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Preface

Oscar Zariski transformed the foundations of algebraic geometry. The powerful 
tools he forged from the ideas of modern algebra allowed him to penetrate classical 
problems with a clarity and depth that brought a new rigor to the way algebraic 
geometers carry out proofs. The strength of his work was matched by his forceful-
ness as a teacher, and the students he trained at Johns Hopkins and later at Harvard 
have made essential contributions to many areas of mathematics.

A man who called geometry “the real life,” Zariski lived intensely in the world 
of mathematics, and it was here that his temperament had its most free expression. 
Curious, optimistic, arrogant, stubborn, demanding, he was in some ways the 
embodiment of intellectual romance—the boy genius marked out for greatness by 
his teachers, the idealist torn between his love for Russia and his devotion to math-
ematics, the student who surpassed his masters, a precursor of the great influx of 
European talent that would transform academic and artistic life in America.

Neither a prodigy like Gauss nor the victim of an early death like Galois, he saw 
himself as having chosen mathematics. Aware from an early age of his mathematical 
talent, he only later discovered how much his character had contributed to the 
development of his gifts. As his boyhood interest in algebra ripened into love, his 
pragmatism drew him to geometry; the tenacity with which he attacked fundamen-
tal problems was already evident in the intensity of his early studies at the 
University of Kiev. “A faithful man,” as he termed himself, he remained totally 
committed to algebraic geometry for more than sixty years.

His commitment led him safely through the turbulence of the twentieth century. 
Having left Kobrin to attend the gymnasium in Chernigov as a child in 1910, he 
went on leaving places for the sake of mathematics until he settled at Harvard in 
1947. He was an undergraduate in Kiev during the 1917 revolution, a graduate 
student in Rome during Mussolini’s rise to power, an assistant professor in 
Baltimore during the Depression, and a visiting professor at the University of São 
Paulo in 1945 when he learned that his family in Kobrin had been murdered by the 
Nazis. In his eighty-seven years he contributed to the radical transformation not 
only of algebraic geometry, but also of what it meant to be a Jew, a communist, and 
a university professor.

While his “real life” is recorded in almost a hundred books and papers, this story 
of his “unreal life” is based upon his memories and the recollections of his family, 
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colleagues, and students. Whenever it was possible I supplemented oral accounts 
with letters and journals. I have used outside sources only to provide a historical 
context and to resolve the inevitable inconsistencies of a remembered past.

Carol Parikh
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A Foreword for Non-Mathematicians

When I first met Oscar Zariski, I was a lowly and invisible undergraduate, and he 
was a commanding figure preaching about a seductive world of which he was the 
master. Later I came to know him as a colleague, and as I gained confidence in my 
own strength as a mathematician, I could look at his work and see him as a fellow 
human being, struggling to shape half-glimpsed truths into tangible reality. Through 
the years he became a close friend and, as he declined physically, a friend in need 
of support in facing the losses that all people eventually face. It is very exciting for 
me to see how Carol Parikh has been able to bring to life the full development of 
Zariski as a person, from his youthful dreams, through his eager days as a student, 
to the central period in which he doubted his own teachers and found how to correct 
them and penetrate further into his beloved field of geometry.

I hope that this book will make the mathematical endeavor itself clearer to those 
readers who have always wondered what on earth mathematicians do. Zariski was 
a man caught up in many of the central conflicts of the twentieth century. He was 
torn between his early dedication to communism and his later, more sober, reflections 
on the success of capitalism. He was torn between an allegiance to an intellectual 
world that ignored the politics of race and his emotional need to find safety for 
those members of his family who escaped the Holocaust. Intellectually, he was torn 
between a love of the free-spirited, creative Italian vision of geometry and his 
appreciation of the need for strict logical rigor which he found in the Bauhaus-like 
school of the abstract German algebraists.

Unfortunately, like all working mathematicians, I have led my life with the reali-
zation that most of what I care about so passionately is nearly impossible to explain 
to the educated layman. “What do you mean,” they say, “when you say this theorem 
is beautiful or that theorem is deep?” One cannot appreciate what drove Zariski and 
why his colleagues were so excited by his contributions without having some idea 
of the intellectual world in which he moved. Is it possible within the confines of 
this foreword to convey some idea of this world and why it is so vital for the dedi-
cated group of mathematicians who pursue it? I won’t try to explain all the terms 
needed to state Zariski’s deepest theorems, but I think something of what draws 
people to his subject can actually be explained in two fairly easy illustrations.

Before I embark, I have to make one thing clear about the way mathematicians 
think about their world. Everyone knows that physicists are concerned with the laws 
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of the universe and have the audacity sometimes to think they have discovered the 
choices God made when He created the universe in thus and such a pattern. 
Mathematicians are even more audacious. What they feel they discover are the laws 
that God Himself could not avoid having to follow. Now some would say all such 
laws must be obvious, that you can find nothing truly new beyond what you assumed 
in the beginning. But this isn’t what mathematicians find. They find that by following 
the thread of logic, just as you would follow a river to its source, at every bend you 
find things that are totally unexpected. Because these things follow by logic, they 
have to be true in any world God creates, and yet there is no way in which they are 
evident on first sight. Or at least so it seems until some mathematician finds a way of 
rephrasing or recasting the facts; then, by some sleight of hand, they appear immedi-
ately evident. That’s one of the things mathematicians mean by a beautiful proof. Yet 
other theorems continue to fascinate mathematicians because they have never been 
fully reduced to something intuitively obvious. Such theorems live on in a state of 
tension between seeming new and surprising and seeming clear and evident.

To be a mathematician is to be an out-and-out Platonist. The more you study 
mathematical constructions, the more you come to believe in their objective and 
prior existence. Mathematicians view themselves as explorers of a unique sort, 
explorers who seek to discover not just one accidental world into which they happen 
to be born, but the universal and unalterable truths of all worlds.

My first illustration will attempt to show in the simplest possible way how alge-
bra and geometry come together in the field Oscar Zariski made his own, algebraic 
geometry. We want to go back to what was perhaps the first and arguably still one 
of the deepest mathematical truths—Pythagoras’s theorem. We start with a right 
triangle A, B, C (see Figure 1), with a right angle at B, the side AC being the longest, 
the so-called hypotenuse. Pythagoras’s theorem states that the square of the length 
AC equals the sum of the square of the length AB and the square of the length BC.

We’re not going to prove this theorem; rather, we’ll use it to build a fundamental 
link between algebra and geometry. To do this, we first need to use an idea of 
Descartes: we can name points in the plane by means of pairs of numbers, called 
their x and y coordinates. That is to say, to each point, we can assign two numbers, 
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and conversely to any two numbers, we assign a single point (see Figure 2). This 
idea, although commonplace to anyone who has taken high school math, was an 
amazing step for Descartes; it was a step that the Greeks never took. In fact, the 
Greeks had terrible techniques for doing simple arithmetic, and they would never 
have thought of the reduction of geometry to arithmetic by means of coordinates as 
any sort of simplification (which was perhaps why they didn’t think of it).

Now take Pythagoras’s triangle and put point A at the origin of Descartes’ coor-
dinates and make side AB horizontal. This makes side BC vertical. Also let x be the 
length of AB and let y be the length of BC. Then we see that the pair of numbers 
x,y is simply Descartes’s coordinates for the point C (see Figure 3). Finally, consider 
the circle whose center is the origin and whose radius is one. If C lies on that circle, 
then the length of AC is one, and Pythagoras’s theorem tells us that the sum of the 
square of x and the square of y is one:

x2 + y2 = 1.

On the other hand, if C doesn’t lie on that circle, then x2 + y2 is the square of some 
other number, less than one or greater than one, so x2 + y2 does not equal one. In 
other words, we have shown that the set of solutions of the equation

x2 + y2 = 1

A Foreword for Non-Mathematicians xv
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is the same as the set of coordinates (x,y) of the points on our circle! We have an 
equation, and a simple one at that, for the most basic object of geometry. We have 
reduced the circle, one of the great building blocks of geometry, to a polynomial 
x2 + y2.

This idea, of taking equations of any kind and plotting their set of solutions 
using Cartesian coordinates, is the secret to the link between algebra and geometry, 
and the origin of algebraic geometry. What happens with other equations? We can 
take any equation made up by adding, subtracting, and multiplying x and y and 
ordinary numbers and out of it get a curve, which is called an algebraic curve. The curve 
is the set of points whose coordinates x,y solve the equation. In Figure 4, we have 
drawn three such curves to give you an idea what can happen. Clearly the algebra 
can produce a whole lot of geometry.

What sort of rules apply to this dictionary between equations and curves? We need 
some terminology. The equations are built by adding and multiplying the coordinates 
x,y by various numbers and by each other, and we call x and y the “variables” in the 
equation because they can be given any value. Some rules are easy: for instance, if 
the equation is linear (it doesn’t multiply variables by each other, but only adds them 

Figure 3. Pythagoras’ theorem in Cartesian coordinates
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up after multiplying them by known numbers), then the curve is a straight line. If the 
equation is quadratic, meaning that each side is a sum of pieces in which at most two 
variables are multiplied (i.e., x2, xy, or y2), then we get a circle or a stretched circle, 
called an ellipse, or a few other simple types (see Figure 5). Newton was the first to 
make a systematic study and to classify the curves obtained from cubic equations.

Now, here’s our second illustration of the way mathematics works. We ask a 
simple question: If we start with two algebraic curves, is there a rule for predicting 
how many points they have in common, that is, how large is their intersection? 
Well, two lines always meet in exactly one point—unless they are parallel, a special 
case that we shall leave aside for the moment. A line and a circle can meet in two 
points, or in one point if they are tangent, or in no points if the line doesn’t go near 
the circle at all (see Figure 6). Looks like a mess!

But here we can adopt another strategy that mathematicians love and that often 
leads to great surprises: if you find a mess in the world you start in, why not change 
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Figure 5. Some curves defined by quadratic equations

Figure 6. (a) A line and a circle that meet twice; (b) A line and a circle that meet once and are 
tangent; (c) A line and a circle that never meet



the world? Invent a new and better world, a castle in the sky, in which you can make 
your theorem come true; looking back at the dreary reality with which you started, 
maybe you can understand your more complex reality as a departure from this sim-
pler picture. If you plunge ahead like this, now really pretending to be God, one of 
two things happens. You may find that the reality you want contains the seeds of its 
own self-destruction: it leads to a contradiction. Or you may find it holding up, and 
if you are lucky, you eventually prove that it is consistent. In either case, you have 
understood the original situation more deeply.

For the case of the parallel lines, this leap of faith, this audacious idea of altering 
the rules of the game, was one of the great inventions of the Renaissance, when it 
was declared that parallel lines meet at infinity! Painters realized that, in order to 
accurately draft rectangular buildings, they should draw the horizon on their 
 canvasses, even where it was obscured behind nearer objects. Then the parallel lines 
would be drawn correctly if, when extended, they met on the horizon. Mathematicians 
realized that these points on the horizon depicted places that didn’t literally exist in 
the real world because they would have to be infinitely far away. But why not say 
they do exist somewhere? Increase the stock of points in the plane by adding new 
ones, which we then call ideal or infinite points. Don’t treat them as second-class 
citizens either, because on the canvas they appear just like real points, and the canvas 
can be treated as a kind of map showing points at and near infinity all at once. The 
new points are where the train tracks meet, where the lines of Leonardo’s drawing 
intersect (see Figure 7). We come up with a richer geometry, in which there is more 
elbow room. In fact, if you go out on a line in one direction, you actually reach 
infinity, pass it, and then re-enter the finite world from infinity but now at the other 
end of the line. This way of thinking is called “projective geometry.”

Figure 7. Leonardo da Vinci: Perspective study
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Now how about the circle and the line? Ignore for a while the case where the circle 
is tangent to the line, as it is a special case. The two basic cases are where they meet 
twice and where they don’t meet at all. We don’t want to lose any points, so we are 
forced to add points again until a line totally outside a circle still “meets” it some-
where. Here is where some old ideas that originated in the Middle Ages come to our 
help: the square root of −1, called i, and the complex numbers built up from it, e.g., 
2 + 3i or −4.5 −5i. It had been known for a long time that solving polynomial equa-
tions seemed to work better if you allowed complex numbers in, either as the solu-
tions themselves or, even if you only wanted the usual real roots, as intermediate steps 
in calculating the solutions. Such numbers had had an air of mystery and black magic 
about them at first, but gradually it was realized that there was nothing inconsistent 
about them; if you suspended your disbelief and admitted them for the sake of the 
game, you didn’t reach any contradiction. A beautiful way of describing them by 
points in the plane, due to C. F. Gauss, the founder of the modern era of mathematics, 
made it totally clear that they were a perfectly consistent rigorous construction.

So where are the missing points, for example, where the line x = 1.25 and the 
circle x2 + y2 = 1 meet? One of them is the point x = 1.25, y = 0.75i, and the other 
is x = 1.25, y = − 0.75i. (Just square 1.25 getting 1.5625, and square .75i getting 
−.5625, which add up to 1.0.) With a little algebra, it’s easy to see that this always 
works, so long as we let the coordinates x,y of the points in the plane be complex 
numbers. But what has this technique done to our geometry? In fact, it has made it 
much richer. Although we continue to treat it like a two-dimensional world, to 
specify a point requires two coordinates, and each of them, being complex, needs 
to have a real and an imaginary part (thus 2 + 3i has real part 2 and imaginary 
part 3). This means that we need in all four numbers of the ordinary sort to specify 
a point, so our geometry has now become four-dimensional. Moreover, we still 
have to add the line of points at infinity, including complex points at infinity. 
For instance, a circle, which in the ordinary sense doesn’t go out to infinity at all, 
now can do so, provided the direction in which it goes has imaginary slope (the 
points at infinity on circles used to be called I and J and were nicknamed Isaac and 
Jacob by students in the college days of my colleague Lars Ahlfors). The whole 
affair is called the complex projective plane and is the place in which to “draw” 
algebraic curves and to do algebraic geometry.

To complete our story, what have we gained by these mental gymnastics? In fact, 
we have gained a tremendous amount, but to tell the story is to tell a large part of 
 algebraic geometry. For this foreword, I’ll only tell about Bezout’s theorem—actually a 
theorem of Poncelet, I believe, but mathematicians are notorious for crediting things 
rather arbitrarily. Remember that any polynomial equation in x and y defines its curve 
of solutions. The degree of the equation is simply the largest number of times the vari-
ables are ever multiplied together (so 2 is the degree of x2 + y2 = 1, and 5 is the degree 
of x3 • y2 = −1). Bezout’s theorem states that two such curves, of degrees n and m, meet 
almost always in n • m points, and always in n • m points if special points of intersec-
tion, like a point where a line is tangent to a circle, are counted more than once in a 
careful way. (Finding techniques for counting these special points was, by the way, one 
of the principle technical accomplishments of Zariski’s archrival Weil, see Ch. 12.) In 
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other words, we have found a strong general link between the algebra of the polynomi-
als on the one hand and the geometry of the curves on the other. Such links, many quite 
amazing on first sight, are the main concerns of algebraic geometry.

I want to touch on one more thing in this quick tour of the mathematician’s 
world. The lay picture of the mathematician (as seen in New Yorker cartoons) shows 
a bespectacled, white-coated, rather unworldly man looking at a blackboard of 
bizarre equations. This man is probably dry and precise, following rules without 
fail; his failing to do so is cause for humor (see Figure 8). As discussed below, 
much of Zariski’s life was devoted to seeking the right way to make precise a huge 

Figure 8. © 1975 by Sidney Harris, American Scientist magazine
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amount of writing and thinking produced by other mathematicians who were any-
thing but precise. In fact, one of them was an out-and-out romantic and another a 
dictatorial dramatic man with a flair for wild driving. Let the truth be known: math-
ematicians are as subject to human error and emotion, as subject to the fashions of 
intellectual trends, and as often personifications of their national characteristics, as 
thinkers in any other field. They do strive, or claim, to be better and more detached, 
but their history reveals marvelous episodes in which they have driven right off the 
road in pursuit of their particular vision of truth.

This book deals with one of the most colorful episodes of this type. The Italian 
school of algebraic geometry was created in the late 19th century by a half dozen 
geniuses who were hugely gifted and who thought deeply and nearly always correctly 
about their field. They extended its ideas over a huge new area, especially what is 
called the theory of algebraic surfaces (we were discussing algebraic curves; surfaces 
come from equations in three variables, x,y, and z, instead of two). But they found the 
geometric ideas much more seductive than the formal details of proofs, especially 
when these proofs had to cover all the nasty special cases that so often crop up in 
geometry. So, in the twenties and thirties, they began to go astray. It was Zariski and, 
at about the same time, Weil who set about to tame their intuition, to find the princi-
ples and techniques that could truly express the geometry while embodying the rigor 
without which mathematics eventually must degenerate to fantasy.

The 20th century was, until its final decades, an era of “modern mathematics” in 
a sense quite parallel to “modern art” or “modern architecture” or “modern music.” 
That is to say, it turned to an analysis of abstraction, it glorified purity and tried to 
simplify its results until the roots of each idea were manifest. These trends started in 
the work of Hilbert in Germany, were greatly extended in France by a secret mathe-
matical club known as “Bourbaki,” and found fertile soil in Texas, in the topological 
school of R. L. Moore. Eventually, they conquered essentially the entire world of 
mathematics, even trying to breach the walls of high school in the disastrous episode 
of the “new math.” Now the trend has reversed: postmodern mathematics is quite 
 different and has reintroduced the love of the baroque; it embraces the tool of the 
computer and seeks out rather than shunning the complexities of applications. The 
theory of chaos is the best-known example of this trend, but it extends from the vast 
number–theoretic speculations on modular forms to the paradoxically flat yet knotted 
“non-standard” four-dimensional spaces. Zariski’s life is the story of a mathematician 
of this century, who lived with and loved and gave his soul to these struggles. He 
began his career with naive beliefs inherited from the nineteenth century; the middle 
part of his career was wholly devoted to “modern mathematics”; and in the last part, 
he began to look again at the richness and complexities of his material. But this is the 
story Carol Parikh has told so ably in the book that follows.

David Mumford
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