THE HUMAN MICROBIOTA AND CHRONIC DISEASE
Dysbiosis as a Cause of Human Pathology

Edited by Luigi Nibali and Brian Henderson

WILEY Blackwell
The Human Microbiota and Chronic Disease
Contents

List of contributors, xvii
Preface, xxi

Section 1 An introduction to the human tissue microbiome, 1
1 The human microbiota: an historical perspective, 3
 Michael Wilson
 1.1 Introduction: the discovery of the human microbiota: why do we care?, 3
 1.2 The importance of the indigenous microbiota in health and disease, 3
 1.2.1 The indigenous microbiota and human disease, 4
 1.2.2 The indigenous microbiota and human health, 4
 1.3 The development of technologies for characterising the indigenous microbiota, 8
 1.3.1 Light microscopy, 9
 1.3.2 Electron microscopy, 11
 1.3.3 Culture-based approaches to microbial community analysis, 12
 1.4 Culture-independent approaches to microbial community analysis, 29
 1.5 Determination of microbial community functions, 31
 1.6 Closing remarks, 32
 Take-home message, 32
 References, 33

2 An introduction to microbial dysbiosis, 37
 Mike Curtis
 2.1 Definition of dysbiosis, 37
 2.2 The ‘normal’ microbiota, 38
 2.3 Main features of dysbiosis, 45
 2.4 Conclusions, 49
 Take-home message, 53
 Acknowledgment, 53
 References, 53

3 The gut microbiota: an integrated interactive system, 55
 Hervé M. Blottière and Joël Doré
 3.1 Introduction, 55
 3.2 Who is there, how is it composed?, 56
 3.3 A system in interaction with food, 58
 3.4 A system highly impacted by the host, 61
 3.5 A system in interaction with human cells, 62
 3.6 Conclusion: an intriguing integrated interactive system deserving further study, 63
 Take-home message, 63
 References, 63
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>The oral microbiota</td>
<td>67</td>
</tr>
<tr>
<td></td>
<td>William G. Wade</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Introduction</td>
<td>67</td>
</tr>
<tr>
<td>4.2</td>
<td>Composition of the oral microbiome</td>
<td>68</td>
</tr>
<tr>
<td>4.2.1</td>
<td>Archaea</td>
<td>68</td>
</tr>
<tr>
<td>4.2.2</td>
<td>Fungi</td>
<td>68</td>
</tr>
<tr>
<td>4.2.3</td>
<td>Protozoa</td>
<td>68</td>
</tr>
<tr>
<td>4.2.4</td>
<td>Viruses</td>
<td>69</td>
</tr>
<tr>
<td>4.2.5</td>
<td>Bacteria</td>
<td>69</td>
</tr>
<tr>
<td>4.3</td>
<td>The oral microbiota in health</td>
<td>71</td>
</tr>
<tr>
<td>4.3.1</td>
<td>Evolution of the oral microbiota</td>
<td>71</td>
</tr>
<tr>
<td>4.3.2</td>
<td>Role of oral bacteria in health</td>
<td>72</td>
</tr>
<tr>
<td>4.4</td>
<td>Role of oral microbiome in disease</td>
<td>73</td>
</tr>
<tr>
<td>4.4.1</td>
<td>Dental caries</td>
<td>73</td>
</tr>
<tr>
<td>4.4.2</td>
<td>Gingivitis</td>
<td>74</td>
</tr>
<tr>
<td>4.4.3</td>
<td>Oral bacteria and non-oral disease</td>
<td>74</td>
</tr>
<tr>
<td>4.5</td>
<td>Future outlook</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>Take-home message</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>76</td>
</tr>
<tr>
<td>5</td>
<td>The skin microbiota</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>Patrick L.J.M. Zeeuwen and Joost Schalkwijk</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Normal skin</td>
<td>81</td>
</tr>
<tr>
<td>5.2</td>
<td>Skin diseases</td>
<td>83</td>
</tr>
<tr>
<td>5.2.1</td>
<td>Atopic dermatitis</td>
<td>83</td>
</tr>
<tr>
<td>5.2.2</td>
<td>Psoriasis</td>
<td>84</td>
</tr>
<tr>
<td>5.2.3</td>
<td>Acne</td>
<td>85</td>
</tr>
<tr>
<td>5.2.4</td>
<td>Rosacea</td>
<td>85</td>
</tr>
<tr>
<td>5.2.5</td>
<td>Seborrheic dermatitis and dandruff</td>
<td>86</td>
</tr>
<tr>
<td>5.2.6</td>
<td>Primary immunodeficiencies</td>
<td>86</td>
</tr>
<tr>
<td>5.3</td>
<td>Experimental studies</td>
<td>87</td>
</tr>
<tr>
<td>5.4</td>
<td>Dynamics of the skin microbiome</td>
<td>87</td>
</tr>
<tr>
<td>5.5</td>
<td>Axillary skin microbiome transplantation</td>
<td>89</td>
</tr>
<tr>
<td>5.6</td>
<td>Mouse skin microbiome studies</td>
<td>89</td>
</tr>
<tr>
<td>5.7</td>
<td>Concluding remarks</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>Take-home message</td>
<td>90</td>
</tr>
<tr>
<td></td>
<td>References</td>
<td>90</td>
</tr>
<tr>
<td>6</td>
<td>Metagenomic analysis of the human microbiome</td>
<td>95</td>
</tr>
<tr>
<td></td>
<td>Luis G. Bermúdez-Humarán</td>
<td></td>
</tr>
<tr>
<td>6.1</td>
<td>Introduction</td>
<td>95</td>
</tr>
<tr>
<td>6.2</td>
<td>The human microbiome</td>
<td>96</td>
</tr>
<tr>
<td>6.3</td>
<td>Changes in microbiota composition during host life cycles</td>
<td>97</td>
</tr>
<tr>
<td>6.4</td>
<td>The human microbiome and the environment</td>
<td>98</td>
</tr>
<tr>
<td>6.5</td>
<td>Disease and health implications of microbiome</td>
<td>99</td>
</tr>
<tr>
<td>6.5.1</td>
<td>The skin microbiota</td>
<td>99</td>
</tr>
<tr>
<td>6.5.2</td>
<td>The airway microbiome</td>
<td>99</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Vaginal microbiome</td>
<td>100</td>
</tr>
<tr>
<td>6.5.4</td>
<td>Gut microbiota and disease</td>
<td>101</td>
</tr>
<tr>
<td>6.5.5</td>
<td>Metabolic disorders (obesity/diabetes)</td>
<td>103</td>
</tr>
</tbody>
</table>
Section 2 Microbiota-microbiota and microbiota-host interactions in health and disease, 113

7 Systems biology of bacteria-host interactions, 115
Almut Heinken, Dmitry A. Ravcheev and Ines Thiele
7.1 Introduction, 115
7.2 Computational analysis of host-microbe interactions, 118
 7.2.1 Analysis of metagenomic data, 118
 7.2.2 Metabolic reconstruction through comparative genomics, 119
7.3 Network-based modeling, 121
 7.3.1 Topological network modeling, 121
 7.3.2 Constraint-based modeling, 123
 7.3.3 Metabolic reconstructions of human metabolism, 124
 7.3.4 Constraint-based modeling of host-microbe interactions, 124
7.4 Other computational modeling approaches, 127
 7.4.1 Ordinary differential equation (ODE) models, 127
 7.4.2 Kinetic modeling, 128
7.5 Conclusion, 129
Take-home message, 130
Acknowledgments, 130
References, 131

8 Bacterial biofilm formation and immune evasion mechanisms, 139
Jessica Snowden
8.1 Introduction, 139
8.2 Biofilms in human disease, 139
8.3 Biofilm formation, 141
8.4 Immune responses to biofilms, 143
 8.4.1 Innate immune responses, 144
 8.4.2 Adaptive immune responses, 146
 8.4.3 Fibroblasts, epithelial cells and other immune responses, 147
8.5 Biofilm immune evasion strategies, 147
8.6 Vaccines and biofilm therapeutics, 148
8.7 Conclusions, 149
Take-home message, 149
References, 150

9 Co-evolution of microbes and immunity and its consequences for modern-day life, 155
Markus B. Geuking
9.1 Introduction, 155
9.2 Symbiosis in eukaryotic evolution, 156
9.3 Evolution of the (innate and adaptive) immune system, 157
 9.3.1 Immune proteins, 157
 9.3.2 Evolution of adaptive immunity, 158
 9.3.3 Two separate adaptive immune systems evolved, 158
9.4 Hygiene hypothesis, 159
9.5 What drives the composition of the microbiota?, 160
9.6 The pace of evolution, 161
Take-home message, 162
References, 162

10 How viruses and bacteria have shaped the human genome: the implications for disease, 165
Frank Ryan
10.1 Genetic symbiosis, 165
10.2 Mitochondria: symbiogenesis in the human, 167
10.3 Viral symbiogenesis, 169
10.4 HERV proteins, 172
Take-home message, 174
References, 174

11 The microbiota as an epigenetic control mechanism, 179
Boris A. Shenderov
11.1 Introduction, 179
11.2 Background on epigenetics and epigenomic programming/reprogramming, 180
11.3 Epigenomics and link with energy metabolism, 184
11.4 The microbiota as a potential epigenetic modifier, 185
11.5 Epigenetic control of the host genes by pathogenic and opportunistic microorganisms, 188
11.6 Epigenetic control of the host genes by indigenous (probiotic) microorganisms, 189
11.7 Concluding remarks and future directions, 191
Take-home message, 193
References, 193

12 The emerging role of propionibacteria in human health and disease, 199
Holger Brüggemann
12.1 Introduction, 199
12.2 Microbiological features of propionibacteria, 199
12.3 Population structure of P. acnes, 201
12.4 Propionibacteria as indigenous probiotics of the skin, 202
12.5 Propionibacteria as opportunistic pathogens, 203
12.6 Host interacting traits and factors of propionibacteria, 205
12.7 Host responses to P. acnes, 206
12.7.1 Innate immune responses, 206
12.7.2 Adaptive immune responses, 207
12.7.3 Host cell tropism of P. acnes, 208
12.8 Propionibacterium-specific bacteriophages, 208
12.9 Concluding remarks, 209
Take-home message, 210
References, 210
Section 3 Dysbioses and bacterial diseases: Metchnikoff’s legacy, 215

13 The periodontal diseases: microbial diseases or diseases of the host response?, 217
 Luigi Nibali
 13.1 The tooth: a potential breach in the mucosal barrier, 217
 13.2 The periodontium from health to disease, 217
 13.3 Periodontitis: one of the most common human diseases, 219
 13.4 Periodontal treatment: a non-specific biofilm disruption, 220
 13.5 Microbial etiology, 220
 13.6 The host response in periodontitis, 221
 13.7 Conclusions, 223
 Take-home message, 223
 References, 223

14 The polymicrobial synergy and dysbiosis model of periodontal disease pathogenesis, 227
 George Hajishengallis and Richard J. Lamont
 14.1 Introduction, 227
 14.2 A (very) polymicrobial etiology of periodontitis, 229
 14.3 Synergism among periodontal bacteria, 230
 14.4 Interactions between bacterial communities and epithelial cells, 232
 14.5 Manipulation of host immunity, 233
 14.6 Conclusions, 237
 Take-home message, 238
 References, 239

15 New paradigm in the relationship between periodontal disease and systemic diseases: effects of oral bacteria on the gut microbiota and metabolism, 243
 Kazuhisa Yamazaki
 15.1 Introduction, 243
 15.2 Association between periodontal and systemic diseases, 244
 15.2.1 Periodontal disease and diabetes, 244
 15.2.2 Periodontal disease and atherosclerotic vascular diseases, 245
 15.2.3 Periodontal disease and rheumatoid arthritis, 246
 15.2.4 Periodontal disease and non-alcoholic fatty liver disease, 246
 15.2.5 Periodontal disease and pre-term birth, 247
 15.2.6 Periodontal disease and obesity, 248
 15.2.7 Periodontal disease and cancer, 248
 15.2.8 Periodontal disease and inflammatory bowel disease, 249
 15.3 Issues in causal mechanisms of periodontal disease for systemic disease, 249
 15.3.1 Endotoxemia (bacteremia), 249
 15.3.2 Inflammatory mediators, 251
 15.3.3 Autoimmune response from molecular mimicry, 251
 15.4 New insights into the mechanisms linking periodontal disease and systemic disease, 252
 15.5 Effect of oral administration of P. gingivalis on metabolic change and gut microbiota, 252
15.6 Conclusions, 254
Take-home message, 255
References, 255

16 The vaginal microbiota in health and disease, 263
S. Tariq Sadiq and Phillip Hay
16.1 What makes a healthy microbiota, 263
16.1.1 How does the vaginal microbiota mediate healthiness?, 264
16.1.2 Establishment of the vaginal microbiota, 264
16.1.3 The role of host genetic variation on vaginal health, 264
16.1.4 Impact of age, menstrual cycle and environmental factors on vaginal health, 265
16.2 The vaginal microbiota in disease, 265
16.2.1 Bacterial vaginosis, 265
16.2.2 Clinical consequences of altered vaginal microbiota (see Figure 1), 268
16.2.3 Vaginal microbiota and transmission and susceptibility to HIV infection, 269
16.3 Conclusions, 269
Take-home message, 269
References, 270

Section 4 Dysbioses and chronic diseases: is there a connection?, 273

17 Reactive arthritis: the hidden bacterial connection, 275
John D. Carter
17.1 Introduction, 275
17.2 Reactive arthritis, 276
17.3 Pathophysiology of ReA, 277
17.4 Questions remain, 279
17.5 Conclusion, 280
Take-home message, 280
References, 280

18 Rheumatoid arthritis: the bacterial connection, 283
Jacqueline Detert
18.1 Preclinical rheumatoid arthritis, 283
18.2 Predisposition to RA, 284
18.3 MCH-HLA and genetic predisposition to RA, 284
18.4 Molecular mimicry in RA, 285
18.5 Innate immune system and RA, 285
18.6 Bystander activation and pattern recognition receptors, 286
18.7 Antibodies and neoepitopes, 287
18.8 Superantigens, 287
18.9 LPS, 287
18.10 Bacterial DNA and peptidoglycans, 288
18.11 Heat-shock proteins, 288
18.12 Toll-like and bacterial infections, 288
18.13 Proteus mirabilis, 288
18.14 Porphyromonas gingivalis and RA, 289
18.15 Gastrointestinal flora and RA, 290
18.16 Smoking, lung infection and RA, 291
18.17 Where to go from here?, 291
Take-home message, 291
References, 292

19 Inflammatory bowel disease and the gut microbiota, 301
Nik Ding and Ailsa Hart
19.1 The microbiota in inflammatory bowel disease, 301
19.2 Dysbiosis and IBD pathogenesis, 301
19.3 Environmental factors affecting microbiome composition, 302
19.3.1 Diet, 302
19.3.2 Age, 303
19.4 Genetics and application to the immune system and dysbiosis in IBD, 303
19.5 An overview of gut microbiota studies in IBD, 305
19.6 Specific bacterial changes in IBD, 306
19.6.1 Potentiators, 306
19.6.2 Protectors, 307
19.6.3 Anti-inflammatory effects of microbiota (functional dysbiosis), 308
19.7 Functional composition of microbiota in IBD, 308
19.8 Challenges, 310
19.9 Conclusion, 310
Take-home message, 310
References, 310

20 Ankylosing spondylitis, klebsiella and the low-starch diet, 317
Alan Ebringer, Taha Rashid and Clyde Wilson
20.1 Introduction, 317
20.2 Clinical features of AS, 317
20.3 Gut bacteria and total serum IgA, 318
20.4 Molecular mimicry in AS, 319
20.5 Pullulanase system and collagens, 320
20.6 Specific antibodies to Klebsiella in AS patients, 321
20.7 The low-starch diet in AS, 322
20.8 Conclusions, 324
Take-home message, 325
References, 325

21 Microbiome of chronic plaque psoriasis, 327
Lionel Fry
21.1 Introduction, 327
21.2 Microbiota in psoriasis, 329
21.2.1 Bacteria, 329
21.2.2 Fungi, 330
21.3 Variation of microbiota with site, 331
21.4 Swabs versus biopsies, 331
21.5 Psoriatic arthritis, 331
21.6 Microbiome and immunity, 332
21.7 Evidence that the skin microbiome may be involved in the pathogenesis of psoriasis, 332
 21.7.1 Psoriasis and Crohn's disease, 332
 21.7.2 Genetic factors, 333
 21.7.3 Innate immunity, 333
21.8 New hypothesis on the pathogenesis of psoriasis, 334
Take-home message, 334
References, 335

22 Liver disease: interactions with the intestinal microbiota, 339
 Katharina Brandl and Bernd Schnabl
 22.1 Introduction, 339
 22.2 Non-alcoholic fatty liver disease, 339
 22.3 Qualitative and quantitative changes in the intestinal microbiota, 340
 22.4 Endotoxin, 341
 22.5 Ethanol, 342
 22.6 Choline, 342
 22.7 Alcoholic liver disease, 343
 22.7.1 Qualitative and quantitative changes in the intestinal microbiome, 343
 22.7.2 Contribution of dysbiosis to alcoholic liver disease, 344
Take-home message, 346
References, 346

23 The gut microbiota: a predisposing factor in obesity, diabetes and atherosclerosis, 351
 Frida Fåk
 23.1 Introduction, 351
 23.2 The “obesogenic” microbiota: evidence from animal models, 351
 23.3 The “obesogenic” microbiota in humans, 352
 23.4 A leaky gut contributing to inflammation and adiposity, 352
 23.5 Obesity-proneness: mediated by the gut microbiota?, 353
 23.6 Bacterial metabolites provide a link between bacteria and host metabolism, 353
 23.7 Fecal microbiota transplants: can we change our gut bacterial profiles?, 354
 23.8 What happens with the gut microbiota during weight loss?, 354
 23.9 The “diabetic” microbiota, 355
 23.9.1 Type I diabetes and the gut microbiota, 355
 23.9.2 Type II diabetes, 355
 23.10 The “atherosclerotic” microbiota, 356
 23.11 Conclusions, 357
Take-home message, 357
References, 357

24 The microbiota and susceptibility to asthma, 361
 Olawale Salami and Benjamin J. Marsland
 24.1 Introduction, 361
 24.2 The microenvironment of the lower airways, 361
24.3 Development of the airway microbiota in the neonate, 362
 24.3.1 Intrauterine microbial exposure and airway microbiota, 362
 24.3.2 Perinatal events and airway microbiota, 363
 24.3.3 Breast milk as a source of airway microbiota, 364
 24.3.4 Airborne microbiota and airway microbiota, 364
24.4 Upper airway microbiota, 364
24.5 What constitutes a healthy airway microbiota, 365
24.6 Microbiota and asthma, 365
24.7 Dietary metabolites and asthma, 366
24.8 Conclusion, future perspectives and clinical implications, 367
Take-home message, 367
References, 367

25 Microbiome and cancer, 371
Ralph Francescone and Débora B. Vendramini-Costa
25.1 Introduction, 371
25.2 Microbiome and cancer: where is the link?, 374
25.3 Microbiome and barrier disruption, 376
25.4 Microbiome and different types of cancer, 377
 25.4.1 Colon cancer, 377
 25.4.2 Skin cancer, 378
 25.4.3 Breast cancer, 379
 25.4.4 Liver cancer, 379
 25.4.5 Local microbes affecting distant cancers, 381
25.5 Microbiota and metabolism: the good and the bad sides, 382
25.6 Chemotherapy, the microbiome and the immune system, 384
25.7 Therapeutic avenues, 385
 25.7.1 Modulation of bacterial enzyme activity, 385
 25.7.2 Antibiotics, 386
 25.7.3 Pre- and probiotics, 386
 25.7.4 Fecal transplantation, 386
25.8 Unresolved questions and future work, 387
Take-home message, 387
References, 387

26 Colorectal cancer and the microbiota, 391
Iradj Sobhani and Séverine Couffin
26.1 Introduction, 391
26.2 Colon carcinogenesis and epidemiological data, 392
 26.2.1 Human carcinogenesis model, 392
 26.2.2 Age-related risk in the general population, 393
 26.2.3 Gene- and familial-related risks, 393
 26.2.4 Environment-related risk, 394
26.3 The microbiota, 394
26.4 Bacteria and CRCs links, 395
 26.4.1 Historical data, 395
 26.4.2 Clinical data, 396
 26.4.3 Experimental data and mechanisms involved, 397
26.5 Hypotheses and perspectives, 402
Take-home message, 405
References, 405

27 The gut microbiota and the CNS: an old story with a new beginning, 409
Aadil Bharwani and Paul Forsythe
27.1 Introduction, 409
27.2 The microbiota-gut-brain axis: a historical framework, 410
27.3 The microbiota-gut-brain axis: an evolutionary perspective, 411
27.4 The gut microbiota influence on brain and behavior, 413
27.5 Microbes and the hardwired gut brain axis, 415
 27.5.1 The vagus, 416
 27.5.2 The enteric nervous system, 417
27.6 Hormonal pathways to the brain, 418
27.7 Microbes and immune pathways to the brain, 420
27.8 Metabolites of the microbiota: short-chain fatty acids, 421
27.9 Clinical implications of the microbiota-gut-brain axis, 422
27.10 Conclusion, 422
Take-home message, 423
References, 423

28 Genetic dysbiosis: how host genetic variants may affect microbial biofilms, 431
Luigi Nibali
28.1 The holobiont: humans as supra-organisms, 431
28.2 Genetic variants in the host response to microbes, 432
 28.2.1 Bacterial recognition pathway, 432
 28.2.2 Bacterial proliferation, 433
28.3 Genetic dysbiosis, 434
 28.3.1 Genetic dysbiosis of oral biofilm, 435
 28.3.2 Genetic dysbiosis of gut biofilm, 435
 28.3.3 Genetic dysbiosis of skin biofilm, 436
 28.3.4 Genetic dysbiosis of vaginal biofilm, 437
28.4 Summary and conclusions, 438
Take-home message, 438
References, 438

Section 5 Mirroring the future: dysbiosis therapy, 443

29 Diet and dysbiosis, 445
Mehrbod Estaki, Candice Quin and Deanna L. Gibson
29.1 Introduction, 445
29.2 Coevolution of the host-microbiota super-organism, 445
29.3 Gut microbiota in personalized diets, 446
29.4 The evolution of diet, 447
29.5 Plasticity of the microbiota and diet, 447
29.6 Interaction among gut microbiota, host and food, 448
29.7 Consequences of diet-induced dysbiosis for host health, 450
29.8 The role of gut microbes on the digestion of macronutrients, 451
 29.8.1 Carbohydrates, 451
 29.8.2 Proteins, 451
 29.8.3 Lipids, 452
29.9 Diet induces dysbiosis in the host, 452
 29.9.1 Protein, 453
 29.9.2 Carbohydrates, 453
 29.9.3 Lipids, 454
29.10 The effect of maternal diet on offspring microbiota, 456
29.11 The effects of post-natal diet on the developing microbiota of neonates, 457
 29.11.1 Breast milk, 457
 29.11.2 Formula, 458
29.12 Conclusion, 459
Take-home message, 459
Host-food, 460
References, 460

30 Probiotics and prebiotics: what are they and what can they do for us?, 467
 Marie-José Butel, Anne-Judith Waligora-Dupriet
30.1 The gut microbiota, a partnership with the host, 467
30.2 Probiotics, 467
 30.2.1 Probiotics, a story that began a long time ago, 467
 30.2.2 What are probiotics?, 468
 30.2.3 How do probiotics work?, 468
 30.2.4 Safety of probiotics, 469
30.3 Prebiotics, 470
 30.3.1 What are prebiotics?, 470
 30.3.2 How do prebiotics work?, 471
30.4 Synbiotics, 471
30.5 Pro-, pre-, and synbiotics in human medicine today, 471
 30.5.1 Pro- and prebiotics and infectious diarrhea, 471
 30.5.2 Pro- and prebiotics and inflammatory bowel diseases, 472
 30.5.3 Pro- and prebiotics and irritable bowel syndrome, 473
 30.5.4 Pro- and prebiotics and allergy, 474
 30.5.5 Pro- and prebiotics and obesity and diabetes, 475
 30.5.6 Other indications, 475
 30.5.7 Pre- and probiotics in pediatrics, 476
30.6 Concluding remarks, 477
Take-home message, 478
References, 478

31 The microbiota as target for therapeutic intervention in pediatric intestinal diseases, 483
 Andrea Lo Vecchio and Alfredo Guarino
31.1 Introduction, 483
31.2 Use of probiotics in pediatric intestinal diseases, 484
 31.2.1 Acute diarrhea, 484
 31.2.2 Inflammatory bowel diseases, 486
31.2.3 Irritable bowel syndrome, 487
31.2.4 Infant colic, 487
31.2.5 Necrotizing enterocolitis, 488
31.3 Fecal microbiota transplantation for treatment of intestinal diseases, 488
 31.3.1 Preparation and administration, 488
 31.3.2 Advantages and barriers, 490
 31.3.3 The use of FMT in specific intestinal diseases, 490
31.4 Conclusion, 492
Take-home message, 493
References, 493

32 Microbial therapy for cystic fibrosis, 497
Eugenia Bruzese, Vittoria Buccigrossi, Giusy Ranucci and Alfredo Guarino
32.1 Introduction: pathophysiology of cystic fibrosis, 497
32.2 Intestinal inflammation in CF, 498
32.3 Dysbiosis in CF, 499
32.4 Microbial therapy in CF, 502
32.5 Conclusion, 504
Take-home message, 504
References, 504

Index, 507
List of contributors

Luis G. Bermúdez-Humarán
AgroParisTech; UMR1319 Micalis; F-78350 Jouy-en-Josas, France; INRA, UMR1319 Micalis, Commensal and Probiotics-Host Interactions Laboratory, Domaine de Vilvert, 78352 Jouy-en-Josas Cedex, France

Aadil Bharwani
The Brain-body Institute and Firestone Institute for Respiratory Health, Ontario, Canada

Hervé M. Blottière
Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Paris, France

Katharina Brandl
Skaggs School of Pharmacy, University of California, San Diego, United States

Holger Brüggemann
Department of Biomedicine, Aarhus University, Aarhus, Denmark

Eugenia Bruzzese
University of Naples, Naples, Italy

Vittoria Buccigrossi
University of Naples, Naples, Italy

Marie-José Butel
Université Paris Descartes, Sorbonne Paris, Paris, France

John D. Carter
University of South Florida Morsani College of Medicine, Tampa, FL, United States

Séverine Couffin
UPEC, Université Paris Est Créteil Val de Marne-Équipe Universitaire EC2M3, Paris, France

Mike Curtis
Institute of Dentistry, Queen Mary University of London

Jacqueline Detert
Charité-Universitätsmedizin Berlin, Berlin, Germany

Nik Ding
St. Mark’s Hospital, London, United Kingdom
Joël Doré
Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, Paris, France

Alan Ebringer
King’s College London, London, United Kingdom

Mehrbod Estaki
The University of British Columbia, Kelowna, Canada

Frida Fåk
Lund University, Lund, Sweden

Paul Forsythe
McMaster University, Hamilton, Ontario, Canada

Ralph Francescone
Fox Chase Cancer Center, Cancer Prevention and Control, Philadelphia, United States

Lionel Fry
Imperial College, London, United Kingdom

Markus B. Geuking
Mucosal Immunology Lab, University of Bern, Switzerland

Deanna L. Gibson
The University of British Columbia, Kelowna, Canada

Alfredo Guarino
University of Naples, Naples, Italy

George Hajishengallis
School of Dental Medicine, University of Pennsylvania, Philadelphia, United States

Ailsa Hart
St. Mark’s Hospital, London, United Kingdom

Phillip Hay
St. George’s, University of London, United Kingdom

Almut Heinken
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg

Brian Henderson
University College London, London, United Kingdom
Anne-Judith Waligora-Dupriet
Université Paris Descartes, Sorbonne Paris, Paris, France

Richard J. Lamont
School of Dentistry, University of Louisville, Louisville, KY, United States

Benjamin J. Marsland
Service de Pneumologie, CHUV, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland

Luigi Nibali
Centre for Oral Clinical Research, Queen Mary University of London, London, United Kingdom

Candice Quin
The University of British Columbia, Kelowna, Canada

Taha Rashid
King’s College London, London, United Kingdom

Giusy Ranucci
University of Naples, Naples, Italy

Dmitry A. Ravcheev
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg

Frank Ryan
The Academic Unit of Medical Education, University of Sheffield, United Kingdom

Olawale Salami
Service de Pneumologie, CHUV, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland

S. Tariq Sadiq
St. George’s, University of London, United Kingdom

Joost Schalkwijk
Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands

Bernd Schnabl
University of California, San Diego, United States

Boris A. Shenderov
Laboratory of Biology of Bifidobacteria, Head of Research Group Probiotics and Functional Foods, Gabrichevsksy Research Institute of Epidemiology and Microbiology, Moscow, Russia
Jessica Snowden
University of Nebraska Medical Center, Omaha, Nebraska United States

Iradj Sobhani
Centre Hospitalier Universitaire Henri Mondor-Assistance Publique Hôpitaux, de Paris, Paris, France

Ines Thiele
Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Belval, Luxembourg

Andrea Lo Vecchio
University of Naples, Naples, Italy

Débora B. Vendramini-Costa
Institute of Chemistry, University of Campinas, Campinas-SP, Brazil

William G. Wade
Centre for Immunobiology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, United Kingdom

Clyde Wilson
King Edward VII Memorial Hospital, Bermuda

Michael Wilson
UCL Eastman Dental Institute, University College London, United Kingdom

Kazuhisa Yamazaki
Division of Oral Science for Health Promotion, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan

Patrick L.J.M. Zeeuwen
Department of Dermatology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
Preface

The human organism comprises 10^{13} eukaryotic cells divided into a large number of distinct organs and tissues, with unimaginable requirements for inter- and intra-cellular communication. Malfunction in such communication inevitably results in the state we define as human disease. The emergent properties of the eukaryotic cellular complexity in *Homo sapiens* were beginning to be suspected in the 1950s and 1960s, when it was becoming clear that the bacteria that actually existed within the healthy human could have a major influence on many of its cellular and tissue systems, including innate and adaptive immunity. The development of antibiotic resistance in the 1970s produced a renaissance in microbiology that revealed just how heavily colonised healthy vertebrates were with bacteria. The human appears to be the acme of this colonisation process and it is now a familiar expression that ‘for every human cell in our bodies there are ten bacteria’. Not only are we colonised by around 10^{14} bacteria, but the human population carries round with it a diversity of bacterial phylotypes that swamps the diversity of all the species in the aggregate of the world’s zoological collections. Thus we can no longer think of bacteria in terms of ‘us’ and ‘them’. *Homo sapiens*, like most vertebrates, must be viewed as a supra-organism colonised, on its mucosal surfaces and on the skin (and who knows where else) with complex populations of bacteria; each individual has a unique mixture of these bacteria, presumably a result of genetic (and/or epigenetic) factors controlling commensal bacterial colonisation and the stability of such colonisation.

Not only are we colonised by a large and diverse collection of bacteria (this volume will ignore colonisation by single-celled eukaryotes and by Archaea), but these bacteria generally take the form of dynamic multi-species biofilms that, like the comparison of human tissues to the disaggregated cells of these tissues, have emergent properties. Thus the collection of microbes in our bodies, which we call the microbiota, is a dynamically complex collection of multi-species biofilms. The formation of these biofilms requires an inordinate amount of intercellular signalling and this signalling must reciprocate with the cellular surfaces on which these biofilms co-exist. These cellular surfaces are ‘us’.

In the 21st century, the concept of human health and disease has to take into account our intimate relationship with our microbiota. The regional complexity of the human microbiota is only now being revealed with the application of bacterial phylogenetic analyses and next-generation sequencing (NGS) methodologies. This overcomes the problem that only around 50% of the bacteria colonising the human can be cultivated and studied. Each of us is colonised with hundreds of bacterial phylotypes, each phylotype itself being composed of a varied range of strains, each containing different populations of genes. This generates the concept of the pan-genome in which each bacterial pan-genome perhaps has as many protein-coding genes as its host. This means that the individual bacterial population colonising each human has 10–100 (or more) times the number of genes utilised
by the host. Every human host is colonised by a different combination of microbes, making him/her more or less susceptible to disease. Host genetic variants are largely responsible for determining the composition of human microbial biofilms. This creates a level of complexity that is difficult to comprehend but must be fully explored if we are to understand the healthy human and the diseases s/he is susceptible to.

Modern medicine, as a successful practice, can largely be dated from the late-19th-century discovery of the role of the bacterium in human infectious disease. At this stage it was assumed that humans were largely sterile and that infection was an aberrant state. For several decades after this monumental discovery, the paradigm of human disease was founded on bacterial or other infections as the causation of all disease, and it was only in the 1940s onwards that other mechanisms began to be sought for human disease pathology. The identification of monogenic diseases generated a successful paradigm for a proportion of human ailments, and this has morphed into our current belief that all idiopathic, and even infectious, disease has a genetic component. This paradigm has further developed with the identification of the effects of chemical modifications of our DNA on DNA function and has introduced the role of epigenetics in human diseases. However, the determination, starting in the 1980s, of how enormously colonised we are by bacteria, and the potential that these bacteria have for interfering with all aspects of our cellular homeostasis, has brought the bacterium to centre stage as a causative factor in maintaining human health and disease and even playing a role in our ageing processes.

Readers of this book live in a time when a major paradigm shift is in the offing about the causation of all human disease. There is a growing realisation that, in addition to directly causing ‘infectious’ disease, the bacteria that colonise us may generate other forms of pathology and that these will be dependent on our genetic/epigenetic constitution and on the composition of the bacteria colonising us. Microbiota-associated pathology can be a direct result of changes in general bacterial composition, such as might be found in periodontitis and bacterial vaginosis, and/or as the result of colonisation and/or overgrowth of so-called keystone species, such as the oral organism Porphyromonas gingivalis or the gastrointestinal bacterium Helicobacter hepaticus. This introduces the concept of dysbiosis, defined as a disruption in the composition of the normal microbiota.

This volume discusses the role of the microbiota in maintaining human health and introduces the reader to the biology of bacterial dysbiosis and its potential role in both bacterial disease and idiopathic chronic disease states. The current book is divided into five sections, starting from the concept of the human bacterial microbiota (chapter 1) with particular attention paid to the microbiota of the gut, oral cavity and skin. A key methodology for exploring the microbiota, metagenomics, is also described. The second section attempts to show the reader the cellular, molecular and genetic complexities of the bacterial microbiota, its myriad connections with the host and how these can maintain tissue homeostasis. Section 3 begins to consider the role of dysbioes in human disease states, dealing with two of humanity’s commonest bacterial diseases, periodontitis and bacterial vaginosis. In section 4 the discussion moves to the major chronic diseases of Homo sapiens and the potential role of dysbiosis in their induction and chronicity. This is a rapidly growing area where major discoveries are expected. The composition of
some if not all microbiotas can be controlled by the diet and this is will be discussed in the final section, section 5. This last section will also take the reader to the therapeutic potential of manipulating the microbiota, introducing the concepts of probiotics, prebiotics and the administration of healthy human faeces (faecal microbiota transplantation), then to gaze into the crystal ball and imagine the future of medical treatment viewed from a microbiota-centric position.

This book should be of interest to a very wide audience ranging from clinicians interested in infectious and idiopathic diseases to pathologists interested in pathomechanisms of disease and on to immunologists, molecular biologists, microbiologists, cell biologists, biochemists, systems biologists, and so forth, who are attempting to understand the cellular and molecular bases of human diseases.

Luigi Nibali
Brian Henderson
SECTION 1
An introduction to the human tissue microbiome
CHAPTER 1
The human microbiota: an historical perspective

Michael Wilson
UCL Eastman Dental Institute, University College London, United Kingdom

1.1 Introduction: the discovery of the human microbiota: why do we care?

The discovery by Antony van Leeuwenhoek in 1683 that we have a microbiota was very surprising and undoubtedly of great interest to 17th-century scientists. However, as modern-day researchers know only too well, this alone is not sufficient to ensure continued investigation of a subject. Further research into the microbes that inhabit humans proceeded at a very slow pace until it was realized that these microbes were able to cause disease and, much later, that they contribute to human health (i.e., in modern-day research parlance the research would be recognized as having “impact”). Our knowledge of those microbes with which we coexist has increased enormously during the last few years. An indication of the effort that has been devoted to determining the nature and function of the microbial communities inhabiting the various body sites of humans can be gleaned from the number of publications in this field listed in PubMed: in 2013 more than 2500 papers were published, nearly four times as many as in 2000.

What accounts for this recent huge growth of interest in the human microbiota? There appear to be two main driving forces: (a) increasing awareness of its importance in human disease, development, nutrition, behavior and wellbeing; (b) the development of technologies that enable us not only to identify which microbes are present but also to determine what these microbes are up to. In this chapter these two driving forces are described from a historical perspective.

1.2 The importance of the indigenous microbiota in health and disease

It has long been known that members of the indigenous microbiota of humans are responsible for a variety of infections, but only relatively recently has it been recognized that these microbes play an important role in maintaining human health and wellbeing.
1.2.1 The indigenous microbiota and human disease

In the late 19th and early 20th centuries many members of what we now recognize as the indigenous microbiota of humans were found to be the causative agents of a number of human infections (Table 1). However, at that time there was little understanding of what constituted the indigenous microbiota and therefore it was not realized that these newly recognized, disease-causing microbes were in fact regularly present on some, if not all, healthy humans and that, for the most part, they lived in harmony with their host (Table 1).

Subsequently, as knowledge of the indigenous microbiota improved, the involvement of members of these communities in disease processes became of great interest and was the subject of more intense research. Other members of the indigenous microbiota now known to cause human disease are shown in Table 2.

More recently, it has become apparent not only that individual members of the microbiota are able to cause disease, but that shifts in the overall composition of the microbiota at a site can result in disease (Table 3). Such “dysbioses” are discussed in greater detail in subsequent chapters of this book. Recognition of the disease-inducing potential of the indigenous microbiota became an important stimulus to research into the characterization of the microbial communities associated with humans.

1.2.2 The indigenous microbiota and human health

Towards the end of the 19th century it became evident to many researchers that the intestinal microbiota was important in intestinal physiology, and Pasteur in 1885 went even further by suggesting that animal life would not be possible in the absence of the indigenous microbiota19. In the second half of the 20th century it became evident that the indigenous microbiota not only contributed to mammalian health and wellbeing in a number of ways but that it also played an important

Table 1 Early discoveries of the involvement of members of the indigenous microbiota in human infections.

<table>
<thead>
<tr>
<th>Year</th>
<th>Researcher</th>
<th>Organism</th>
<th>Disease</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1881</td>
<td>Alexander Ogston</td>
<td>staphylococci</td>
<td>abscesses</td>
<td>1</td>
</tr>
<tr>
<td>1884</td>
<td>Friedrich Rosenbach</td>
<td>Strep. pyogenes</td>
<td>Wound infections</td>
<td>2</td>
</tr>
<tr>
<td>1884</td>
<td>Friedrich Rosenbach</td>
<td>Staphylococcus aureus</td>
<td>Wound infections</td>
<td>2</td>
</tr>
<tr>
<td>1884</td>
<td>Friedrich Rosenbach</td>
<td>Staphylococcus albus (i.e. Staph. epidermidis)</td>
<td>Wound infections</td>
<td>2</td>
</tr>
<tr>
<td>1884</td>
<td>Albert Fraenkel</td>
<td>Diplococcus pneumoniae (i.e. Strep. pneumoniae)</td>
<td>Lobar pneumonia</td>
<td>3</td>
</tr>
<tr>
<td>1890s</td>
<td>Theodor Escherich</td>
<td>Bacterium coli commune (i.e. Escherichia coli)</td>
<td>Colicystitis (i.e. urinary tract infection)</td>
<td>—</td>
</tr>
<tr>
<td>1892</td>
<td>George Nuttall and William Welch</td>
<td>Bacillus aerogenes capsulatus (i.e. Clostridium perfringens)</td>
<td>gangrene</td>
<td>4</td>
</tr>
<tr>
<td>1898</td>
<td>Veillon and Zuber</td>
<td>A variety of anaerobic species including Bacteroides fragilis, Fusobacterium nucleatum</td>
<td>gangrene</td>
<td>5</td>
</tr>
<tr>
<td>1906</td>
<td>Thomas Horder</td>
<td>Strep. salivarius</td>
<td>Infective endocarditis</td>
<td>6</td>
</tr>
<tr>
<td>1891</td>
<td>Albert Fraenkel</td>
<td>Bacillus coli communis (i.e. Escherichia coli)</td>
<td>Peritonitis</td>
<td>7</td>
</tr>
</tbody>
</table>