Open Microfluidics
Open Microfluidics

Jean Berthier
CEA/LETI, University of Grenoble, France

Kenneth A. Brakke
Department of Mathematical Sciences, Susquehanna University, USA

and

Erwin Berthier
Department of Biomedical Engineering, University of Wisconsin Madison, USA
Acknowledgements xi
Preface xiii
Online Materials xv

Introduction 1

1 Theory of Spontaneous Capillary Flows 13
 1.1 Introduction 13
 1.2 Quasi-static Approach to SCF 16
 1.2.1 Open and Confined Systems 17
 1.2.2 Theoretical Approach 17
 1.2.3 Numerical Approach 21
 1.2.3.1 Numerical Verification of the Capillary Force 22
 1.2.3.2 Composite Confined Channel 22
 1.2.3.3 Composite Open Channel 23
 1.2.3.4 Fiber Bundle 24
 1.2.3.5 Usual Geometries 27
 1.2.3.6 Conclusion 27
 1.2.4 Dynamic Aspects 27
 1.2.4.1 Generalization of the Lucas-Washburn-Rideal Law to Composite, Confined Microchannels of Arbitrary Cross-section 30
 1.2.4.2 Theory 30
 1.2.4.3 Magnitude of Capillary Velocities 36
 1.2.4.4 Experimental Results for Confined Channels 38
 1.2.4.5 Conclusion 39
 1.3 The Dynamics of Spontaneous Capillary Flows in Open-surface Channels 40
 1.3.1 The Dynamics of SCF 40
 1.3.2 Confined Rectangular Channels 42
 1.3.3 Open Rectangular U-grooves 44
 1.3.4 Suspended Rectangular Channels 45
 1.3.5 Experiments 46
 1.3.6 Comparison 46
 1.4 Dynamic Contact Angle 49
 1.5 Conclusion 53
 1.6 References 53

2 Capillary Filaments 57
 2.1 Introduction 57
 2.2 Concus-Finn Theory 57
 2.2.1 Numerical Approach 60
 2.2.2 Example of Capillary Filaments in a Micro-beaker 60

Contents

2.2.3 Example of a Capillary Filament in a Micro Petri Dish 60
2.2.4 Extended Concus-Finn Relation 62
2.2.5 Capillary Filaments in a Non-ideal Corner 63

2.3 Capillary Filaments in Rectangular U-grooves 65
2.3.1 Capillary Flow Regimes with No Capillary Filaments (θ > 45°) 66
2.3.2 Capillary Flow Regimes with Capillary Filaments (θ < 45°) 66
 2.3.2.1 SCF Self-dividing into Filaments 67
 2.3.2.2 Initially Separated Concus-Finn Filaments 69
 2.3.2.3 Metastability of CF Filaments 70
 2.3.2.4 Discussion 72
 2.3.2.5 Imperfect Grooves 73
2.3.3 Example of a Varying Cross-sectional Area Channel 73

2.4 Capillary Filaments in V-grooves 74
 2.4.1 Perfect V-grooves 74
 2.4.2 Imperfect V-grooves 75
 2.4.3 Parallel V-grooves 77
 2.4.4 Imperfect Groovy Surface 79

2.5 Examples of Capillary Filaments 81
 2.5.1 Capillary Filling of PCR Devices 82
 2.5.2 Whole Blood Capillary Flow in V-grooves 82

2.6 Conclusions 85
2.7 References 86

Appendix 2.1 Capillary Flow in a Cylindrical Cavity 88

3 Spontaneous Capillary Flows in Open U-grooves 91
3.1 Introduction: SCF in Open “U-grooves” 91
3.2 Quasi-static Approach 92
3.3 Bulk SCF in Uniform Cross-section U-grooves 93
 3.3.1 Single Wall Wettability 93
 3.3.1.1 Theoretical Approach 93
 3.3.1.2 Evolver Numerical Approach 97
 3.3.2 Composite Walls 97
 3.3.2.1 Rectangular Open Channel 98
 3.3.2.2 Trapezoidal Open Channel 99
 3.3.2.3 Roll-embossed Channel 100
3.4 Slightly Pressurized Open-surface Capillary Flow 100
3.5 SCF in Winding Channels 102
 3.5.1 SCF in Winding, Open Channels, θ > 45° 103
 3.5.2 Concus-Finn Filaments in Sharp Curves, θ > 45° 103
3.6 Extrapolation to the Coiling of the Flow Around a Curved Corner 104
3.7 Converging U-channels 105
3.8 Diverging U-channels 105
 3.8.1 No CF Filaments 106
 3.8.2 CF Filaments 108
3.9 U-groove with a Sudden Enlargement 108
 3.9.1 Smooth Enlargement 109
 3.9.2 Enlargement with Sharp Edges 110
CONTENTS

3.9.3 U-groove Exiting into a Cylinder 112
3.9.4 U-groove Crossing a Polygonal Cavity 113
3.10 Open Capillary Valves 114
3.10.1 Capillary Stop Valves 114
3.10.2 Trigger Valves 115
3.11 Bifurcation 116
3.12 Capillary Filtration 118
3.13 Capillary Flow Mixing 119
3.14 Generalization: Substrate Patterned with Parallel Rectangular U-grooves 119
3.14.1 Substrate Patterned with U-grooves 119
3.14.2 Open, Rectangular U-groove with Sub-grooves in the Bottom Plate 120
3.14.3 Applications 121
3.15 Conclusion 121
3.16 References 122

4 Dynamics of Capillary Flow in a Channel with Constrictions and Enlargements 125
4.1 Introduction 125
4.2 Channel Constriction and Enlargement 126
4.2.1 Theory 126
4.2.2 Numerical Results and Discussion 130
4.2.2.1 Straight Channel 131
4.2.2.2 Channel with a Constricted Section 131
4.2.2.3 Channel with an Enlarged Section 132
4.2.3 Experimental Results 134
4.2.3.1 Constriction 135
4.2.3.2 Enlargement 136
4.2.4 Conclusion 137
4.3 SCF in a U-groove with Multiple Change of Cross-section 137
4.3.1 Theoretical Approach 138
4.3.2 Experimental Approach 140
4.3.2.1 Winding Open Rectangular U-groove 140
4.3.2.2 Open Rectangular U-groove with Constricted Sections 141
4.3.2.3 Open Rectangular U-groove with Cylindrical Chambers 144
4.3.3 Comparison with the Numerical Approach 145
4.4 Conclusion 146
4.5 References 149

Appendix 4.1 Velocity Model for Open Rectangular Channels 150
Appendix 4.2 Velocity Model for Cylindrical Tubes 152
Appendix 4.3 Friction in a Rectangular Open Channel 155

5 Suspended Capillary Flows 157
5.1 Introduction 157
5.2 Theory 158
5.3 Quasi-static Numerical Approach 159
5.3.1 Effect of Gravity 162
CONTENTS

5.4 Dynamic Approach

5.4.1 Closed-form Expression of the Velocity for Newtonian Fluids 162
5.4.2 Channel Characteristics Corresponding to Maximum Velocities 164
5.4.3 Examples from Experiments 166

5.4.3.1 Suspended Channel Fabrication 167
5.4.3.2 Preparation of the Solutions and Liquid Characterization 168
5.4.3.3 Tinted Water 168
5.4.3.4 IPA Solutions 169
5.4.3.5 Whole Blood 169
5.4.3.6 Alginate Solutions 171

5.5 Comparison of a U-channel and a Suspended Channel 174

5.6 Suspended Microfluidics in Channels of Varying Section 175

5.6.1 Diverging Straight Walls 175
5.6.2 Sudden Enlargement of Suspended Channels 179

5.6.2.1 Quasi-static Approach 179
5.6.2.2 Dynamic Approach 183
5.6.3 Converging Suspended Channels 183
5.6.4 X-shape Suspended Channels 184

5.7 Capillary Flow in a Suspended Tapering Channel 186

5.8 Suspended Microfluidics in Suspended V-shaped Channels 188

5.9 Capillary Flow Over a Hole 189

5.10 Introduction to Two-phase Suspended Microflows 191

5.10.1 Parallel Walls 194
5.10.2 Tapered Walls 197

5.10.2.1 Converging Channel 197
5.10.2.2 Diverging Channel 198
5.10.3 Examples and Applications of Suspended Microfluidics 199

5.10.3.1 Formation of μDots 199
5.10.3.2 Towards a Giant Polymeric Micromembrane 201
5.10.3.3 Suspended Microfluidics for Measurement of Contact Angles 201

5.11 Conclusion 203

5.12 References 203

6 Spontaneous Capillary Flow Between Horizontal Rails 207

6.1 Introduction 207

6.2 Spontaneous Capillary Flows Between Rails 209
6.3 Winding Channels 210
6.4 Diverging Rails 211
6.5 Rails with Lateral Enlargement 212
6.6 Converging Rails 212
6.7 Rails with Constriction 212
6.8 Stopping a Capillary Flow at a Neck 213
6.9 SCF in Sinusoidal Railed Channels 215
6.10 Divisions and Bifurcations 217

6.10.1 Flow Separation 217
6.10.2 Flow Around a Hole
 6.10.2.1 Two Plates Pierced by a Hole 218
 6.10.2.2 Bottom Plate Pierced by a Hole 221
 6.10.2.3 Rails Around a Hole 221
6.10.3 Capillary Flow Around Pillars
 6.10.3.1 Single Pillar 224
 6.10.3.2 Multiple Pillars 225

6.11 Conclusion 227
6.12 References 227

7 Paper-based Microfluidics 229
7.1 Introduction 229
7.2 Principles of Labs-on-Paper and Paper-based Devices 230
7.3 Paper-based Microfluidics 231
 7.3.1 Spontaneous Imbibition-wicking 231
 7.3.2 Fully Wetted Medium – Darcy's law 234
 7.3.3 Velocity in Paper Strips of Piecewise Varying Width 236
 7.3.4 Filtration and Separation 237
 7.3.5 Mixing 238
 7.3.6 Y-junctions 240
 7.3.7 Hydrodynamic Focusing 241
 7.3.8 H-filters: Separation and Extraction 242
 7.3.9 Valves 243
 7.3.10 Architecture for Time Sequencing 244
 7.3.11 3D paths – Fluidic Origamis 244
 7.3.12 Electrokineitcs on Paper 244
7.4 Paper-based Systems Fabrication and Detection 245
 7.4.1 Fabrication Techniques of Paper Strips 246
 7.4.2 Fabrication Techniques of µPADS 247
 7.4.2.1 Hydrophobic Barrier 247
 7.4.2.2 Hydrophobization of the Substrate 247
 7.4.3 Functionalization and Loading of Reagents 249
 7.4.4 Detection 249
 7.4.4.1 Colorimetry 249
 7.4.4.2 Electrochemistry(EC) 250
 7.4.4.3 Chemiluminescence 251
7.5 Conclusion 252
7.6 References 252

8 Fiber-based Microfluidics 257
8.1 Introduction 257
8.2 Droplet on Fibers 259
 8.2.1 Droplet on a Horizontal Fiber 259
 8.2.2 Small Droplet 260
 8.2.2.1 Effect of Gravity on Small Droplets 261
 8.2.2.2 Large Droplet 261
8.2.3 Droplet Between Fibers 263
 8.2.3.1 Droplet Between Two Parallel Fibers 263
 8.2.3.2 Non-parallel Fibers in the Same Plane 264
 8.2.3.3 Drop Between Two Fibers – General Case 265
 8.2.3.4 Droplet Sliding Down a Fiber 266
8.3 SCF Guided by Fibers 268
 8.3.1 Approximate General Condition for Spontaneous Capillary Flow in a Fiber Bundle 268
 8.3.2 Geometrical Study: SCF Guided by Fibers 270
 8.3.2.1 Homogeneous Bundle 271
 8.3.2.2 Inhomogeneous Bundles 273
 8.3.2.3 Numerical Example 279
 8.3.2.4 Packed Bundle 281
 8.3.2.5 Generalization to Large Bundles 282
 8.3.2.6 Influence of the Parameter C=R 282
 8.3.2.7 Conclusion 282
8.4 Examples of Microfluidics on Fibers 284
8.5 Electrochemical Detection on Fibers 284
8.6 Applications in Biology 285
 8.6.1 Blood Typing Diagnostics 285
 8.6.2 Woven Fibers 286
 8.6.3 Smart Bandages 286
 8.6.4 Smart Textiles 288
8.7 Capillary Rise in Fibers 288
 8.7.1 Cylindrical Tubes: Jurin's law 288
 8.7.2 Capillary Rise Between Pillars 291
 8.7.2.1 Capillary Rise in a Bundle of Four Vertical Square Pillars 291
 8.7.2.2 Comparison of Capillary Rise Between a Wilhelmy Plate and Pillars 292
 8.7.2.3 Comparison of Capillary Rise Between a Single Rod and a Bundle of Packed Rods 294
8.8 Conclusions 295
8.9 References 296
Appendix 8.1 Calculation of the Laplace Pressure for a Droplet on a Horizontal Cylindrical Wire 298
Appendix 8.2 Perimeters 299
Appendix 8.3 Wonky Corners SCF 300
Appendix 8.4 Transition Between “All Wetted” and “All But Corners” Cases 301
9 Epilog 303
 9.1 Open Microfluidics 303
 9.2 References 305
Index 307
Acknowledgements

J. Berthier

A book is the result of many converging efforts. I first would like to thank my co-authors, Ken and Erwin, to whom I am deeply indebted for the achievement of this book. Ken for his help with his key program Surface Evolver and his rigor in the scientific approach. Erwin for his flair in the development and design of new microfluidic devices and his vision of the future of point-of-care systems.

I also acquired considerable knowledge by participating to the development of point-of-care and home care devices with the Leti-Avalun joint program. In particular I would like to thank Myriam Cubizolles, Patrick Pouteau, Vincent Poher, Gwenola Sabatte, and Anne-Gaëlle Bourdat for turning my attention to the exciting interactions between physics and biology.

I am grateful to Professors Sophie Cribier at UPMC, Christian Frétigny at ESPCI, and to Lea Di Cioccio for their support for my researches.

I am also grateful to my colleagues who have contributed with photographs, sketches and discussions: David Gosselin, Maxime Huet, Giacomo Groplerro di Troppenburg, and Noemie Villard.

Many demonstrations figuring in this book have been done with devices fabricated for this purpose. I thank François Boizot, Catherine Pudda and Nicolas Verplanck for their involvement in the fabrication of these devices.

I would like to thank my company for having given me encouragements and support for this project, especially my management, Guillaume Delapierre, Fabrice Navarro, Claude Vauchier and Daniel Velou.

I am grateful to Martin Scrivener, my editor, for his patience during the long time it took us to write this book.

Finally I thank my children Erwin, Linda and Rosanne, and my grandchildren Noam and Eden (even if they are quite young to appreciate this book!), for constantly encouraging me during this work.

K. Brakke

I would like to thank my Ph.D. advisor Fred Almgren for introducing me to the mathematics of soap films and liquid surfaces and his support and encouragement during the early development of my Surface Evolver. I would also like to thank the Geometry Center at the University of Minnesota for numerous summer visits and a sabbatical, which greatly contributed to Evolver development.
E. Berthier

I would like to thank my postdoctoral mentor, Prof. David Beebe, for his support and guidance during my work in the area of open microfluidics as well as my colleagues Prof. Ashleigh Theberge and Dr. Ben Casavant. Many thanks too to my colleagues and friends in the laboratory of Prof. Beebe at the University of Wisconsin - Madison for inspiring conversations and exciting research that has lead to the development of open microfluidic systems. Finally, I would like to thank my wife Sanitta Thongpang for her support through highs and lows.
Preface

In 2012, Ken and Jean produced the book *The Physics of Microdroplets*. The aim of the book was to present the behavior of droplets in the many different configurations that occur in microsystems. It encompassed the behavior of sessile droplets on inhomogeneous substrates, droplets electrically actuated, interaction of droplets with interfaces, droplets in two-phase flows, and the use of droplets to align objects. The book was not strictly a story of droplets, as an introductory chapter to “open microfluidics” was also included. At that time, microflows with open boundaries, i.e. liquid-air interfaces, were starting to interest scientists working in space exploration as well as in biotechnology, biology and energy domains.

The interest in open microflows has continued to grow. Biologists especially have found that the accessibility provided by flow with open boundaries was extremely useful. Reagents can be easily added using a pipette—the fundamental tool of biologists—and fluid can be retrieved the same way. For biotechnological uses, open systems have the great advantage of simplicity of fabrication: they can be easily milled or molded, and they can be assembled together. They are also compatible with the new techniques of 3D printing. This simplicity is associated with low cost, which is required for the development of point-of-care and home-care devices—devices that can be used directly by a patient at home or at the doctor’s office. Open systems can also be straightforwardly converted into closed or partly closed systems by covering with thin plastic films, now currently available commercially, bringing a new versatility to microfluidic devices. From an energy standpoint, open interfaces allow for evaporation, and so cooling of microsystems can be easily performed using open microflows. Finally, open microfluidics, or open fluidics, is omnipresent in space applications where weight is the enemy: the removal of solid channel walls is a definite advantage.

Hence, using the same methodology as that of our first book, we decided that a continuation we call “open microfluidics” was opportune, due to the fast developments of this type of microfluidics. Erwin joined us in this enterprise, bringing the experience of a developer and pioneer of “suspended microfluidics”, a particular form of open microfluidics.

Due to the openness of some flow boundaries, the driving pressure must be small or even zero, else the fluid would overflow, and capillarity is the basis of the actuation of the fluids in open microfluidics. Open microfluidics is indissolubly linked to capillarity, as will appear in the following chapters.

In this new book, we tried to merge theoretical developments, numerical approaches—principally with the software Surface Evolver, stretching its application with care to microflows dominated by surface tension—and experimental examples, in order to give the reader the widest possible view of “open microfluidics”.

In the spirit of continuity of our approach with that of the previous book, we are happy that our former publisher Martin Scrivener continued to have confidence in us and the book.
The Evolver files corresponding to the examples and problems of this book are available for the reader at the internet address http://www.susqu.edu/brakke/openmicrofluidics.

We hope that our work will be useful to boost the developments of microfluidic systems and that this book will find an echo in the micro and nanotechnology world.

Jean Berthier, CEA-Leti, University of Grenoble, France
Kenneth A. Brakke, Susquehanna University, PA, USA
Erwin Berthier, Department of Biomedical Engineering,
University of Wisconsin Madison,
USA
Online Materials

Readers of this book are entitled to access all the Surface Evolver datafiles used in production of this book at http://www.susqu.edu/brakke/openmicrofluidics. There are also several animations, and an interactive app that does the phase diagrams in chapter 8.
Introduction

Open Microfluidics

Microfluidics is a relatively new scientific domain. Nevertheless its evolution has been extremely fast. Even if solutions for microelectronics [1-4] and outer space [5-8] have contributed to the development of microfluidics since the mid-1950s, it is now mainly biotechnology that boosts microfluidics and contributes to making it a growing scientific domain.

The goal of biotechnology is the fabrication of highly sophisticated tools to assist biologists in their research, automate and increase the efficiency of biology and medicine, and furnish solutions for the discovery of new drugs in pharmacology. At its beginning, biotechnology followed an engineering approach, due to the necessary physical development of the techniques. Progressively it has shifted to a biology-oriented field, in order to be closer to the needs of biology and medicine. [9].

These tools have first targeted with success genomics and DNA recognition. For example, many different solutions for sequencing DNA and biorecognition have been developed [10-14].
Figure 1 Biotechnology is a composite science in which microfluidics is a fundamental subdomain.

Figure 2 The main categories of microfluidics and their applications. Inertial microfluidics [97], reprinted with permission ©2008 ACS; paper-based microfluidics, reprinted with permission by Albert Folch, University of Washington, and from [96], reprinted with permission ©2011 ACS; rail based microfluidics [93], reprinted with permission ©2005 ACS; suspended microfluidics [74], reprinted with permission ©2013 PNAS; digital microfluidics, two phase flows and encapsulation, courtesy CEA-Leti; emulsion [38], reprinted with permission ©2003 AIP.

flows are driven by pumps or syringes external to the chip itself and many different types of valves have been developed [28-30]. These devices are mostly used in laboratories, owing to the need of auxiliary external systems, such as pumps, multiple syringes systems, reservoirs,
etc. Systems based on closed microfluidics have had great success and accomplished many important achievements, such as massively parallel DNA amplification [31,32], and the study of stem cell behavior [33-35].

In order to further reduce sample and reagent volumes, it was found that droplets could be used as vessels to perform the desired processes. The term droplet microfluidics is used to characterize such systems. The volumes used in such systems can be very small, on the order of a few nanoliters. Two different approaches depending on the targeted applications have been followed: first, a two-phase approach where the sample and reagents (usually aqueous fluids) are transported by an immiscible fluid (usually an organic liquid, such as mineral oil) in a larger network [36-40]. Second, a digital microfluidic approach, where droplets are moved one by one or in parallel on a patterned substrate by electrical (electrowetting and EWOD) or acoustic (SAW) methods [41-45].

Recently, the need for portable systems has appeared. This need is linked to the development of point-of-care (POC) and home-care medicine, where user-friendly, portable, and low-cost systems can be used at the doctor’s office or directly by the patients themselves to monitor their health, or detect bacteria and viruses from a blood prick [46-50]. Contrary to the conventional microfluidic solutions presented above, the requirement for portability and low cost is associated to the development of passive or nearly passive solutions, where external auxiliary systems are absent, except perhaps the energy of a mobile phone or a compact transportable energy source. Obviously, capillarity is the solution for moving liquids under these conditions [51]. In a capillary solution, the energy required for the motion of the fluids is the surface energy of the walls, which is built in at the moment of fabrication, or by appropriate functionalization of the walls [46,52].

Such portable systems are well-adapted, for example, to blood monitoring [53,54]. Human blood contains a bounty of information on human health: from the numerous metabolites contained in the plasma, such as glucose, cholesterol, and thyroidal hormones, to the bacteria and viruses transported by blood cells, and circulating tumor cells characteristics of cancerous attack [55-58]. Moreover, cell count, coagulation time, hemoglobin and fibrinogen levels are of great importance for health monitoring [59,60].

Capillary flow in cylindrical tubes was first studied by Bell, Cameron, Lucas, Washburn and Rideal in the 1910s [61-64]. With the development of new biological solutions for point-of-care and home care systems, studies on capillary flows have seen a revival. The first capillary systems to have been developed are fully closed rectangular channels; new functionalities such as trigger valves and capillary pumps have been invented to enhance the potentialities of such devices [65-66].

Still more recently, it became apparent that direct accessibility to biological systems would be a great advantage [67]. Open systems, i.e. microfluidic systems with open boundaries, bring the advantages of accessibility: Addition of reagents, pipetting for the addition or retrieval of biologic liquids or objects, and human interventions on the system can then all be easily performed [52]. Also, optical observation is facilitated. Finally, these systems have the ability to eliminate air bubbles, which are a serious drawback in many closed systems. All these aspects contribute to making open capillary systems an interesting choice for POC and home-care systems, under the condition that the limit of detection (LOD) and scalability are sufficient.

Let us cite the arguments of BioProbe [68]:

Probing biological systems locally in an open space can lead to new insight and breakthroughs. Living matter likes surfaces. Substrates that are functionalized for biological applications are increasingly used and also commercially available. Microfluidics should be able to interact with such substrates in the open space,
essentially in their native state, which will facilitate the study of biological samples. To succeed in these endeavors, microfluidics needs to eliminate one of their major constraints: the walls.

These arguments have led to the development of capillary systems where some boundaries are open, i.e. in contact with the surrounding air. The names of open microfluidics, or open-surface microfluidics, or open-space microfluidics have emerged.

In fact, the domain of open microfluidics covers many different situations. Open capillarity has many different aspects, from the propagation of capillary filaments in corners [5,6,69-71], to the spontaneous capillary flow in open U and V-grooves [71-73], to suspended capillary flows [74,75], and to paper-based and thread-based microfluidics [76-80]. A panel of the different open-surface microfluidic configurations is shown in figure 3. In this book, electrowetting, capillary self-alignment and capillary rise are not treated extensively, as they are already widely documented in the literature [81,82].

![Figure 3](image)

Figure 3 The main categories of microfluidics and their applications.

The first chapter of this book is dedicated to the theoretical approach to spontaneous capillary flow (SCF). Using the Gibbs free energy [83], it is shown that the condition to obtain SCF in an open or closed, composite or not, flow channel is that the equivalent Cassie angle defined in a cross-section is less than 90°. It demonstrates that SCF occurrence depends only on the geometry and the contact angles [84]. Next, the dynamics of capillary flows are presented. It is shown that, except for a very small length at the channel entrance where inertial effects appear [85], the viscous regime defined by the Lucas-Washburn-Rideal (LWR) model can be transposed to arbitrary cross-sectional channels, if precautions are taken [62-64,86]. Finally, the question of the dynamic contact angle is investigated. It is shown that an advancing contact angle only concerns essentially the entrance to the capillary channel [87-89].

The second chapter presents an oft-encountered feature in modern capillary microsystems: capillary filaments. The physics of these filaments was first investigated by Concus and Finn [5,6] in the context of spacecraft studies. These filaments may form in sharp corners or in cracks, and can extend endlessly as long as there is liquid available [82]. In capillary systems, these filaments may flow alone, or with the bulk of the liquid [69-71]. The different flow regimes in rectangular open channels are presented. Next, it is shown that the SCF condition in
sharp V-grooves, deduced from the theory of the preceding chapter, reduces to the Concus-Finn condition [73,84]. Finally, the formation of filaments in different geometries is theoretically and numerically investigated.

Rectangular, open microchannels, for simplicity called U-grooves in this book, are probably the most common open microfluidic devices, due to their easy fabrication. It suffices to mill a plastic plate to obtain such channels. The study of spontaneous capillary flow in such channels is the subject of chapters 3 and 4. In chapter 3, the conditions for SCF in the geometry of U-grooves are presented. Different geometries are investigated: straight, turning U-grooves, and U-grooves of varying cross-section (figure 4).

Figure 4 Different geometries of U-grooves. A: SCF passing through multiple cylindrical chambers, from an inlet port (right) to an outlet port (left); B: parallel SCFs from an inlet port to multiple outlet ports; C: multiple microgrooves in parallel; D: winding U-groove with cylindrical wells; E: SCF filling of a cylindrical cavity; F: Concus-Finn filaments in an open cylinder; G: Concus-Finn filaments in a varying cross-section U-groove. Photographs: J. Berthier, N. Villard, D. Gossefin (CEA-Leti).

In chapter 4, dynamical considerations on the capillary flow in U-grooves are presented [72,90,91]. The concept of flow resistor is developed. It is shown that the concepts of trigger valves, capillary pumps, and flow resistor, transposed from closed capillary systems [65,66] to open channels, may still be valid if precautions are taken.

Suspended microfluidics has very recently appeared in the literature [74,75,92]. It is the subject of chapter 5. By definition, suspended microflows are flows in channels devoid of ceilings and floors. Spontaneous flow conditions for different types of suspended microflows are given. Suspended microfluidics brings additional accessibility to open biotechnological systems, and is the source of new applications. Especially, applications to suspended flows of liquid polymers are presented.

Chapter 6 presents new developments for rail-based microflows [93]. Rail-based microfluidics is, in principle, similar to suspended microfluidics. In such systems, the liquid flows between two horizontal rails, top and bottom, and the flow has open boundaries on both sides. At first sight, it is similar to suspended microfluidics, with a 90° rotation. However, it is very different from suspended microfluidics when considering the concepts of microfluidic networks. Such networks are not compatible with suspended geometries. SCF conditions in rail geometries are detailed in the chapter. Different rails morphologies are investigated.
Chapter 7 presents the development of paper-based microfluidics. Paper-based systems were first proposed long ago by Yagoda in the year 1937 [94]. They have recently seen a considerable revival with the developments of paper-strips and μPADs (micro paper-based analytical devices). Strips are narrow bands of cellulose fiber where the liquid wicks the fibers and progresses in one direction and where the reaction zones are regions placed perpendicularly to the flow (figure 5). μPADs are two-dimensional planar devices where reaction zones are placed at the extremity of branches [76]. It appears that the solutions provided by labs-on-paper are very promising and have a large scope of applications [95]. In this chapter the principles, designs, detection methods and fabrication processes of paper-based devices and labs-on-paper are presented.

The final chapter of the book, chapter 8, is dedicated to thread-based microfluidics. It is a very new domain, which has recently seen new developments [79,80]. The concept of thread-based microfluidics is the use of fibers to guide and transport liquids. The particular physics of fiber wicking is developed in the chapter, and applications to smart bandages are presented.

Figure 5 A: Sketch of paper strips. B: Photograph of a μPAD. From [98], reprinted with permission ©2014 Springer. C: Close up of a thread showing the fiber bundle. From [78], reprinted with permission ©2010 ACS.

References

[46] V. Gubala, L. F. Harris, A. J. Ricco, Ming X. Tan, and D. E. Williams, “Point of care
[65] M. Zimmermann, P. Hunziker, E. Delamarche, “Valves for autonomous capillary sys-

