The Behavior of Structures Composed of Composite Materials

SOLID MECHANICS AND ITS APPLICATIONS Volume 105

Series Editor: G.M.L. GLADWELL Department of Civil Engineering University of Waterloo Waterloo, Ontario, Canada N2L 3GI

Aims and Scope of the Series

The fundamental questions arising in mechanics are: *Why?*, *How?*, and *How much?* The aim of this series is to provide lucid accounts written by authoritative researchers giving vision and insight in answering these questions on the subject of mechanics as it relates to solids.

The scope of the series covers the entire spectrum of solid mechanics. Thus it includes the foundation of mechanics; variational formulations; computational mechanics; statics, kinematics and dynamics of rigid and elastic bodies: vibrations of solids and structures; dynamical systems and chaos; the theories of elasticity, plasticity and viscoelasticity; composite materials; rods, beams, shells and membranes; structural control and stability; soils, rocks and geomechanics; fracture; tribology; experimental mechanics; biomechanics and machine design.

The median level of presentation is the first year graduate student. Some texts are monographs defining the current state of the field; others are accessible to final year undergraduates; but essentially the emphasis is on readability and clarity.

For a list of related mechanics titles, see final pages.

The Behavior of Structures Composed of Composite Materials

Second Edition

by

JACK R. VINSON

H.Fletcher Brown Professor of Mechanical & Aerospace Engineering, The Center for Composite Materials and The College of Marine Studies, Department of Mechanical Engineering, University of Delaware, Newark, Delaware, U.S.A.

and

ROBERT L. SIERAKOWSKI

Chief Scientist, AFRL/MN Eglin AFB, Florida, U.S.A.

Library of Congress Control Number: 2008921377

ISBN 978-1-4020-0904-4 ISBN 978-0-306-48414-8 (e-book)

Published by Springer, P.O. Box 17, 3300 AA Dordrecht, The Netherlands.

www.springer.com

Printed on acid-free paper

First print 2002 Reprinted 2008

All Rights Reserved

- © 2008 Springer Science+Business Media B.V.
- No part of this work may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission from the Publisher, with the exception of any material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work.

To my beautiful wife, Midge, for providing the wonderful environment, love, patience and encouragement to complete this text - JRV $\,$

In loving memory of Nina, and also to my wonderful children, Sandy and Steve - RLS

Preface to the Corrected Second Edition

Since the introduction of the second printing, a number of exciting advances has taken place within the materials community. Historically, we have accepted the inherent properties of materials as given for any specified material; that is, metals, polymers, ceramics and so on. Introduction of composite materials technology has allowed researchers to consider multi-constituent systems resulting in properties that can be superior to each of the constituents independently. Now we are on the cusp of a new era in materials technology which can be coined as the engineered materials revolution. That is, we are now developing the capacity to tailor a material to perform a specific or representative set of functions from the basic atomic level. This technical development allows for the potential design of microsystems with nano-components. The advent of this technology offers a number of creative future applications in advancing miniaturized systems including structural nano-electronic devices, circuits, and computers as but a few examples. These advances are based upon the extraordinary properties of carbon nanotubes including a Young's modulus approaching that of diamond. These properties are ideal for reinforced composites, and this third edition provides the student or researcher with the necessary tools to advance the state of the art in structural design of new and potentially exciting multifunctional, self-repairing, self-duplicating, nano-structural materials.

Preface to the Second Edition

The purpose of this text is to educate the engineering reader in the various aspects of mechanics for using composite materials in the design and analysis of composite structures and products.

In Chapter 1, the text acquaints the reader with the description of a composite material, and its constituents. Then, methods by which to manufacture composite materials are discussed, followed by a description of the uses of composite materials early in the twenty-first century.

Chapter 2 provides the fundamentals of anisotropic elasticity, and the methods to characterize and mathematically describe composite laminae and laminates which are the "building blocks" of composite structures. Also discussed are thermal, hygrothermal, high strain rate and piezoelectric considerations in modern composites.

Chapter 3 then deals exclusively with the static and dynamic response of composite plates and panels subjected to a variety of mechanical and environmental loads in great detail. This includes stresses, deformations, buckling loads, natural frequencies and response to blast loads. Chapter 4 analogously treats a special case of the above, namely beams, columns and rods.

In Chapter 5, cylindrical composite shells are discussed, both in determining the stresses and deformations due to static loads, but in treating the buckling of these shells under various loads and their combinations. The peculiar behavior of shells, (such as the bending boundary layer) compared to plates and beams is discussed in detail.

Because so many practical structural problems are too difficult or complex to obtain analytical solutions, Chapter 6 provides in-depth knowledge of attacking real life structural design problems using energy principles and variational methods. Thus, the engineer can always obtain a solution to a problem.

Chapter 7 provides various strength and failure theories widely used today, and their comparison. Chapter 8 provides suggested ways to analyze and design adhesive bonded joints and mechanically fastened joints.

Chapter 9 has been added to provide a needed introduction to composite design philosophy.

Appendix 1 provides a discussion of micromechanics basics; Appendix 2 lists all or most of the test standards for polymer matrix composite and Appendix 3 lists the mechanical properties of many composite in use today.

At the end of each chapter are numerous problems, which can be useful as homework problems or modified for examination problems. Professors may contact the authors for solutions to these problems.

Appreciation is hereby expressed to James T. Arters, an engineering student at the University of Delaware, who meticulously typed the text through its evolution. His accuracy, stamina and diligence are greatly appreciated. Appreciation is also expressed to Dr. Gregg Schoeppner for his contributions to Chapter 1 and the Appendices, and to Ms. Jill O'Donnell for her manuscript reading.

Jack R. Vinson Robert L. Sierakowski

Preface to the First Edition

While currently available tests dealing with the subject of high performance composite materials touch upon a spectra of topics such as mechanical metallurgy, physical metallurgy, micromechanics and macromechanics of such systems, it is the specific purpose of this text to examine elements of the mechanics of structural components composed of composite materials. This text is intended for use in training engineers in this new technology and rational thought processes necessary to develop a better understanding of the behavior of such material systems for use as structural components. The concepts are further exploited in terms of the structural format and development to which the book is dedicated. To this end the development progresses systematically by first introducing the notion and concepts of what these new material classes are, the fabrication processes involved and their unique features relative to conventional monolithic materials. Such introductory remarks, while far too short in texts of this type, appear necessary as a precursor for engineers to develop a better understanding for design purposes of both the threshold limits to which the properties of such systems can be pushed a swell as the practical limitations on their manufacture.

Following these introductory remarks, an in-depth discussion of the important differences between composites and conventional monolithic material types is discussed in terms of developing the concepts associated with directional material properties. That is, the ideas of anisotropic elasticity for initially homogeneous bodies in the phenomenological sense are described and presented. The use of such analytical tools is then presented through exemplification of selected problems for a number of classical type problems of various geometric shapes including plane stress, plane strain and the bending of a simply supported beam.

These ideas are carried forward and developed for continuous fiber composites in Chapter Two which discusses both single ply laminae and multi-ply laminate theory. This is then followed by a series of chapters, each of which deals with functional aspect of structural design in which the basic building blocks of a structural system are made. That is, plates and panels; beams, columns and rods; and cylindrical and spherical shells are each discussed within the framework of their potential use in a functional environment. Thus the traditional topics of conventional monolithic (isotropic) material structural elements such as structures subjected to static loads, thermal and other environmental loads, structural instability and vibratory response are included along with chapters on energy methods and failure theories of composite materials.

Energy methods have been included to present a tool for solving difficult problems of various types encountered in practice. Indeed, in many instances closed form solutions are not possible and approximate solutions must be sought. Energy methods thus provide both an alternative for the formulation of such problems plus a means of generating approximate solutions.

The chapter on failure theories is a generic presentation in the senses that any and/or all of the above structural components consisting of various multi-ply construction can fail when subjected to a sufficiently large loading combination. It is emphasized that the failure of composites is a complicated, changing issue because of the diverse ways in which such structural systems can fail due both to the geometric ply arrangement of the components, complicated load paths, and the diversity of failure mechanisms which can be activated. Therefore, this chapter should serve in a global sense at best as a guide to the prediction of structural integrity, while more common and acceptable phenomenological failure theories are being developed.

Finally, a chapter on joining is included to discuss to some detail the two methods by which composite material structural components can be joined: namely, adhesive bonding and mechanical fastening. Again, the material presented is an introduction to the subject which is rapidly changing and developing.

At the end of each chapter are several problems, characteristic of the material covered which can be used. Some answers are given in an appendix.

Knowing that nothing is perfect, the authors welcome any notification of errors and ambiguities, and if addresses are provided, authors will forward errata sheets periodically.

Appreciation is hereby expressed to many students at the University of Delaware, University of Florida, Ohio State University, The Ballistics Research Laboratory, and the Argentine Air Force who have helped directly or indirectly in refining, improving and correcting the text, as well as working various problems and examples. In addition appreciation is expressed to Dr. W.J. Renton, Vought Corporation, who has used portions of the text at the University of Texas-Arlington, and made suggestions and corrections.

> Jack R. Vinson Robert L. Sierakowski

Contents

Preface to the Corrected Second Edition VII							
Preface to the Second Edition VIII							
Pre	eface	to the First Edition	IX				
1.	Intro	duction to Composite Materials	1				
	1.1.	General History	1				
	1.2.	Composite Material Description	2				
	1.3.	Types of Composite Materials	6				
	1.4.	Constituent Properties	8				
	1.5.	Composite Manufacturing, Fabrication and Processing	11				
	1.6.	Uses of Composite Materials	21				
	1.7.	Design and Analyses with Composite Materials	33				
	1.8.	References	36				
1.9. Journals 1.10. Problems							
	1.10	. Problems	37				
2.	Anis	otropic Elasticity and Composite Laminate Theory	39				
	2.1.	Introduction	39				
	2.2.	Derivation of the Anisotropic Elastic Stiffness and Compliance Matrices	40				
	2.3.	The Physical Meaning of the Components of the Orthotropic Elasticity					
		Tensor	46				
	2.4.	Methods to Obtain Composite Elastic Properties from Fiber and Matrix					
		Properties	50				
	2.5.	Thermal and Hygrothermal Considerations	53				
	2.6.	Time-Temperature Effects on Composite Materials	57				
	2.7.	High Strain Rate Effects on Material Properties	58				
	2.8.	Laminae of Composite Materials	59				
	2.9.	Laminate Analyses	66				
	2.10	Piezoelectric Effects	76				
	2.11	References	77				
	2.12	Problems	79				
3.	Plate	es and Panels of Composite Materials	87				
	3.1.	Introduction	87				
	3.2.	Plate Equilibrium Equations	87				
	3.3.	The Bending of Composite Material Laminated Plates: Classical Theory	91				
	3.4.	Classical Plate Theory Boundary Conditions	94				
	3.5.	Navier Solutions for Rectangular Composite Material Plates	95				
	3.6.	Navier Solution for a Uniformly Loaded Simply Supported Plate – An					
	2 7	Example Problem	98				
	5.7.	Levy Solution for Plates of Composite Materials	102				

	3.8.	Perturbation Solutions for the Bending of a Composite Material Plate With	
		Mid-Plane Symmetry and No Bending-Twisting Coupling	106
	3.9.	Quasi-Isotropic Composite Panels Subjected to a Uniform Lateral Load	109
	3.10.	A Static Analysis of Composite Material Panels Including Transverse	
		Shear Deformation Effects	111
	3.11.	Boundary Conditions for a Plate Using the Refined Plate Theory Which	
		Includes Transverse Shear Deformation	114
	3.12.	Composite Plates on an Elastic Foundation	115
	3.13.	Solutions for Plates of Composite Materials Including Transverse-Shear	
		Deformation Effects, Simply Supported on All Four Edges	116
	3.14.	Dynamic Effects on Panels of Composite Materials	119
	3.15	Natural Flexural Vibrations of Rectangular Plates: Classical Theory	120
	3 16	Natural Flexural Vibrations of Composite Material Plate Including	120
	5.10.	Transverse Shear Deformation Effects	122
	3 17	Forced Vibration Desponse of a Composite Material Date Subjected to a	144
	5.17.	Dynamia Lateral Load	124
	2 10	Dynamic Lateral Load	124
	J.10 .	Ducking of a Rectangular Composite Material Plate – Classical Theory	150
	3.19.	Buckling of a Composite Material Plate Including Transverse-Snear	120
	2 20	Deformation Effects	132
	3.20.	Some Remarks on Composite Structures	135
	3.21.	Methods of Analysis for Sandwich Panels With Composite Material	100
		Faces, and Their Structural Optimization	138
	3.22.	Governing Equations for a Composite Material Plate With Mid-Plane	
		Asymmetry	138
	3.23.	Governing Equations for a Composite Material Plate With Bending-	
		Twisting Coupling	139
	3.24.	Concluding Remarks	140
	3.25.	References	141
	3.26.	Problems and Exercises	143
4.	Bean	ns, Columns and Rods of Composite Materials	155
	4.1.	Development of Classical Beam Theory	155
	4.2.	Some Composite Beam Solutions	160
	4.3.	Composite Beams With Abrupt Changes in Geometry or Load	165
	4.4.	Solutions by Green's Functions	171
	4.5.	Composite Beams of Continuously Varying Cross-Section	173
	4.6.	Rods	177
	4.7.	Vibration of Composite Beams	179
	4.8.	Beams With Mid-Plane Asymmetry	183
	4.9.	Advanced Beam Theory for Dynamic Loading Including Mid-Plane	
		Asymmetry	184
	4.10	Advanced Beam Theory Including Transverse Shear Deformation Effects	103
	4 11	Buckling of Composite Columns	107
	4 12	References	200
	4 13	Problems	200
			_ / A IN I

XII

5.	Com	posite Material Shells	215
	5.1.	Introduction	215
	5.2.	Analysis of Composite Material Circular Cylindrical Shells	215
	5.3.	Some Edge Load and Particular Solutions	222
	54	A General Solution for Composite Cylindrical Shells Under Axially	
	5	Symmetric Loads	228
	5 5	Personse of a Long Avi Symmetric Laminated Composite Shell to an	220
	5.5.	Edge Dignlessmont	220
	56	Euge Displacement	230
	5.0.	Sample Solutions	232
	5.7.	Mid-Plane Asymmetric Circular Cylindrical Shells	239
	5.8.	Buckling of Circular Cylindrical Shells of Composite Materials Subjected	
		to Various Loads	243
	5.9.	Vibrations of Composite Shells	252
	5.10.	Additional Reading On Composite Shells	253
	5.11.	References	253
	5.12.	Problems	254
6.	Ener	gy Methods For Composite Material Structures	259
	6.1.	Introduction	259
	6.2.	Theorem of Minimum Potential Energy	260
	6.3.	Analysis of a Beam Using the Theorem of Minimum Potential Energy	261
	6.4.	Use of Minimum Potential Energy for Designing a Composite Electrical	
		Transmission Tower	268
	6.5.	Minimum Potential Energy for Rectangular Plates	272
	6.6	A Rectangular Composite Material Plate Subjected to Lateral and	
	0.0.	Hygrothermal Loads	274
	67	In Plane Shear Strength Determination of Composite Materials in	214
	0.7.	In-riale Shear Strength Determination of Composite Materials in	276
	60	Laminated Composite Patients	270
	0.8.	Use of the Theorem of Minimum Potential Energy to Determine Buckling	
	<i>c</i> 0	Loads in Composite Plates	282
	6.9.	Trial Functions for Various Boundary Conditions for Composite Material	
		Rectangular Plates	285
	6.10.	Reissner's Variational Theorem and its Applications	286
	6.11.	Static Deformation of Moderately Thick Beams	289
	6.12.	Flexural Vibrations of Moderately Thick Beams	293
	6.13.	Flexural Natural Frequencies of a Simply Supported Beam Including	
		Transverse Shear Deformation and Rotatory Inertia Effects	295
	6.14.	References	299
	6.15.	Problems	299
_	-		
7.	Stren	gth and Failure Theories	303
	7.1.	Introduction	303
	7.2.	Failure of Monolithic Isotropic Materials	306
	7.3.	Anisotropic Strength and Failure Theories	309
	7	.3.1. Maximum Stress Theory	310
	7	.3.2. Maximum Strain Theory	310
		-	

	7.3.3. Interactive Failure Theories	311
	7.4. Lamina Strength Theories	315
	7.5. Laminate Strength Analysis	328
	7.6. References	331
	7.7. Problems	332
8.	Joining of Composite Material Structures	333
	8.1. General Remarks	333
	8.2. Adhesive Bonding	333
	8.3. Mechanical Fastening	348
	8.4. Recommended Reading	354
	8.5. References	354
	8.6. Problems	357
9.	Introduction to Composite Design	361
	9.1. Introduction	361
	9.2. Structural Composite Design Procedures	368
	9.3. Engineering Analysis	371
	Appendices	375
	A-1 Micromechanics	375
	A-2 Test Standards for Polymer Matrix Composites	391
	A-3 Properties of Various Polymer Composites	393
	Author Index	397
	Subject Index	401

XIV

CHAPTER 1

INTRODUCTION TO COMPOSITE MATERIALS

1.1 General History

The combining of materials to form a new material system with enhanced material properties is well documented in history. For example, the ancient Israelite workers during their tenure under the Pharaohs incorporated chopped straw in bricks as a means of enhancing their structural integrity (see Exodus 5). The Japanese Samurai warriors were known to use laminated metals in the forging of their swords to obtain desirable material properties. More recently, in the 20th century civil engineers placed steel rebars in cement and aggregate to make a well-known composite material, i.e., reinforced concrete. One could say that the modern era of composite materials began with fiberglass polymer matrix composites about the time of World War II.

In order to introduce the reader to the subject matter of new high-performance composite materials it is necessary to begin by defining precisely what constitutes such a class of materials. Furthermore, one must also define the level or scale of material characterization to adequately describe such systems for discussion. This is done with the understanding that any definition and classification scheme introduced is somewhat arbitrary.

For introductory purposes, many workers in the field of composites use a somewhat loose description for defining a composite material as simply being the combination of two or more materials formed to obtain some useful new material or specific material property. In some cases the addition of the words microscopic and macroscopic are added to describe the level of material characterization.

The definition posed above is to a large extent broad-based, in that it encompasses any number of material systems for which different levels of characterization must be used to specify the system and for which different analytical tools may be necessary for modeling purposes. As a simplistic example of the definition used above we can consider a beam consisting of clad copper and titanium material elements used in a switching strip. Such a composite system can be considered at the macroscopic level as providing enhanced temperature-dependent material behavior due to the mismatch in coefficients of thermal expansion between the copper and titanium metallic elements. This material system, while consisting of two dissimilar materials and falling within the realm of satisfying the definition of a composite material would not be acceptable as being representative of modern definitions of composites for current applications in the aerospace, automotive and other technical areas. A representative list of journals dealing with composite materials is given in Section 1.9.

1.2 Composite Material Description

In order that agreement may be reached at the outset on a suitable modern day definition for advanced composite materials a structural classification according to the use of the following typical constituent elements is tabulated below.

STRUCTURAL LEVELS
(I) BASIC/ELEMENTAL
Single molecules, crystal cells
(II) MICROSTRUCTURAL
Crystals, Phases, Compounds
(III) MACROSTRUCTURAL
Matrices, Particles, Fibers

Of the structural types cited above, Type (III), or the Macrostructural type is the most important for further discussion herein. Continuing with this, next consider a further classification within the structural framework adopted. A classification of combinations of materials is described and shown in Table 1.1.

TABLE 1.1. Classification of Composite Materials Fiber. Either continuous (long or chopped whiskers) suspended in a matrix material

Particulate. Composed of particles suspended in a matrix material.

Flake. Composed of flakes which have large ratios of platform area to thickness and are suspended in a matrix material.

2

Filled/Skeletal. Composed of a continuous skeletal matrix filled by a second material.

Laminar. Composed of layers (lamina) bonded together by a matrix material.

The fiber composite classification in Table 1.1 can be further structured for identification by noting the direction and placement of fibers. This results in Figure 1.1 for classification of fiber-reinforced composite types.

A further classification of the woven composite configurations, shown in (b) above, is illustrated in the geometric architectures shown below in Figure 1.2.

Of the composite material types described in Table 1.1, fiber composites have received considerable attention in recent years due to the development of advanced fiber types such as glass, Kevlar and graphite, which have moduli in excess of 3×10^6 psi/20 GPa. The incorporation of these fiber types into suitable binders/matrices, which may be metals, non-metals or ceramics, leads to a synergism in which the new material possesses unique properties compared to the properties of either of the constituent elements. The acceleration of this material's revolution is depicted in Figure 1.3, which shows the state a maturity of various materials and, in particular, the status of composite materials.

FIGURE 1.3. State of Materials Maturity

This leads to a definition of a composite material, which has been defined in ASTM D 3878-95c as:

"Composite Material. A substance consisting of two or more materials, insoluble in one another, which are combined to form a useful engineering material possessing certain properties not possessed by the constituents."

As previously discussed, the way in which the constituents of a composite material are engineered is critical to the performance of the material system. Composites consisting of fibers embedded in a suitable matrix (binder) material can consist of several configurations dependent upon whether the embedded fibers are continuous or discontinuous. The configurations are:

- Discontinuous, fiber-reinforced composite A composite material which consists of chopped fibers or whiskers embedded within a matrix material.
- Fabric reinforced composite A composite material in which the embedded fiber assembly consists of a fabric, which may be woven, knitted or braided.
- Fiber-reinforced composite A composite material which consists of embedded continuous/discontinuous fibers in a matrix material.

- Filamentary composite A composite material reinforced by continuous fibers embedded in a matrix material.
- Unidirectional fiber-reinforced composite A composite material in which all the embedded fibers are all aligned in a single direction.

1.3 Types of Composite Materials

The important types of advanced composites can be depicted in the pie chart shown in Figure 1.4 below, which describes the five principal types of advanced composite material in wide use.

FIGURE 1.4. Principal Composite Materials

The composite types cited in Figure 1.4 include Polymer Matrix Composites (PMC), Metal Matrix Composites (MMC), Ceramic Matrix Composites (CMC), Carbon-Carbon (CC) and Hybrids consisting of a combination of the previously mentioned matrices and/or fibers.

In composite materials in 2001, glass fibers are the most used, and electrical or Eglass fibers account for more than 90% of all glass fibers used. S-glass fibers comprise the other 10% and are typically forty to seventy percent stronger than E-glass. Also, S-2 glass fibers were developed in the 1960's for military applications.

6

The other two fiber types most often used in composite materials today are carbon and aramid (Kevlar) fibers.

As to matrix materials by far the most often used are polymeric resins. Metal and ceramic matrix materials are used only for special applications. The polymeric resins fall into two categories: thermosets and thermoplastics. Thermoset resins become cross-linked during cure and the result is a final rigid configuration. Thermoplastic resins are processed at higher temperatures and remain plastic, can be reheated and can be reshaped. However, the majority of polymeric resins used in composites in 2001 are thermosets.

• Thermosets – This matrix can be characterized by having polymer chains that become highly cross-linked during cure. Once it is cured, it is in a final rigid configuration and there is nothing that will change it (short of a failure of the matrix). These matrices are advantageous for high temperature applications of composites.

Among the most often used thermoset resins are unsaturated polyester, halogenated polyester, vinylester, epoxy, phenolic, polyurethane and polybutadiene.

• Thermoplastics – This matrix can be characterized by having polymer chains that are not cross-linked. It can be remolded to a new shape when heated to approximately the same temperature at which it was cured. When using these matrices, the operating temperature should be kept below the cure temperature.

Among the thermoplastic resins the most often used include polyethylene, polystyrene, polypropylene, acryonitride-butadiene styrene (ABS), acetal, polycarbonate (PC), polyvinyl chloride (PVC), polysulfone (PSF), polyphenylene sulfide (PPS) and nylon (semi-crystalline polymide).

1.4 Constituent Properties

The mechanical properties of a composite material are determined by the properties of the constituent materials. As a starting point, the basic properties of commonly used constituents in composite material construction are discussed.

1.4.1 MATRIX PROPERTIES

The matrix represents the binding material of the composite, which supports and protects the fibers. It also provides a mechanism for the transfer of loads in the event of fiber breakage. Typically, the matrix has a lower density, stiffness and strength than the fibers. The response characteristics for polymeric matrix materials are usually viscoelastic or viscoplastic and therefore the matrix is affected by time, temperature and moisture. Indeed, the stress-strain response of polymeric matrices is influenced by all these factors. A summary tabulation of the properties of typical polymeric matrices is included in Table 1.2 below, and Table 1.3 provides properties of some structural matrix materials.

		ABLE 1.2.	I ypical N	latrix Proper	ties		
Material	Density	Et	E _c	σ_t	σ_{c}	ν	α
	(kg/m^3)	(GPa)	(GPa)	(MPa)	(MPa)		(10 ⁻⁶ /°C)
Polyester	1200-	2.5-4.0		45-90	100-250	0.37-	100-200
	1400					0.40	
Epoxy	1100-	3.0-5.5		40-100	100-200	0.38-	45-65
	1350					0.40	
NARMCO 2387	1210	3.38	3.86	29	158		
(epoxy)							
PVC	1400	2.8		58			50
Nylon	1140	2.8		70			100
Polyethelene	960	1.2		32			120

TABLE 1.2. Typical Matrix Properties

In Table 1.2, E_T and E_C are the tensile and compressive moduli of elasticity respectively, σ_T and σ_C are the ultimate strengths, ν is the Poisson's ratio and α is the coefficient of thermal expansion.

8

TABLE 1.3. Typical Structural Matrix Resins											
Resin	Tensile Strength	Tensile Modulus	$T_{\sigma}(K) *$								
	(MPa)	(GPa)									
Thermosets											
Epoxy (TSMDA)	103.4	4.1	463								
Bismaleimide	82.7	4.1	547								
Polyimide	137.9	4.8	630								
Thermoplastics											
Polyhenylene sulfide	65.5	4.3	366 (555 mp)								
Polyetheretherketone	70.3	1.1	400								
roryemeretherketone	70.3	1.1	400								

114 · · · · **MUDIFIA M** 1 10

*Glass Transition Temperature

1.4.2 FIBER PROPERTIES

Reinforcement of the matrix, to provide the majority of the strength and stiffness of a composite is accomplished by the fibers, which carry the majority of the loading and which inherently have superior properties to the bulk fiber material. The fiber can be of one of the following types:

- Organic •
- Metallic •
- Synthetic •
- Mineral •

Fibers, as used for reinforcement, can also be classified according to their geometrical properties. For reinforcement in a composite, characteristic fiber dimensions are seen below:

	Fibers	Whiskers
Length	5 mm	1 mm
	(.20) inches	(.04 inches)
	>100×dia.	10×dia.
Cross Sectional Area	$1.975 \times 10^{-3} \text{ mm}^2$	
	$(3.6 \times 10 \text{ in}^2)$	
Diameter	.25 mm	
	(.01 inches)	

A typical demand curve for carbon fibers is shown in Figure 1.5 [1]^{*}.

^{*} Numbers in brackets refer to references at the end of the Chapter.

FIGURE 1.5. Demand for Carbon Fiber 1971-2005

1.5 Composite Manufacturing, Fabrication and Processing

Composite fabrication can be considered to be related to three basic manufacturing techniques shown in Table 1.4.

TABLE 1.4. Basic Manufacturing Techniques Process Description Limitations Material, usually in form of reinforcing cloth, High tool and die Laminating paper, foil, metal, wood, glass fiber, plastic, costs. Limited to etc., preimpregnated or coated with thermoset simple shapes and resin (sometimes a thermoplastic) is molded cross section under pressure greater than 6895 kPa into profiles. sheet, rod, tube or other simple shapes. Excellent dimensional stability of finished product; very economical in large production of parts. This process is similar to profile extrusion, Pultrusion Close tolerance however, it does not provide flexibility and control requires uniformity of product control, and automation. diligence. Used for continuous production of simple Unidirectional shapes (rods, tubes and angles) principally strength usually incorporating fiberglass or other reinforcement. the rule High output possible. Limited to shapes of Filament Excellent strength-to-weight ratio. Continuous, reinforced filaments, usually glass, in the form positive curvature; winding of roving are saturated with resin and machine openings and holes can reduce wound onto mandrels having shape of desired finished part. Once winding is completed, part strength if not and mandrel are cured; mandrel can then be properly designed removed through porthole at end of wound into molding part. High strength reinforcements can be operations. oriented precisely in direction where strength is required. Good uniformity of resin distribution in finished part; mainly circular objects such as pressure bottles, pipes and rocket cases.

Comparisons of various composite manufacturing processes are shown in Table 1.5(a) and (b).

Manufacturing Process	Equipment Costs	Rate of Production	Part Strength	Operator Skill Required	Part complexity	Reproducibility	Possible Fibre Forms (R-Random/C-Continuous)
Hand Lay-up	L	L	L	H	H	L	R,C
Spray-up	М	M	L	H	H	L	R
Tape Lay-up (Manual)	L	L		H	N	L	C
Tape Lay-up (Automated)	Н	Н		L	M	H	C
Vacuum Bag Moulding (Wet Lay-up)	L	М	M	Н	Н	L	R,C
Autoclave Moulding (Tape Lay-up)	Н	М	Н	М	М	H	C
Filament Winding	М	M	Н	L	L	Н	C
Pultrusion	Н	Н	Н	L	L	Н	C
Compression Moulding	Н	Н	*	М	Н	Н	R,C
Resin Transfer Moulding	М	M	*	M	Н	H	R,C
Reaction Injection Moulding	М	Н	*	M	H	H	R,C
Injecting Moulding	Н	H	L	Η	H	H	R
Stitched/Thermoform	М	Н	M	M	M	H	R,C
Preforms							
Random Fibre Preforms	М	L	L	Н	H	L	R
3-D Woven/Braided Preforms	Н	M	H	L	H	H	C

TABLE 1.5(a). Comparison of FRP Composite Manufacturing Processes, Production Facto											
(adapted from Wittman and Shook, 1982)											

Legend: H - highM - mediumL - low

	Thermosets					Thermoplastics									
	Polyester	Polyester SMC	Polyester BMC	Epoxy	Polyurethane	Acetal	Nylon 6	Nylon 6/6	Polycarbonate	Polypropylene	Polyphenylene Sulfide	ABS	Polyphenylene Oxide	Polystyrene	Polyester
Injection Moulding	*		*	*	*	*	*	*	*	*	*	*	*	*	*
Hand Lay- up	*			*											
Spray-up	*			*											
Compression Moulding	*	*	*	*	*										
Preform Moulding	*			*											
Filament Winding	*			*							_				
Pultrusion	*			*											
Resin Transfer Moulding	*			*											
Reinforced Reaction Injection Moulding	*			*	*		*								

TABLE 1.5(b). Comparison of FRP Composite Manufacturing Processes, Materials (Rosato and Rosato 1990)

1.5.1 COMPRESSION MOLDING

For most high-volume fiber reinforced polymer matrix (FRP) composite parts compression molding is the primary choice. The high-pressure molding process produces high-strength, complex parts of a variety of sizes. Matched molds are mounted in a hydraulic or mechanical molding press. A weighed charge of bulk or sheet molding compound or a preform is placed in the open mold, along with a measured charge of resin. The heated mold halves are closed, and pressure is applied. Molding time, depending on part size and thickness, ranges from about one to five minutes. Inserts and attachments can be molded in. Compression-molded composites are characterized by good mechanical and chemical properties, superior color and excellent surface finish. Trimming and finishing costs are minimal. See Figure 1.6.

FIGURE 1.6. Compression Molding

1.5.2 RESIN TRANSFER MOLDING (RTM)

Suitable for medium-volume production of rather large FRP components, resin transfer molding is usually considered an intermediate process between the relatively slow spray-up and the faster compression-molding methods, which require higher tooling costs. RTM parts, like compression-molded parts, have two finished surfaces, but molded parts require trimming. Gel coats may be used. Abrate [2] provides an overall view of resin flow in fiber preforms.

Reinforcement mat or woven roving is placed in the bottom half of the mold, which is then closed and clamped. Catalyzed, low-viscosity resin is pumped in under pressure, displacing the air and venting it at the edges, until the mold is filled. Molds for this low-pressure system are usually made from reinforced plastics.

Vacuum-Assisted Resin Transfer Molding (VARTM): after the composite material is entered into the mold, and the part is vacuum bagged, a vacuum of \geq to 14 psi and cure temperature of less than 350° F is applied. The vacuum compacts the composite and helps the resin wet out the preformed composite part. See Figure 1.7.

FIGURE 1.7. Resin Transfer Molding (RTM)

1.5.3 INJECTION MOLDING

Reinforced thermoset molding compounds can be injection molded, Figure 1.8, in equipment similar to that commonly used for thermoplastic resins. The principal difference lies in the temperatures maintained in various areas of the system. With thermoplastics, the injection screw and chamber are maintained at a relatively high temperature, and the die is cooled so the molded part sets up. In contrast, for a thermoset FRP, the screw and chamber are cooled so that the resin does not cross-link and gel, and the die is heated so it does cross-link and cure.

Injection molding offers high-speed production and low direct labor costs. Combined with the excellent mechanical properties available from long fibered BMC, the result is a capability for high volumes of complex parts with properties comparable to those of compression or transfer molded parts.

FIGURE 1.8. Injection Molding

1.5.4 COLD PRESS MOLDING

Cold press molding does not use external heat to effect part cure because the compound cures at room temperature, aided by the self-generated exothermic heat. Cold molding is an economical press-molding method, providing two finished surfaces on parts made, for manufacturing intermediate volumes of products using a low-pressure cure and inexpensive molds of plaster or glass reinforced plastic. These molds do not have sharp edges, so trimming after molding is required.

Preform or mat reinforcement is placed on the lower mold half and a resin/filler mixture is added. The mold is closed under moderate pressure or 20 to 50 psi, and the FRP part cures. Cold molding is suited mainly for relatively simple shapes, without ribs or bosses.

1.5.5 STRUCTURAL REACTION INJECTION MOLDING (SRIM)

Structural reaction injection molding shown in Figure 1.9, is suitable for mediumto-high volume composite parts requiring superior strength with no loss in toughness or flexibility. The SRIM process also produces parts with high impact resistance and lower weight, and is excellent for larger part sizes.

Like injection molding, resin is injected into a closed mold. However, the SRIM process utilizes a directed-fiber preform or reinforcing mat, which is placed into the mold prior to closure, resulting in even distribution of glass and uniform mechanical properties.

SRIM parts offer two finished surfaces, but the polyurethane systems typically used do not provide a Class A surface finish and are generally considered unsuitable for applications where cosmetics are important. For structural application, however, the low temperature and pressure characteristics of SRIM lead to lower equipment and manufacturing costs compared to similar processes.

FIGURE 1.9. Structural Reaction Injection Molding (SRIM)

1.5.6 HAND LAY-UP

The simplest and oldest of the fabrication processes for FRP composites, hand lay-up, is a labor-intensive method suited especially for low-volume production of large components such as boat hulls and associated parts. See Figure 1.10.

A pigmented gel coat is first sprayed onto the mold for a high-quality surface finish. When the gel coat has become tacky, glass reinforcing mat and/or woven roving is placed on the mold, and resin is poured, brushed or sprayed on. Manual rolling then removes entrapped air, densifies the composite and thoroughly wets the reinforcement with the resin. Additional layers of mat or woven roving and resin are added for thickness. Curing is initiated by a catalyst or accelerator in the resin system, which hardens the composite without external heat.

Hand lay-up offers low-cost tooling, simple processing and a wide range of part size potential. Design changes are made easily. Parts have one finished surface and require trimming.