Antonio Badia

Quantifiers
in Action J

Generalized Quantification in Quer
Logical and Natural Languages

@ Springer

Quantifiers in Action
Generalized Quantification in
Query, Logical and
Natural Languages

ADVANCES IN DATABASE SYSTEMS
Volume 37

Series Editors

Ahmed K. Elmagarmid Amit P. Sheth
Purdue University Wright State University
West Lafayette, IN 47907 Dayton, Ohio 45435

For other titles published in this series, go to
WWwWw.springer.com/series/5573

Quantifiers in Action

Generalized Quantification in
Query, Logical and
Natural Languages

Antonio Badia
Computer Engineering and Computer Science Department
Speed School of Engineering
University of Louisville
Louisville, KY, USA

@ Springer

Author:

Antonio Badia

Computer Engineering and Computer Science Department
JB. Speed School of Engineering

University of Louisville

Louisville, KY 40292 USA

abadia@louisville.edu

Library of Congress Control Number: 2009921815

ISBN: 978-0-387-09563-9 e-ISBN: 978-0-387-09564-6

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now known
or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or
not they are subject to proprietary rights.

Printed on acid-free paper
987654321

springer.com

To Mindy, Emma and Gabi: I'm finally done!

Preface

The goal of this book is to help conquer what this author sees as dangerous
divides in the study of databases in general, and of query languages in partic-
ular: the divide between theory and practice, and the divide between purely
formal approaches and those with a wider concept of communication.

This is, of course, a very tall order, and there is no claim here that the
mission has been accomplished. We live in an era of specialists (people who
know a lot about a little), and the explosion of available material in any given
field makes it quite difficult even to keep current with one’s area, never mind
exploring a different one. Presenting all the material this book touches upon
in depth is nearly impossible. Rather, the book introduces the most basic
results of different fields. It is then likely that an expert in any given area
(logic, databases, or formal linguistics) will find that the material discussed
here is very elementary. This is part of the price to pay when trying to reach
the widest audience. The book is intended just to present the beginning of
an exploration, and its aim is to encourage others to pursue research further.
Necessarily, the coverage is limited and subjective, but hopefully it will become
an entry point for the interested reader, who will be encouraged to delve
further into the subject using some of the bibliography provided.

It may seem strange to pick a a technical, specialized topic like Generalized
Quantification for this kind of endeavor. However, Generalized Quantifiers are
a perfect example of a practical theory. An idea that started in the seminal
papers by Mostowski ([76]) and Lindstrom ([70]) as a theoretical investiga-
tion into a new concept found unsuspected applications first in linguistics and
then in query languages. Generalized Quantifiers motivate insights into op-
timization of set-based queries, Question Answering, and Cooperative Query
Answering. This book tries to gather all those insights together. As such, the
book tries to walk a line between theory and practice. There is out there a
large collection of work on GQs; however, they all tend towards the purely
theoretical side ([4]) or towards a particular application, usually linguistics
([94]). The book strives the cover the middle ground.

VIII Preface

Depending on their point of view, readers may feel that we have gone
too far to the theory side or to the application side. Others still may feel
that we have not gone far enough. There are no doubt many other possible
applications of the concept, and much more is known right now that we can
hope to include in our first chapters. However, by bringing together all this
material we hope to make people aware of what others are doing. If we happen
to encourage collaborations and help establish links where before there were
none, then we consider that we have done our job.

Before getting into the subject, it is time to give credit where credit is
due. This book represents a summary of research carried out by the author
over the past years. In particular, section 4.3 of chapter 4 is based on [10];
sections 6.2, 6.3 and 6.4 of chapter 6 are based on [13]; chapter 7 is based
on [9] and chapter 8 is an update of work reported in [11]. Along the way,
there were many people who helped carry out the research, and this is the
opportunity to thank them, as they made this book possible. This list should
certainly include the members of my doctoral dissertation committee (Dirk
van Gucht, Ed Robertson, David Leake and Larry Moss), as it all got started
there. The collaboration with Stijn Vansummeren was a pleasure; I learned
much from it. My graduate students contributed considerably to this effort;
special mention should go to Bin Cao, Brandon Debes and Dazhuo Li for
their work in different parts of the project. Bin helped develop the interpreter
introduced in chapter 5; Dazhuo worked an approach to linear prefixes, shown
in chapter 6; and Brandon implemented a system that transformed our project
from a paper-and-pencil approach to executable software!. This material is
based upon work supported by the National Science Foundation under Grant
No. I1S-0347555, and therefore special mention goes to the National Science
Foundation, which generously supported the research described here under
a CAREER Award, and to my two program managers, Le Gruenwald and
Maria Zemankova, who exhibited a tremendous amount of patience with me
-I am very indebted to both of them.

Finally, I cannot honestly say that Mindy, Emma or Gabi’s contributions
have been technical. In fact, I cannot say that repeatedly asking “Tickle me,
papa!” is a contribution at all. But I know that without them, I would have
never spent the time and energy I did on this, or any other project -it would
just not seem worthwhile.

Louisville, KY Antonio Badia
December 2008

! The result of his efforts is accessible at http://qlgq.spd.louisville.edu/index.php.

Contents

1 Introduction 1
2 Basic Concepts i 7
2.1 From Propositional to First Order Logic.................... 7

2.2 Quantification 8
2.2. 1 SemantiCst 9

2.2.2 Meaning ...t 11

2.3 More on Quantification........... i 12
2.3.1 Quantifier Scope and Prefixes 12

2.3.2 Skolemization i 14

2.3.3 Quantifier Rank i 15

2.3.4 Relativization i 17

2.4 GAINES . . ottt 18

2.5 More Semantics 19
2.5.1 Expressive Power of FOL 22

2.5.2 Finite and Infinite Models 22

3 Generalized Quantifiers........... 25
3.1 Imtroduction 25

3.2 Generalized Quantifiers 25

3.3 Another view 30

3.4 Basic Complexityot 33

4 QLGQ: A Query Language with Generalized Quantifiers... 37
4.1 Introduction: GQs in query languages 37

4.2 QLGQ ... 38
421 Syntax of QLGQ o 39

4.2.2 Semantics of QLGQ 41

4.2.3 Remarkson Syntax........... i 42

4.3 Safety and Domain Independence................. 44

4.3.1 Relation to other languages......................... 49

Contents

4.4 Generalized Quantifiers and SQL 50
Implementation and Optimization of Standard GQs 55
5.1 Languages to Define GQs........... 55
5.2 Translating and Optimizing QLGQ 60
5.3 The Interpreter i 60
5.3.1 Complex Queries, 66
5.4 Optimization i 67
5.4.1 Optimization on RA Expressions 67
5.4.2 Optimization using GQ Properties................... 67
5.5 Application to SQL 69
5.6 Monadic vs. Polyadic Quantification 71
Quantifier Prefixes......... 73
6.1 Introduction 73
6.1.1 Linear and Non-linear Prefixes 74
6.1.2 Henkin Prefixes and Generalized Quantifiers 76
6.2 Linear and Non-Linear Prefixes in QLGQ 77
6.3 Cumulation....... 81
6.4 Branching 82
6.5 Linear Prefixes 85
6.5.1 Algebraic Translation 87
Cooperative Query Answering 91
7.1 Introduction i 91
7.2 Cooperative Query AnSwering..............c.ooouueinnenn .. 91
7.3 Cooperative Query Answering with QLGQ 94
7.3.1 Presuppositions i 94
7.3.2 Constructing Explanations and Justifications 97
7.3.3 Relaxed Queries.......... i i 100
7.3.4 Expressing and Using Constraints 103
7.4 Further Research in CQA 105
Generalized Quantifiers and Natural Language 107
8.1 Introduction 107
8.2 Question ANSWeringouuiiiiinineeinnen.. 107
8.3 GQs in Natural Language Analysis 110
8.3.1 Combining Quantifiers 114
8.4 QLGQIn QA ... 116
8.5 CQA, QA and GQS ...t 120

8.6 Challenges. 122

Contents XI

9 Extensions.............. .. 127
9.1 Datalog-like Languages......... o i, 127
9.1.1 Aggregates ... 127

9.1.2 Fixpoint 128

9.1.3 Higher Order Variables............................. 131

9.2 Distributed Quantification L. 134
9.2.1 Quantification and Distributed Databases 135

9.2.2 Computing Distributed Quantification 139

9.3 Other Data Models 143

10 Conclusion 149

References 151

1

Introduction

This monograph is written with two purposes: to help bridge the gap between
theory and practice in databases, and to help bridge the gap between research
in query language and research in other areas (outside databases, and some
outside Computer Science) that are clearly related to querying. The motiva-
tion behind the book, then, is a belief that the gaps exist, and that this is a
bad situation.

Databases are a strange area. On the one hand, they are clearly an applied
field. Databases (and related services) are a multi-billion, world-wide software
industry. Some advances (for instance, in query optimization) make it to mar-
ket in relatively short time. Changes in the industry (for instance, the move
to data warehouses) provoke comparable changes in the field, creating whole
subareas of research. On the other hand, databases are a theoretical field. Since
the definition of the relational model by Codd, its main concepts have been
tied to logic ideas, and logician’s methods have been used to study the model
abstractly. This study has blossomed in entirely new subareas, like descriptive
complezity ([56]) and finite model theory ([27, 69]). Thus, databases is, at the
same time, a clearly applied and a clearly theoretical field of study.

This would be a good thing if theory and practice walked hand in hand.
However, this does not always happen. To quote a familiar dictum, “In the-
ory, theory and practice are the same. In practice, they are not.”*. While
occasionally theory occupies itself with questions of practical interest, and
practice does generate questions of theoretical interest, the mainstream body
of theory and practice remain separated. This is not due to the will of the re-
searchers -many theoreticians find delight in seeing theoretical developments
put to good use in practice; and they are also eager to apply their skills to
problems motivated by new areas of practice. It is also the case, in my opinion,
that many practitioners consider the establishment of a solid, formal founda-
tion for a practical problem a positive development. In fact, most database

! This saying, as well as the next one, have been attributed to a variety of people,
so they will go uncredited here.

A.Badia, Quantifiers in Action: Generalized Quantification in Query. Logical and Natural 1
Languages, Advances in Database Systems 37, DOI: 10.1007/978-0-387-09564-6_1,
© Springer Science +Business Media, LLC 2009

2 1 Introduction

people (certainly this author) adhere to another familiar dictum, “There is
nothing as practical as a good theory”. But theory and practice have different
goals, demand different approaches and produce different results. Most of the
time, the disconnect is present. It is for this reason that it is a pleasure to
work on a subject that gives an opportunity to bridge this gap.

As for our second purpose, it is not difficult to realize, after a bit of thought,
that querying is, first and foremost, a linguistic activity: queries are posed in
a language. However, there are two levels at which this activity takes place.
First, a cognitive agent has to come up with a question. Such agents are,
usually, human beings, and the questions they come up with are expressed in
natural language. Only when the necessity to pose the question to a computer
arises there is a corresponding need to translate the question into a formal
language. Let us agree to reserve the term question to refer to expressions in a
natural language, and query to refer to expressions in a formal language. The
database researcher (and the theoretical computer scientist) deals with queries
only. The linguist (and the philosopher) deals with questions only. But surely
a link is missing. In real life, queries start as questions. Making sure a query
correctly reflects the intended question is important. Learning which kinds of
questions (as opposed to queries) are most useful (or common, or important, or
whatever other measure one wants to use) is also important. This importance
has been reflected in the fast development, in the last few years, of the field of
Question Answering, in which users pose questions to the computer directly
in natural language, and hence it is the software that must come up with an
appropriate translation from question to query ([99]). Information Retrieval,
also prevalent nowadays as a research field due to the explosion of the World
Wide Web, straddles a middle line between queries and questions -at least,
that is how this author regards keyword search ([14, 18, 73]). It is perhaps
time, then, to take the relationship between questions and queries seriously.

Once our purpose has been explained, the next question is: why use Gen-
eralized Quantification as the tool to develop a research plan for this purpose?

Generalized Quantification started as a narrow concept applied to a par-
ticular problem and then, like many good ideas, took off with a life of its own.
The great logician Mostowski considered the limitations of expressive power of
first order logic (henceforth, FOL) and focused on one that seemed somewhat
troublesome to him: the inability of FOL to distinguish between finite and
infinite sets ([76]). The concept of infinity being so important for the founda-
tions of mathematics, he considered that F'OL had to be able to capture the
notion (there were contrary opinions: for other people, the notions of finite
and infinite sets were not purely logical notions and hence did not belong in
FOL). So he considered how to add to FOL the ability of expressing infinity.
The challenge was doing so in a manner that was minimal, in the sense that
minimal changes were introduced to both the syntax and the semantics of the
language. He introduced a new symbol, Qx, and used in formulas as follows:

Qx v ()

1 Introduction 3

where ¢ was an arbitrary FOL formula with x the only free variable. The
interpretation of this formula is, as usual, given in terms of whether an arbi-
trary model M would satisfy it2. Given the set of values a from the universe
of M such that M satisfies ¢(a) (that is, when a is substituted by x, we
get a sentence true in M), Mostowski stipulated that if such a set is infinite
numerable, then the sentence above is true in M.

The subtle but important idea behind that notion is that, by introducing a
new logical operator that captures exactly the notion we intended to capture
(“infiniteness”), we are adding to the language only the necessary machinery
to deal with the new concept. By studying the resulting language, one could
learn what the concept exactly entails. For instance, if some property can
also be expressed in the extended language that could not be expressed in
plain FOL, that such property must be somehow related to infinity. A trivial
example is that of finiteness, which can be expressed in the language simply
by using negation on the formula above.

A few years later, as part of its meta-logic studies on exactly what consti-
tutes a logic (and on what makes FOL such an important language among
many possible) Lindstrom revisited the issue of Generalized Quantification
and realized that it could be put in a more general setting ([70]). Just like
he was doing for other logic concepts, Lindstrom formally defined the idea
of Generalized Quantification, of which Mostowski’s quantifier was only one
example?.

The idea then became part of the logician’s tool and was studied by re-
searchers; however, it didn’t make any impact outside the logical commu-
nity. But this all changed with time. Nowadays, the concept of Generalized
Quantification is heavily used in at least two communities outside its original
setting: theoretical Computer Science and Formal Linguistics.

Theoretical Computer Science’s main theme is the study of computational
complexity, which classifies problems according to the resources (time and
space) that any algorithm needs to compute a solution to the problem. Since
there can be many algorithms for a given problem, careful study of the prob-
lem is needed to establish such results -which should hold for all possible
algorithms that compute solutions to the problem. In [30], Fagin introduced
the idea of using some logic language to describe the problem, and studying
the properties of such logic in order to determine properties of the problem.
This was a significant new viewpoint, since logics are declarative languages:
they simply allows us to specify what the problem is, not how a solution looks
like (which is what algorithms do). Thus, the study linked issues of com-
putational complexity with issues of expressive power in logic, and a large
number of results followed, starting a subfield that is usually called declara-

2 For readers not acquainted with logic, chapter 2 introduces all needed basic no-
tions.
3 Lindstrom’s definition is given in chapter 3.

4 1 Introduction

tive complexity. The explosion of results was facilitated, in part, by the body
of knowledge that logicians had developed over time.

The idea had a direct impact on query languages. It is well known that
relational query languages are simply versions (more or less disguised) of FOL.
The limitations in expressive power of FFOL have became an important issue
and, since Generalized Quantifiers offer a way to overcome some of those
limitations, logics with Generalized Quantifiers have been studied in depth in
this setting. As its name indicates, Generalized Quantifiers are an extension
of the idea of quantifier in FOL. There, the notion of quantifier is fized: first-
order quantifiers are a closed class, capturing only the most basic concept.
Generalized Quantifiers consider the class open: you can add new quantifiers
simply by defining them, subject to some very basic rules that make sure
any quantifier behaves in a logical way (what this means will be defined in
Chapter 3). It turns out that this is a natural way to capture properties that
are not expressible in FOL; this makes Generalized Quantifiers a great tool
to investigate expressive power, and to add it in a controlled manner to query
languages.

Formal linguists attempt to give a description of the meaning of natural
language statements in a formalized language. FOL is one of the popular
choices for a target language. The inadequacies of such a choice have been
known for a long time. In a work that touched most later research, Richard
Montague argued that natural language could be successfully modeled with
tools that were better suited for the task ([26]). However, he used heavy equip-
ment: a logic derived from lambda calculus that contained many second-order
constructs. Surely there had to be something between FOL and the sophis-
ticated tools of Montague that was adequate for the analysis of at least some
simple fragments of natural language. In 1981, in a seminal paper, Barwise
and Cooper introduced the idea of using FFOL extended with Generalized
Quantifiers for the formal analysis of linguistic expressions ([16]). Using a
suitably simplified notion of Generalized Quantification, Barwise and Cooper
established a basic framework that has lasted until today and has originated
its own significant body of research (see, for instance, [94]).

We have, then, a theoretical concept that can have practical application,
and that has spanned several areas of research. The book’s thesis is that
Generalized Quantification is a good idea that can be profitable applied to
practical matters of questioning and querying. Going back to the old saying
that there is nothing as practical as a good theory, Generalized Quantification
fits the bill perfectly. At the same time, applying the idea may not be easy.
Using the concepts introduced here in a practical scenario involves being able
to implement them efficiently (always a strong consideration in databases),
and showing its usefulness for practical purposes. Thus, unlike past research
that dealt with theoretical issues of complexity and expressive power, the aim
here is to work with a suitably limited version of the concept but to show
that such version can still be useful and can be implemented efficiently. This
endeavor is helped by the inter-disciplinary approach mentioned above, as

1 Introduction 5

the inspiration of what version of the concept to use in queries comes from
research on linguistics. And this is the other main goal here: to show how
concepts and techniques developed in one field help illuminate challenges in
others. The book starts with a formal view of queries and gradually widens
the scope to incorporate more and more issues about questions. To develop
this program, Chapter 2 gives some basic background in logic focused on the
traditional notion of quantification. The idea is to make the rest of the book
accessible to readers without a background in logic, making the book as self-
contained as possible. Readers with an adequate background may skip this
chapter, which only introduces elementary concepts. Chapter 3 introduces the
notion of Generalized Quantifier (in fact, two definitions are given) and some
basic properties. We have chosen to introduce further properties later, right
when they are needed, so that their motivation is clear. Chapter 4 introduces
the Query Language with Generalized Quantifiers (QLGQ), which provides
us with a general setting in which to study issues of quantification without
being distracted by this or that particular syntax. The language is a simple
variation of Datalog-like notations, and hopefully most readers will have no
trouble becoming familiar with it. Chapter 5 introduces what we consider
the most common case of Generalized Quantification for practical use, and
concentrates on giving an efficient implementation for this case. Chapter 6
studies the use and implementation of (generalized) quantifier prefixes. We
will see that, even in the simplest of settings, some questions come up that
may not be evident on first thought. Then chapter 7 introduces, following a
more linguistic motivation, the use of Generalized Quantification to deal with
pragmatic issues in querying, and chapter 8 finishes the change to a linguistic
setting by showing the use of Generalized Quantifiers in Question Answering.
Finally, chapter 9 sketches how Generalized Quantifiers can be used in other
settings, for instance distributed computing, so prominent nowadays with the
raise of peer-to-peer systems and cloud computing. While the research in this
chapter is just in its beginning stages, it will hopefully be enough to show
the adaptability and promise of the approach. We close the book with a short
discussion in chapter 10.

2

Basic Concepts

2.1 From Propositional to First Order Logic

In this chapter we introduce some basic logic concepts, focusing on those ideas
related to quantification. This chapter is for readers with no background in
logic, and it only includes some core concepts that facilitate further reading.

Propositional (also called zero-order) logic is the basic building block of
First-Order Logic (recall that we abbreviate it as FOL). In fact, we have the
same basic logic connectives:

e if 1, p are formulas, then 1) A ¢ is a formula (conjunction);
e if ¢, ¢ are formulas, then ¢ V ¢ is a formula (disjunction);
e if ¢ is a formula, then —¢ is a formula (negation);

It is customary to also allow formulas of the form ¥ — ¢ and ¥ < @, but
they are considered just syntactic sugar, since ¢ — ¢ is equivalent to =y V ¢,
and 1 < ¢ is equivalent to (¢ — ¢) A (¢ —). Because of the recursive
nature of the definition, arbitrarily complex formulas can be formed.

What truly distinguishes FOL from propositional logic is quantification.
Propositional logic allows only propositions, statements that are either true
or false: “yesterday it rained”, “3 is greater than 5”. In FOL, statements
are made about individuals, by stating relationships that may hold among
them. As an example, the statement “3 is greater than 5”7 would be expressed
in FOL with a formula like > (3,5), where the symbol ’>’ denotes a binary
relation. In propositional logic, such an statement would be considered atomic
(without parts), and denoted by a single symbol, like P. In FOL, statements
are no longer atomic. Since they are about individuals, though, the next thing
we need is some way to tell which individuals we are talking about. FOL uses
terms to denote individuals. Terms are of two basic types: constants or names
that denote a certain individual unequivocally, or variables, which stand for
an individual without denoting a particular one.

FOL languages then, will be made up of atomic formulas constituted by
relations and terms. Such formulas can then be combined with the Boolean

A.Badia, Quantifiers in Action: Generalized Quantification in Query. Logical and Natural 7
Languages, Advances in Database Systems 37, DOI: 10.1007/978-0-387-09564-6_2,
© Springer Science +Business Media, LLC 2009

