ENERGY-EFFICIENT DISTRIBUTED COMPUTING SYSTEMS

Edited by
Albert Y. Zomaya · Young Choon Lee
ENERGY-EFFICIENT DISTRIBUTED COMPUTING SYSTEMS
WILEY SERIES ON PARALLEL
AND DISTRIBUTED COMPUTING

Editor: Albert Y. Zomaya

A complete list of titles in this series appears at the end of this volume
To our families for their help, support, and patience.
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>xxix</td>
</tr>
<tr>
<td>ACKNOWLEDGMENTS</td>
<td>xxxi</td>
</tr>
<tr>
<td>CONTRIBUTORS</td>
<td>xxxiii</td>
</tr>
<tr>
<td>1 POWER ALLOCATION AND TASK SCHEDULING ON MULTIPROCESSOR COMPUTERS WITH ENERGY AND TIME CONSTRAINTS</td>
<td>1</td>
</tr>
<tr>
<td>Keqin Li</td>
<td></td>
</tr>
<tr>
<td>1.1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>1.1.1 Energy Consumption</td>
<td>1</td>
</tr>
<tr>
<td>1.1.2 Power Reduction</td>
<td>2</td>
</tr>
<tr>
<td>1.1.3 Dynamic Power Management</td>
<td>3</td>
</tr>
<tr>
<td>1.1.4 Task Scheduling with Energy and Time Constraints</td>
<td>4</td>
</tr>
<tr>
<td>1.1.5 Chapter Outline</td>
<td>5</td>
</tr>
<tr>
<td>1.2 Preliminaries</td>
<td>5</td>
</tr>
<tr>
<td>1.2.1 Power Consumption Model</td>
<td>5</td>
</tr>
<tr>
<td>1.2.2 Problem Definitions</td>
<td>6</td>
</tr>
<tr>
<td>1.2.3 Task Models</td>
<td>7</td>
</tr>
<tr>
<td>1.2.4 Processor Models</td>
<td>8</td>
</tr>
<tr>
<td>1.2.5 Scheduling Models</td>
<td>9</td>
</tr>
<tr>
<td>1.2.6 Problem Decomposition</td>
<td>9</td>
</tr>
</tbody>
</table>
2 POWER-AWARE HIGH PERFORMANCE COMPUTING

Rong Ge and Kirk W. Cameron

2.1 Introduction 39
2.2 Background 41
 2.2.1 Current Hardware Technology and Power Consumption 41
 2.2.1.1 Processor power 41
 2.2.1.2 Memory subsystem power 42
 2.2.2 Performance 43
 2.2.3 Energy Efficiency 44
2.3 Related Work 45
 2.3.1 Power Profiling 45
 2.3.1.1 Simulator-based power estimation 45
 2.3.1.2 Direct measurements 46
 2.3.1.3 Event-based estimation 46
 2.3.2 Performance Scalability on Power-Aware Systems 46
 2.3.3 Adaptive Power Allocation for Energy-Efficient Computing 47
2.4 PowerPack: Fine-Grain Energy Profiling of HPC Applications 48
 2.4.1 Design and Implementation of PowerPack 48
 2.4.1.1 Overview 48
 2.4.1.2 Fine-grain systematic power measurement 50
 2.4.1.3 Automatic power profiling and code synchronization 51
 2.4.2 Power Profiles of HPC Applications and Systems 53
 2.4.2.1 Power distribution over components 53
 2.4.2.2 Power dynamics of applications 54
 2.4.2.3 Power bounds on HPC systems 55
 2.4.2.4 Power versus dynamic voltage and frequency scaling 57
2.5 Power-Aware Speedup Model 59
 2.5.1 Power-Aware Speedup 59
 2.5.1.1 Sequential execution time for a single workload $T_1(w, f)$ 60
3 ENERGY EFFICIENCY IN HPC SYSTEMS
Ivan Rodero and Manish Parashar

3.1 Introduction 81
3.2 Background and Related Work 83
 3.2.1 CPU Power Management 83
 3.2.1.1 OS-level CPU power management 83
 3.2.1.2 Workload-level CPU power management 84
 3.2.1.3 Cluster-level CPU power management 84
 3.2.2 Component-Based Power Management 85
 3.2.2.1 Memory subsystem 85
 3.2.2.2 Storage subsystem 86
 3.2.3 Thermal-Conscious Power Management 87
 3.2.4 Power Management in Virtualized Datacenters 87
3.3 Proactive, Component-Based Power Management 88
 3.3.1 Job Allocation Policies 88
 3.3.2 Workload Profiling 90
3.4 Quantifying Energy Saving Possibilities 91
 3.4.1 Methodology 92
 3.4.2 Component-Level Power Requirements 92
 3.4.3 Energy Savings 94
3.5 Evaluation of the Proposed Strategies 95
 3.5.1 Methodology 96
CONTENTS

5.3.2 Management of the Resource Reservations 141
5.3.3 Resource Management and On/Off Algorithms 145
5.3.4 Energy-Consumption Estimates 146
5.3.5 Prediction Algorithms 146
5.4 EARI: Energy-Aware Reservation Infrastructure for Data Centers and Grids 147
5.4.1 EARI’s Architecture 147
5.4.2 Validation of EARI on Experimental Grid Traces 147
5.5 GOC: Green Open Cloud 149
5.5.1 GOC’s Resource Manager Architecture 150
5.5.2 Validation of the GOC Framework 152
5.6 HERMES: High Level Energy-Aware Model for Bandwidth Reservation in End-To-End Networks 152
5.6.1 HERMES’ Architecture 154
5.6.2 The Reservation Process of HERMES 155
5.6.3 Discussion 157
5.7 Summary 158
References 158

6 ENERGY-EFFICIENT JOB PLACEMENT ON CLUSTERS, GRIDS, AND CLOUDS 163
Damien Borgetto, Henri Casanova, Georges Da Costa, and Jean-Marc Pierson

6.1 Problem and Motivation 163
6.1.1 Context 163
6.1.2 Chapter Roadmap 164
6.2 Energy-Aware Infrastructures 164
6.2.1 Buildings 165
6.2.2 Context-Aware Buildings 165
6.2.3 Cooling 166
6.3 Current Resource Management Practices 167
6.3.1 Widely Used Resource Management Systems 167
6.3.2 Job Requirement Description 169
6.4 Scientific and Technical Challenges 170
6.4.1 Theoretical Difficulties 170
6.4.2 Technical Difficulties 170
6.4.3 Controlling and Tuning Jobs 171
6.5 Energy-Aware Job Placement Algorithms 172
7 COMPARISON AND ANALYSIS OF GREEDY ENERGY-EFFICIENT SCHEDULING ALGORITHMS FOR COMPUTATIONAL GRIDS

Peder Lindberg, James Leingang, Daniel Lysaker, Kashif Bilal, Samee Ullah Khan, Pascal Bouvry, Nasir Ghani, Nasro Min-Allah, and Juan Li

7.1 Introduction 189
7.2 Problem Formulation 191
 7.2.1 The System Model 191
 7.2.1.1 PEs 191
 7.2.1.2 DVS 191
 7.2.1.3 Tasks 192
 7.2.1.4 Preliminaries 192
 7.2.2 Formulating the Energy-Makespan Minimization Problem 192
7.3 Proposed Algorithms 193
 7.3.1 Greedy Heuristics 194
 7.3.1.1 Greedy heuristic scheduling algorithm 196
 7.3.1.2 Greedy-min 197
 7.3.1.3 Greedy-deadline 198
 7.3.1.4 Greedy-max 198
 7.3.1.5 MaxMin 199
 7.3.1.6 ObFun 199
 7.3.1.7 MinMin StdDev 202
 7.3.1.8 MinMax StdDev 202
7.4 Simulations, Results, and Discussion 203
 7.4.1 Workload 203
 7.4.2 Comparative Results 204
 7.4.2.1 Small-size problems 204
 7.4.2.2 Large-size problems 206
7.5 Related Works 211
CONTENTS

7.6 Conclusion 211
References 212

8 TOWARD ENERGY-AWARE SCHEDULING USING MACHINE LEARNING 215
Josep LL. Berral, Ihigo Goiri, Ramon Nou, Ferran Julià, Josep O. Fitó, Jordi Guitart, Ricard Gavaldà, and Jordi Torres

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>215</td>
</tr>
<tr>
<td>8.1.1 Energetic Impact of the Cloud</td>
<td>216</td>
</tr>
<tr>
<td>8.1.2 An Intelligent Way to Manage Data Centers</td>
<td>216</td>
</tr>
<tr>
<td>8.1.3 Current Autonomic Computing Techniques</td>
<td>217</td>
</tr>
<tr>
<td>8.1.4 Power-Aware Autonomic Computing</td>
<td>217</td>
</tr>
<tr>
<td>8.1.5 State of the Art and Case Study</td>
<td>218</td>
</tr>
<tr>
<td>8.2 Intelligent Self-Management</td>
<td>218</td>
</tr>
<tr>
<td>8.2.1 Classical AI Approaches</td>
<td>219</td>
</tr>
<tr>
<td>8.2.1.1 Heuristic algorithms</td>
<td>219</td>
</tr>
<tr>
<td>8.2.1.2 AI planning</td>
<td>219</td>
</tr>
<tr>
<td>8.2.1.3 Semantic techniques</td>
<td>219</td>
</tr>
<tr>
<td>8.2.1.4 Expert systems and genetic algorithms</td>
<td>220</td>
</tr>
<tr>
<td>8.2.2 Machine Learning Approaches</td>
<td>220</td>
</tr>
<tr>
<td>8.2.2.1 Instance-based learning</td>
<td>221</td>
</tr>
<tr>
<td>8.2.2.2 Reinforcement learning</td>
<td>222</td>
</tr>
<tr>
<td>8.2.2.3 Feature and example selection</td>
<td>225</td>
</tr>
<tr>
<td>8.3 Introducing Power-Aware Approaches</td>
<td>225</td>
</tr>
<tr>
<td>8.3.1 Use of Virtualization</td>
<td>226</td>
</tr>
<tr>
<td>8.3.2 Turning On and Off Machines</td>
<td>228</td>
</tr>
<tr>
<td>8.3.3 Dynamic Voltage and Frequency Scaling</td>
<td>229</td>
</tr>
<tr>
<td>8.3.4 Hybrid Nodes and Data Centers</td>
<td>230</td>
</tr>
<tr>
<td>8.4 Experiences of Applying ML on Power-Aware Self-Management</td>
<td>230</td>
</tr>
<tr>
<td>8.4.1 Case Study Approach</td>
<td>231</td>
</tr>
<tr>
<td>8.4.2 Scheduling and Power Trade-Off</td>
<td>231</td>
</tr>
<tr>
<td>8.4.3 Experimenting with Power-Aware Techniques</td>
<td>233</td>
</tr>
<tr>
<td>8.4.4 Applying Machine Learning</td>
<td>236</td>
</tr>
<tr>
<td>8.4.5 Conclusions from the Experiments</td>
<td>238</td>
</tr>
<tr>
<td>8.5 Conclusions on Intelligent Power-Aware Self-Management</td>
<td>238</td>
</tr>
</tbody>
</table>
References 240
9 ENERGY EFFICIENCY METRICS FOR DATA CENTERS 245
Javid Taheri and Albert Y. Zomaya

9.1 Introduction 245
 9.1.1 Background 245
 9.1.2 Data Center Energy Use 246
 9.1.3 Data Center Characteristics 246
 9.1.3.1 Electric power 247
 9.1.3.2 Heat removal 249
 9.1.4 Energy Efficiency 250

9.2 Fundamentals of Metrics 250
 9.2.1 Demand and Constraints on Data Center Operators 250
 9.2.2 Metrics 251
 9.2.2.1 Criteria for good metrics 251
 9.2.2.2 Methodology 252
 9.2.2.3 Stability of metrics 252

9.3 Data Center Energy Efficiency 252
 9.3.1 Holistic IT Efficiency Metrics 252
 9.3.1.1 Fixed versus proportional overheads 254
 9.3.1.2 Power versus energy 254
 9.3.1.3 Performance versus productivity 255
 9.3.2 Code of Conduct 256
 9.3.2.1 Environmental statement 256
 9.3.2.2 Problem statement 256
 9.3.2.3 Scope of the CoC 257
 9.3.2.4 Aims and objectives of CoC 258
 9.3.3 Power Use in Data Centers 259
 9.3.3.1 Data center IT power to utility power relationship 259
 9.3.3.2 Chiller efficiency and external temperature 260

9.4 Available Metrics 260
 9.4.1 The Green Grid 261
 9.4.1.1 Power usage effectiveness (PUE) 261
 9.4.1.2 Data center efficiency (DCE) 262
 9.4.1.3 Data center infrastructure efficiency (DCiE) 262
 9.4.1.4 Data center productivity (DCP) 263
9.4.2 McKinsey 263
9.4.3 Uptime Institute 264
 9.4.3.1 Site infrastructure power overhead multiplier (SI-POM) 265
 9.4.3.2 IT hardware power overhead multiplier (H-POM) 266
 9.4.3.3 DC hardware compute load per unit of computing work done 266
 9.4.3.4 Deployed hardware utilization ratio (DH-UR) 266
 9.4.3.5 Deployed hardware utilization efficiency (DH-UE) 267

9.5 Harmonizing Global Metrics for Data Center Energy Efficiency 267
References 268

10 AUTONOMIC GREEN COMPUTING IN LARGE-SCALE DATA CENTERS 271
Haoting Luo, Bithika Khargharia, Salim Hariri, and Youssif Al-Nashif

10.1 Introduction 271
10.2 Related Technologies and Techniques 272
 10.2.1 Power Optimization Techniques in Data Centers 272
 10.2.2 Design Model 273
 10.2.3 Networks 274
 10.2.4 Data Center Power Distribution 275
 10.2.5 Data Center Power-Efficient Metrics 276
 10.2.6 Modeling Prototype and Testbed 277
 10.2.7 Green Computing 278
 10.2.8 Energy Proportional Computing 280
 10.2.9 Hardware Virtualization Technology 281
 10.2.10 Autonomic Computing 282
10.3 Autonomic Green Computing: A Case Study 283
 10.3.1 Autonomic Management Platform 285
 10.3.1.1 Platform architecture 285
 10.3.1.2 DEV-based modeling and simulation platform 285
 10.3.1.3 Workload generator 287
 10.3.2 Model Parameter Evaluation 288
10.3.2.1 State transitioning overhead 288
10.3.2.2 VM template evaluation 289
10.3.2.3 Scalability analysis 291
10.3.3 Autonomic Power Efficiency Management Algorithm (Performance Per Watt) 291
10.3.4 Simulation Results and Evaluation 293
 10.3.4.1 Analysis of energy and performance trade-offs 296

10.4 Conclusion and Future Directions 297
References 298

11 ENERGY AND THERMAL AWARE SCHEDULING IN DATA CENTERS 301
Gaurav Dhiman, Raid Ayoub, and Tajana S. Rosing

11.1 Introduction 301
11.2 Related Work 302
11.3 Intermachine Scheduling 305
 11.3.1 Performance and Power Profile of VMs 305
 11.3.2 Architecture 309
 11.3.2.1 vgnode 309
 11.3.2.2 vgxen 310
 11.3.2.3 vgdom 312
 11.3.2.4 vgserv 312
11.4 Intramachine Scheduling 315
 11.4.1 Air-Forced Thermal Modeling and Cost 316
 11.4.2 Cooling Aware Dynamic Workload Scheduling 317
 11.4.3 Scheduling Mechanism 318
 11.4.4 Cooling Costs Predictor 319
11.5 Evaluation 321
 11.5.1 Intermachine Scheduler (vGreen) 321
 11.5.2 Heterogeneous Workloads 323
 11.5.2.1 Comparison with DVFS policies 325
 11.5.2.2 Homogeneous workloads 328
 11.5.3 Intramachine Scheduler (Cool and Save) 328
 11.5.3.1 Results 331
 11.5.3.2 Overhead of CAS 333
11.6 Conclusion 333
References 334
12 QOS-AWARE POWER MANAGEMENT IN DATA CENTERS

Jiayu Gong and Cheng-Zhong Xu

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1 Introduction</td>
<td>339</td>
</tr>
<tr>
<td>12.2 Problem Classification</td>
<td>340</td>
</tr>
<tr>
<td>12.2.1 Objective and Constraint</td>
<td>340</td>
</tr>
<tr>
<td>12.2.2 Scope and Time Granularities</td>
<td>340</td>
</tr>
<tr>
<td>12.2.3 Methodology</td>
<td>341</td>
</tr>
<tr>
<td>12.2.4 Power Management Mechanism</td>
<td>342</td>
</tr>
<tr>
<td>12.3 Energy Efficiency</td>
<td>344</td>
</tr>
<tr>
<td>12.3.1 Energy-Efficiency Metrics</td>
<td>344</td>
</tr>
<tr>
<td>12.3.2 Improving Energy Efficiency</td>
<td>346</td>
</tr>
<tr>
<td>12.3.2.1 Energy minimization with performance guarantee</td>
<td>346</td>
</tr>
<tr>
<td>12.3.2.2 Performance maximization under power budget</td>
<td>348</td>
</tr>
<tr>
<td>12.3.2.3 Trade-off between power and performance</td>
<td>348</td>
</tr>
<tr>
<td>12.3.3 Energy-Proportional Computing</td>
<td>350</td>
</tr>
<tr>
<td>12.4 Power Capping</td>
<td>351</td>
</tr>
<tr>
<td>12.5 Conclusion</td>
<td>353</td>
</tr>
<tr>
<td>References</td>
<td>356</td>
</tr>
</tbody>
</table>

13 ENERGY-EFFICIENT STORAGE SYSTEMS FOR DATA CENTERS

Sudhanva Gurumurthi and Anand Sivasubramaniam

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13.1 Introduction</td>
<td>361</td>
</tr>
<tr>
<td>13.2 Disk Drive Operation and Disk Power</td>
<td>362</td>
</tr>
<tr>
<td>13.2.1 An Overview of Disk Drives</td>
<td>362</td>
</tr>
<tr>
<td>13.2.2 Sources of Disk Power Consumption</td>
<td>363</td>
</tr>
<tr>
<td>13.2.3 Disk Activity and Power Consumption</td>
<td>365</td>
</tr>
<tr>
<td>13.3 Disk and Storage Power Reduction Techniques</td>
<td>366</td>
</tr>
<tr>
<td>13.3.1 Exploiting the STANDBY State</td>
<td>368</td>
</tr>
<tr>
<td>13.3.2 Reducing Seek Activity</td>
<td>369</td>
</tr>
<tr>
<td>13.3.3 Achieving Energy Proportionality</td>
<td>369</td>
</tr>
<tr>
<td>13.3.3.1 Hardware approaches</td>
<td>369</td>
</tr>
<tr>
<td>13.3.3.2 Software approaches</td>
<td>370</td>
</tr>
<tr>
<td>13.4 Using Nonvolatile Memory and Solid-State Disks</td>
<td>371</td>
</tr>
<tr>
<td>13.5 Conclusions</td>
<td>372</td>
</tr>
<tr>
<td>References</td>
<td>373</td>
</tr>
</tbody>
</table>
14 AUTONOMIC ENERGY/PERFORMANCE OPTIMIZATIONS
FOR MEMORY IN SERVERS 377
Bithika Khargharia and Mazin Yousif

14.1 Introduction 378
14.2 Classifications of Dynamic Power Management Techniques 380
 14.2.1 Heuristic and Predictive Techniques 380
 14.2.2 QoS and Energy Trade-Offs 381
14.3 Applications of Dynamic Power Management (DPM) 382
 14.3.1 Power Management of System Components in Isolation 382
 14.3.2 Joint Power Management of System Components 383
 14.3.3 Holistic System-Level Power Management 383
14.4 Autonomic Power and Performance Optimization of Memory Subsystems in Server Platforms 384
 14.4.1 Adaptive Memory Interleaving Technique for Power and Performance Management 384
 14.4.1.1 Formulating the optimization problem 386
 14.4.1.2 Memory appflow 389
 14.4.2 Industry Techniques 389
 14.4.2.1 Enhancements in memory hardware design 390
 14.4.2.2 Adding more operating states 390
 14.4.2.3 Faster transition to and from low power states 390
 14.4.2.4 Memory consolidation 390
14.5 Conclusion 391

References 391

15 ROD: A PRACTICAL APPROACH TO IMPROVING RELIABILITY OF ENERGY-EFFICIENT PARALLEL DISK SYSTEMS 395
Shu Yin, Xiaojun Ruan, Adam Manzanares, and Xiao Qin

15.1 Introduction 395
15.2 Modeling Reliability of Energy-Efficient Parallel Disks 396
 15.2.1 The MINT Model 396
 15.2.1.1 Disk utilization 398
 15.2.1.2 Temperature 398
 15.2.1.3 Power-state transition frequency 399
 15.2.1.4 Single disk reliability model 399
 15.2.2 MAID, Massive Arrays of Idle Disks 400
15.3 Improving Reliability of MAID via Disk Swapping 401
17.3.2 Integrated Schedule Generation 447
17.4 Preliminaries 448
17.4.1 System and Application Models 448
17.4.2 Energy Model 448
17.5 Energy-Aware Scheduling via DVFS 450
17.5.1 Optimum Continuous Frequency 450
17.5.2 Reference Dynamic Voltage–Frequency Scaling (RDVFS) 451
17.5.3 Maximum-Minimum-Frequency for Dynamic Voltage–Frequency Scaling (MMF-DVFS) 452
17.5.4 Multiple Frequency Selection for Dynamic Voltage–Frequency Scaling (MFS-DVFS) 453
17.5.4.1 Task eligibility 454
17.6 Experimental Results 456
17.6.1 Simulation Settings 456
17.6.2 Results 458
17.7 Conclusion 461
References 461

18 THE PARAMOUNTCY OF RECONFIGURABLE COMPUTING 465
Reiner Hartenstein
18.1 Introduction 465
18.2 Why Computers are Important 466
18.2.1 Computing for a Sustainable Environment 470
18.3 Performance Progress Stalled 472
18.3.1 Unaffordable Energy Consumption of Computing 473
18.3.2 Crashing into the Programming Wall 475
18.4 The Tail is Wagging the Dog (Accelerators) 488
18.4.1 Hardwired Accelerators 489
18.4.2 Programmable Accelerators 490
18.5 Reconfigurable Computing 494
18.5.1 Speedup Factors by FPGAs 498
18.5.2 The Reconfigurable Computing Paradox 501
18.5.3 Saving Energy by Reconfigurable Computing 505
18.5.3.1 Traditional green computing 506
18.5.3.2 The role of graphics processors 507
18.5.3.3 Wintel versus ARM 508
18.5.4 Reconfigurable Computing is the Silver Bullet 511
CONTENTS

18.5.4.1 A new world model of computing 511
18.5.5 The Twin-Paradigm Approach to Tear Down the Wall 514
18.5.6 A Mass Movement Needed as Soon as Possible 517
18.5.6.1 Legacy software from the mainframe age 518
18.5.7 How to Reinvent Computing 519
18.6 Conclusions 526
References 529

19 WORKLOAD CLUSTERING FOR INCREASING ENERGY SAVINGS ON EMBEDDED MPSOCs 549
Ozcan Ozturk, Mahmut Kandemir, and Sri Hari Krishna Narayanan

19.1 Introduction 549
19.2 Embedded MPSoC Architecture, Execution Model, and Related Work 550
19.3 Our Approach 551
19.3.1 Overview 551
19.3.2 Technical Details and Problem Formulation 553
19.3.2.1 System and job model 553
19.3.2.2 Mathematical programing model 554
19.3.2.3 Example 557
19.4 Experimental Evaluation 560
19.5 Conclusions 564
References 565

20 ENERGY-EFFICIENT INTERNET INFRASTRUCTURE 567
Wei Dong Jiang and Viktor K. Prasanna

20.1 Introduction 567
20.1.1 Performance Challenges 568
20.1.2 Existing Packet Forwarding Approaches 570
20.1.2.1 Software approaches 570
20.1.2.2 Hardware approaches 571
20.2 SRAM-Based Pipelined IP Lookup Architectures: Alternative to TCAMs 571
20.3 Data Structure Optimization for Power Efficiency 573
20.3.1 Problem Formulation 574
20.3.1.1 Non-pipelined and pipelined engines 574
20.3.1.2 Power function of SRAM 575
20.3.2 Special Case: Uniform Stride 576
20.3.3 Dynamic Programming 576
20.3.4 Performance Evaluation 577
 20.3.4.1 Results for non-pipelined architecture 578
 20.3.4.2 Results for pipelined architecture 578
20.4 Architectural Optimization to Reduce Dynamic Power Dissipation 580
 20.4.1 Analysis and Motivation 581
 20.4.1.1 Traffic locality 582
 20.4.1.2 Traffic rate variation 582
 20.4.1.3 Access frequency on different stages 583
 20.4.2 Architecture-Specific Techniques 583
 20.4.2.1 Inherent caching 584
 20.4.2.2 Local clocking 584
 20.4.2.3 Fine-grained memory enabling 585
 20.4.3 Performance Evaluation 585
20.5 Related Work 588
20.6 Summary 589
References 589

21 DEMAND RESPONSE IN THE SMART GRID: A DISTRIBUTED COMPUTING PERSPECTIVE 593
 Chen Wang and Martin De Groot

 21.1 Introduction 593
 21.2 Demand Response 595
 21.2.1 Existing Demand Response Programs 595
 21.2.2 Demand Response Supported by the Smart Grid 597
 21.3 Demand Response as a Distributed System 600
 21.3.1 An Overlay Network for Demand Response 600
 21.3.2 Event Driven Demand Response 602
 21.3.3 Cost Driven Demand Response 604
 21.3.4 A Decentralized Demand Response Framework 609
 21.3.5 Accountability of Coordination Decision Making 610
 21.4 Summary 611
References 611
22 RESOURCE MANAGEMENT FOR DISTRIBUTED MOBILE COMPUTING

Jong-Kook Kim

22.1 Introduction 615

22.2 Single-Hop Energy-Constrained Environment 617
 22.2.1 System Model 617
 22.2.2 Related Work 620
 22.2.3 Heuristic Descriptions
 22.2.3.1 Mapping event 621
 22.2.3.2 Scheduling communications 621
 22.2.3.3 Opportunistic load balancing and minimum energy greedy heuristics 622
 22.2.3.4 ME-MC heuristic 622
 22.2.3.5 ME-ME heuristic 624
 22.2.3.6 CRME heuristic 625
 22.2.3.7 Originator and random 626
 22.2.3.8 Upper bound 626
 22.2.4 Simulation Model 628
 22.2.5 Results 630
 22.2.6 Summary 634

22.3 Multihop Distributed Mobile Computing Environment 635
 22.3.1 The Multihop System Model 635
 22.3.2 Energy-Aware Routing Protocol
 22.3.2.1 Overview 636
 22.3.2.2 DSDV 637
 22.3.2.3 DSDV remaining energy 637
 22.3.2.4 DSDV-energy consumption per remaining energy 637
 22.3.3 Heuristic Description
 22.3.3.1 Random 638
 22.3.3.2 Estimated minimum total energy (EMTE) 638
 22.3.3.3 K-percent-speed (KPS) and K-percent-energy (KPE) 639
 22.3.3.4 Energy ratio and distance (ERD) 639
 22.3.3.5 ETC and distance (ETCD) 640
 22.3.3.6 Minimum execution time (MET) 640
CONTENTS

22.3.3.7 Minimum completion time (MCT) and minimum completion time with DVS (MCT-DVS) 640
22.3.3.8 Switching algorithm (SA) 640
22.3.4 Simulation Model 641
22.3.5 Results 643
 22.3.5.1 Distributed resource management 643
 22.3.5.2 Energy-aware protocol 644
22.3.6 Summary 644

22.4 Future Work 647
References 647

23 AN ENERGY-AWARE FRAMEWORK FOR MOBILE DATA MINING 653
Carmela Comito, Domenico Talia, and Paolo Trunfio

23.1 Introduction 653
23.2 System Architecture 654
23.3 Mobile Device Components 657
23.4 Energy Model 659
23.5 Clustering Scheme 664
 23.5.1 Clustering the M2M Architecture 666
23.6 Conclusion 670
References 670

24 ENERGY AWARENESS AND EFFICIENCY IN WIRELESS SENSOR NETWORKS: FROM PHYSICAL DEVICES TO THE COMMUNICATION LINK 673
Flávia C. Delicato and Paulo F. Pires

24.1 Introduction 673
24.2 WSN and Power Dissipation Models 676
 24.2.1 Network and Node Architecture 676
 24.2.2 Sources of Power Dissipation in WSNs 679
24.3 Strategies for Energy Optimization 683
 24.3.1 Intranode Level 684
 24.3.1.1 Duty cycling 685
 24.3.1.2 Adaptive sensing 691
 24.3.1.3 Dynamic voltage scale (DVS) 693
 24.3.1.4 OS task scheduling 694
24.4 Future Work 697
References 697
24.3.2 Internode Level

24.3.2.1 Transmission power control

24.3.2.2 Dynamic modulation scaling

24.3.2.3 Link layer optimizations

24.4 Final Remarks

References

25 NETWORK-WIDE STRATEGIES FOR ENERGY EFFICIENCY IN WIRELESS SENSOR NETWORKS

Flávia C. Delicato and Paulo F. Pires

25.1 Introduction

25.2 Data Link Layer

25.2.1 Topology Control Protocols

25.2.2 Energy-Efficient MAC Protocols

25.2.2.1 Scheduled MAC protocols in WSNs

25.2.2.2 Contention-based MAC protocols

25.3 Network Layer

25.3.1 Flat and Hierarchical Protocols

25.4 Transport Layer

25.5 Application Layer

25.5.1 Task Scheduling

25.5.2 Data Aggregation and Data Fusion in WSNs

25.5.2.1 Approaches of data fusion for energy efficiency

25.5.2.2 Data aggregation strategies

25.6 Final Remarks

References

26 ENERGY MANAGEMENT IN HETEROGENEOUS WIRELESS HEALTH CARE NETWORKS

Nima Nikzad, Priti Aghera, Piero Zappi, and Tajana S. Rosing

26.1 Introduction

26.2 System Model

26.2.1 Health Monitoring Task Model

26.3 Collaborative Distributed Environmental Sensing

26.3.1 Node Neighborhood and Localization Rate

26.3.2 Energy Ratio and Sensing Rate

26.3.3 Duty Cycling and Prediction

26.4 Task Assignment in a Body Area Network