each chapter also covers 
background material on the drug class and/or disease indication, as well as key aspects 
relevant to the discovery of the drug, including, structure-activity relationships, 
pharmacokinetics, drug metabolism, efficacy and safety. 

We are indebted to the contributing authors from both industry and academia. 
Many of them are veterans and well-known experts in medicinal chemistry. Some of 
them discovered the drugs that they reviewed. As a consequence, their work 
tremendously elevated the quality of this book. One of us (JJL) would like to thank his 
students, Elizabeth N. Cruz, Taylor D. Krueger, Cho K. Lai, Amanda N. Moules, Emily 
S. Murzinski, Karla E. Rodriguez, and Theresa V. Song for taking part in this writing 
project.  

Meanwhile, we welcome your critique and suggestions so we can make this 
Drug Synthesis Series even more useful to the medicinal/organic chemistry community. 
 

Jack Li and Doug Johnson 
May 1, 2015 
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Entecavir (Baraclude): A Carbocyclic 

Nucleoside for the Treatment for  
Chronic Hepatitis B 
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1 Background  

Chronic hepatitis B virus (HBV) infection is a major global cause of morbidity and 
mortality. An estimated 400 million people worldwide have chronic HBV infection and 
more than half a million people die every year because of complications from HBV-
related chronic liver disease such as liver failure and hepatocellular carcinoma (HCC). In 
the United States, 12 million people have been infected at some time in their lives with 
HBV. Of those individuals, more than 1 million people have subsequently developed 
chronic hepatitis B infection. These chronically infected persons are at highest risk of 
death from liver scarring (cirrhosis) and liver cancer. In fact, more than five thousand 
Americans die from hepatitis B-related liver complications each year. In many Asian and 
African countries where the HBV is endemic, up to 20% of the population may be 
carriers, and transmission occurs primarily through perinatal or early childhood infection. 
In some of these areas, the perinatal transmission rate may be as high as 90%!1–4  

During the last 10 years, hepatitis B treatment has made significant progresses. 
For example, two biologics have been approved by the FDA, namely, interferon-α (IFN-
α) and Pegylated-interferon-α (PEG-IFN-α). Also on the market are five small molecule 
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antiviral agents for the treatment of chronic HBV, namely, entecavir (1), lamivudine (2), 
telbivudine (3), adefovir dipivoxil (4), and tenofovir (5).  

2

USAN: Lamivudine (3TC)
Trade name: Epivir-HBV®

GlaxoSmithKline
Launched: 1995O
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Gilead Sciences 
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USAN: Telbivudine
Trade name: Tyzeka®

Novartis 
Launched: 2006
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USAN: Tenofovir
Trade name: Viread®

Gilead Sciences 
Launched: 2008 for HBV
                  2006 for HIVH3C
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As a biologic, INF-α is effective only in a subset of patients, is often poorly 
tolerated, requires parenteral administration, and is expensive. Hence, there is a need for 
alternative therapies for chronic hepatitis B. The introduction of lamivudine (2) in 1995, 
the first oral treatment for chronic HBV, ushered in a new era in the treatment of chronic 
hepatitis B when safe, effective, and well-tolerated oral medications were made available. 
It is a nucleoside reverse transcriptase inhibitor (NRTI) with activity against both human 
immunodeficiency virus type 1 (HIV-1) and HBV. It has been used for the treatment of 
chronic hepatitis B at a lower dose than for the treatment of HIV, and it improves the 
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seroconversion of e-antigen-positive hepatitis B and also improves histology staging of 
the liver. Unfortunately, long-term use of lamivudine (2) leads to emergence of a resistant 
HBV mutant (Tyr-Met-Asp-Asp, YMDD). Despite this fact, lamivudine (2) is still used 
widely as it is well tolerated.5  

Telbivudine (3), a synthetic thymidine nucleoside analog, is the unmodified L-
enantiomer of the naturally occurring D-thymidine. It prevents HBV DNA synthesis by 
acting as an HBV polymerase inhibitor. Within hepatocytes, telbivudine (3) is 
phosphorylated by host cell kinase to telbivudine-5′-triphosphate which, once 
incorporated into HBV DNA, causes DNA chain termination, thus inhibiting HBV 
replication. In this sense, telbivudine (3), like most nucleotide antiviral drugs, is a 
prodrug. Clinical trials have shown telbivudine (3) to be significantly more effective than 
lamivudine (2) or adefovir dipivoxil (4) and less likely to cause resistance.6 

Adefovir dipivoxil (4) was initially developed as a treatment for HIV, but the 
FDA in 1999 rejected the drug due to concerns about the severity and frequency of 
kidney toxicity when dosed at 60 or 120 mg, respectively. However, 4 was effective at a 
much lower dose of 10 mg for the treatment of chronic hepatitis B in adults with evidence 
of active viral replication and either evidence of persistent elevations in serum alanine 
aminotransferases (primarily ALT) or histologically active disease. It works by blocking 
reverse transcriptase, an enzyme that is crucial for the HBV to reproduce in the body. 
Overall, the efficacy of 4 against wild-type and lamivudine (2)-resistant HBV and the 
delayed emergence of 4-resistance during monotherapy contribute to the durable safety 
and efficacy observed in a wide range of chronic hepatitis B patients.7  

Tenofovir (5), a nucleotide analog closely related to adefovir dipivoxil (4) has 
been approved for the treatment of HBV in 2008, subsequent to its approval for the 
treatment of HIV infection in 2006. In vitro studies showed that it has activity against 
HBV with equimolar potency to 4. Clinical studies confirmed the efficacy of 5 in 
suppressing HBV replication, and it appears to be equally effective against both wild-
type and lamivudine (2)-resistant HBV. The role of 5 in the rapidly expanding 
armamentarium of hepatitis B treatments will depend on the demonstration of long-term 
safety (renal and skeletal) and efficacy against wild-type HBV and HBV mutants that 
involve substitution of methionine within the YMDD motif, as well as a very low rate of 
resistance in NA-naïve as well as NA-experienced patients.8–10 NA stands for 
nucleos(t)ide analog.  

The approval of the nucleotide and nucleoside analogs 1–5 marked a significant 
advance in the treatment of chronic hepatitis B. In comparison to compounds 2–5, 
entecavir (1) is a novel carbocyclic nucleoside analog with potent and highly selective 
activity against HBV, as well as a low rate of resistance. In this chapter, the 
pharmacological profile and syntheses of entecavir (1) will be profiled in detail.  

2 Pharmacology 

The hallmark of acute HBV infection is elevated alanine aminotransferase (ALT) levels. 
As a matter of fact, ALT levels are routinely screened during our annual physical exams 
where an elevated ALT level is a sign of a concern with regard to the liver function. For 
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instance, long-term consumption of too much alcohol would cause liver to become 
hardened along with elevated ALT levels. Other telltale signs of acute HBV infection 
also include the presence of hepatitis B surface antigen (HBsAg), IgM antibody to 
hepatitis B core antigen (anti-HBc), and hepatitis B e-antigen (HBeAg), although the 
latter serological test is not routinely used. Chronic hepatitis B is defined as the presence 
of HBsAg or other viral markers in serum for more than 2 months.  

Entecavir (1) is converted in mammalian cells in vitro to the 5′-triphosphate, 
which then acts as an inhibitor of hepadnaviral polymerase with an IC50 value for 
inhibition of HBV of 0.2–0.3 nM. The Ki value for binding of 1-triphosphate to HBV 
polymerase is 3.2 nM. In the HepG2 stably transfected cell line 2.2.15, 1 had an EC50 
(50% effective concentration) value of 3.5 nM against HBV and an CC50 (50% cytotoxic 
concentration) value of ~30 μM against HBV as determined by analysis of secreted HBV 
DNA.11,12 This represents an excellent selectivity index of ~8,000 (toxicity dose is 8,000-
fold greater than the concentration needed to inhibit HBV replication in the same cell 
line). Direct comparison with other nucleoside analogs in this cell line demonstrated that 
1 is the most potent inhibitor of HBV replication, as shown in Table 1.13  
 

Table 1.  Potency of various nucleoside analogs for HBV inhibition based on the EC50  
for inhibition of HBV replicase in HepG2.2.15 cell line.13 

Analog EC50 (μM) Relative potency 
Entecavir (1) 0.004 1 

Lamivudine (2) 0.02 0.2 
Adefovir dipivoxil (4) 0.11 0.04 

Tenofovir (5) 0.14 0.03 
 

Woodchucks (Marmota monax) infected with woodchuck hepatitis virus (WHV) 
were used as an in vivo model of HBV infection. During the first 4 weeks of study, 1 was 
administered at various doses and was found to suppress HBV DNA replication by 
approximately 3 log10 copies/mL regardless of the dose administered. After 12 weeks, 
most of the animals became HBV DNA-negative, reflecting greater than a 1,000-fold 
suppression in circulating HBV. Similar results were observed for 1 using ducks as the 
animal model.13   

3 Structure–Activity Relationship (SAR) 

The structure–activity relationship (SAR) around entecavir (1) was exhaustively 
investigated, and 1 was found to be the most potent member in the series as tested against 
HBV in HepG2.2.15 cells. As shown in Table 2 (next page), the enantiomer of 1 (ent-1) 
was inactive, while 1 was 6.6-fold more potent than lamivudine (2, entry 3).14 Similarly, 
the adenine analog 6 (entry 4) was 43-fold less potent than 1, while the thymine analog 7 
(entry 5) and the 5-iodouracil analog 8 (entry 6) were much less potent in HepG2.2.15 
cell culture. 
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In 2004, Ruediger et al. at Bristol-Myers Squibb (BMS) prepared the 3′-deoxy 
analog (9) of entecavir (1), which is the carbocyclic 2′-deoxyguanosine.15 Unfortunately, 
both the 3′-deoxy analog 9 and its enantiomer (ent-9) were found to be inactive against 
HBV in HepG2.2.15 cell culture.  

4 Pharmacokinetics and Drug Metabolism 

The plasma half-life of entecavir (1) in rats and dogs was 4–9 h. It was metabolized by 
HepG2 cells to the corresponding mono-, di-, and triphosphates. The uptake of 1 was 
linear between 1–25 μM, and intracellular triphosphate accumulated most efficiently in 
the micro-molar range, with an intracellular half-life for 1-triphosphate determined to be 
15 h.11  
 

Table 2.  Activity of nucleoside analogs against HBV in HepG2.2.15 cells. 

Entry Compound EC50(μM) 

1 1 0.03 

2 ent-1 100 

3 2 (3TC) 0.2 

4 

H2C

HO

HO

N
N

N NH

NH2

6

0.128 

5 

CH2

HO

HO

N NH

O

O

CH3

7

>100 

6 

H2C

HO

HO

N NH

O

O

I

8

10.5 

7 

H2C

HO
N

N

N NH

O

NH2

OH
9

>100 

8 ent-9 >100 
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In humans, peak plasma concentration occurred between 0.5 and 1.5 h following 
oral administration of 1 in healthy males. Steady-state concentration was achieved in  
6–10 days, with a twofold accumulation and an effective accumulation half-time of about 
24 h. Compound 1 is not a substrate, inducer, or inhibitor of the cytochrome P450 
enzyme system; therefore, it has limited potential for drug–drug interactions (DDIs).13  

5 Efficacy and Safety 

Entecavir (1) is a potent inhibitor of HBV replication. It is active against lamivudine (2)-
resistant HBV and also offers the convenience of once daily dosing and a favorable safety 
profile.  

In phase III clinical trials, more than 1,500 patients participated in three major 
studies: AI463-022, which compared the investigational agent 1 to treatment with 2 in 
nucleoside-naïve, HBeAg-positive chronic hepatitis B patients; AI463-027 which 
compared 1 to 2 in nucleoside-naïve patients with HBeAg-negative chronic hepatitis B; 
and AI463-026, which evaluated patients with 2-refractory HBeAg-positive chronic 
hepatitis B who were either switched directly to 1 or continued to receive 2. Entecavir (1) 
demonstrated significant histological improvement and significantly reduced viral load 
versus 2, with a similar safety profile at 48 weeks in these three studies. The most 
common adverse events of moderate to severe intensity that occurred in >1% of patients 
treated with 1 were headache, fatigue, diarrhea, and dyspepsia.13  

6 Syntheses 

6.1 Discovery Synthesis 

The BMS discovery synthesis of entecavir (1) was patented by Zahler and Slusarchyk,16,17 
whereas Bisacchi and Zahler et al.14,17,18 of BMS reported the process synthesis of 1. 
Although the synthetic route of the process synthesis of 1 is similar to the discovery 
approach, the process synthesis was superior with regard to yields and ease of operation 
on large scales.  

The process synthesis of 1, as reported by Bisacchi and Zahler et al.,14 
commenced with the known chiral synthon 11. Thus, cyclopentene 10 was prepared in 
75% yield and 96.6–98.8% ee using commercially available sodium cyclopentadienide.19 
Cyclopentyl epoxide 11 was easily assembled by epoxidation of 10 with VO(acac)2 and t-
butyl peroxide, followed by O-benzylation. Lithiation of 6-(benzyloxy)-9H-purin-2-
amine (12) with LiH was followed by reaction with epoxide 11 to afford the N-9 adduct 
13. Protection of the purine amine was found to be necessary for the subsequent 
oxidation of the cyclopentyl alcohol, and this was done using 4′-monomethoxytrityl 
chloride (MMT-Cl). Subsequent oxidation was achieved using the Dess–Martin reagent 
to give ketone 15, while other oxidation methods such as Moffatt and TPAP–NMMO 
oxidation did not work as well. Several methods for the methylenation of ketone 15 were 
successfully employed, with the Nysted reagent working better on large scales in 
comparison to the Tebbe reagent, the Simmons–Smith reagent, and the Lombardo 
reagent, to afford olefin 16. Acid-mediated deprotection then provided 17 and a final 
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global de-benzylation step afforded 1 in 11 total steps and an overall yield of 18%. This 
route was used to make up to 20 g of 1.  
 

Na HO

BnO

10

1. BnOCH2Cl, THF, −65 to 78 °C;
2. Diisopinylcamphenylborane
    [prepared from (+)-α-pinene]
    THF, −65 to 78 °C;
3.  Aq. NaOH, H2O2; 75%

BnO

BnO

11

O
1. VO(acac)2, t-BuOOH, CH2Cl2;
2. BnBr, NaH, Bu4NI, DMF; 83%

N
H

N

N

N

OBn

NH2

LiH, DMF, 125 °C, 60%

12

13

HO

BnO

BnO

N
N

N N

OBn

NH2

4′-monomethoxytrityl chloride (MMT-Cl)
Et3N, DMAP, CH2Cl2, 82%

14

HO

BnO

BnO

N
N

N N

OBn

HN MMT

Dess−Martin reagent
t-BuOH, CH2Cl2

15, crude

O

BnO

BnO

N
N

N N

OBn

HN MMT

Nysted reagent
TiCl4, THF

75%, 2 steps

16

H2C

BnO

BnO

N
N

N N

OBn

HN MMT
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Aq. HCl, THF
MeOH, 55 °C

92%

17

H2C

BnO

BnO

N
N

N N

OBn

NH2

BCl3, CH2Cl2
−78 °C, 89%

1

 

6.2 Alternative Syntheses 

Ziegler reported a strategy, involving radical cyclization, which offered an alternative 
approach to the carbocyclic core of 1.20 The approach is intellectually interesting but less 
practical due to the lengthy synthesis. Ziegler began his endeavor using D-diacetone 
glucose (18) as the starting material. A Barton–McCombie deoxygenation of 18, using 
Fu’s catalytic n-Bu3SnH protocol with polymethylhydrosiloxane (PMHS), removed the 
free hydroxyl group to give 19. After chemo-selective removal of the pendant acetonide, 
the resulting diol 20 was converted to amide acetal 21 using the Eastwood procedure. 
Treatment of 21 with acetic anhydride at 120 °C then provided olefin 22. Acetonide 
hydrolysis of 22 afforded 23, which was treated with (MeO)2POCN2COMe under Ohira’s 
mild alkaline conditions to give acetylenic diol 24 in excellent yield. Bis-silyation of 24 
gave 25, which was non-selectively epoxidized using m-CPBA to give 26. The 
stereochemical outcome is inconsequential here because the chirality would be 
obliterated later. With epoxy-acetylene 26 in hand, a Ti(III)-mediated generation of β-
alkoxy carbon radical and subsequent cyclization delivered the desired methylene 
cyclopentane 27 after a quick acidic workup. Again, Ziegler’s approach proved that the 
radical cyclization of epoxy-acetylene 26 would indeed produce the desired carbocyclic 
core of 1, but this did not ultimately contribute to the manufacture of entecavir (1, 
Baraclude) or hasten its path to the market.  
 

O

HO O

O

18

1. NaH, CS2; MeI
2. cat. AIBN, (Bn3Sn)2O, 
    PMHS, n-BuOH, toluene
    reflux, 75% 2 steps

O
O

O

O

O

19

O
O 30% HOAc

rt, 24 h, 80%

20

O

O

O

HO
HO

O

O

O

21

O
O

H
Me2N

(MeO)2CHNMe2
toluene, reflux, 8 h

Ac2O, 120 °C, 12 h
95%, 2 steps
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O

O

O

22

1:1 4% aq. H2SO4/THF
reflux, 4 h, 80%

O

OH

OH

23

24

(MeO)2POCN2COMe
K2CO3, MeOH, rt, 84%

OH OH

TBSOTf, 2,6-lutidine
CH2Cl2, 0 °C to rt, 93%

25
TBSO OTBS

m-CPBA, CH2Cl2
rt, 91%

26
TBSO OTBS

O

1. Cp2TiCl, degassed THF
    inverse addition, 11 h, rt
2. 10% aq. H2SO4, 5 min
     82% 2 steps

HO
OTBS

TBSO 27  

 
More recently, Reichardt and Meier21 reported an efficient synthesis for racemic 
cyclopent-3-en-1-yl nucleoside analogs, which could, in principle, be applicable to the 
synthesis of entecavir (1). Their synthesis started from inexpensive cyclopentadiene, 
which was deprotonated with NaH and then quenched with benzyloxymethyl chloride to 
give diene 28, which isomerized to give a mixture of two thermodynamically more stable 
alkylated cyclopentadienes 29a,b. Regioselective hydroboration of 29a,b was followed by 
oxidative alkaline workup to give rise to the key intermediate cyclopentenol (±)-30. 
Condensation of (±)-30 with 6-chloropurine was then achieved using a modified 
Mitsunobu reaction. The adduct was debenzylated and the resulting chloropurine 
derivative was treated with sodium methoxide and 2-mercaptoethanol to produce the 
inosine nucleoside (±)-31. It is conceivable that this interesting approach could be 
adapted to the synthesis of (±)-entecavir (1).  
 

1. NaH, THF, 0 °C, 0.5 h
2. BnOCH2Cl, THF
    −50 °C, 2 h, rt, 12 h

BnO

28

> 0 °C
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BnO

29a

BnO

29b

1. BH3•THF, THF, 24 h
2. H2O2, NaOH, THF, 12 h

BnO

(±)-30, 59%

OH

1. DIAD, Ph3P, 6-chloropurine, THF, 24 h, 54%
2. BCl3, CH2Cl2, −78 °C, 82%
3. 2-Mercaptoethanol, NaOMe
   MeOH, 60 °C, 4 h, 68%

HO

N N

NH

O

N

(±)-31  
 

During the development of entecavir (1), Ogan et al.22 at BMS described the 
synthesis of [14C]-radiolabeled entecavir, which was required for clinical studies of 
absorption, distribution, metabolism, and elimination (ADME). As a key step in their 
synthesis, they chose to elaborate the pyrimidine 46 to purine 47, a known strategy in the 
literature for the synthesis of labeled nucleosides. To that end, chiral expoxide 11 was 
treated with sodium azide, and Staudinger reduction of the resulting azido-alcohol gave 
amino-alcohol 32. Heating 32 with 4,6-dichloropyrimidin-2-amine then furnished 6-
chloro-diaminopyrimidine 33. Pyrimidine 33 was subsequently treated with the 
diazonium salt generated from p-chloroaniline to afford a bright yellow 5-
diazopyrimidine, which was treated with potassium methoxide to provide the 4-methoxy-
5-diazopyrimidine 34. Cleavage of the diazo linkage of 34 with zinc in acetic acid gave 
the triaminopyrimidine 35, which was treated with triethyl [14C]-orthoformate to effect a 
ring annulation, and subsequent protection with the 4-methoxytrityl group provided the 
guanine 36. Oxidation of 36 with Dess–Martin periodinane was followed by Nysted 
methylenation to afford the exocyclic methylenic compound 37. Global de-protection of 
37 then completed the synthesis of [14C]-radiolabeled entecavir (1).  
 

BnO

BnO

11

O
1. NaN3, NH4Cl, EtOH, 99%
2. Ph3P, H2O, THF, 84%

BnO

BnO

32

OH

NH2

BnO

BnO
33

HO H
N

N N

Cl

NH2

Cl NH2

1. NaNO2, H2O, CH3CN, 91%
2. KOH, MeOH, 78%

N

N

Cl

NH2Cl

Et3N, n-BuOH
115 °C, 82%

 


