Retroviruses and Insights into Cancer
Retroviruses and Insights into Cancer
Preface

The inspiration for this volume is two-fold. First, we have just passed the 100-year anniversary of the discovery of avian leukosis viruses. Interest in these viruses was sparked by their association with tumors and, despite extensive experimental studies, the chapters in this book confirm that our knowledge of these intriguing organisms is far from complete. Second, many years of attending the International Workshop on Retroviral Pathogenesis convinced me that a series of reviews about cancer-inducing retroviruses was long overdue. Attendance at these meetings also allowed me both personal and professional access to the many fine scientists that participated in the completion of this monograph. I apologize to the regular participants in this meeting who could not contribute chapters; nevertheless, their ideas, enthusiasm and experimental work have substantially altered and enriched this exciting field.

Although the study of oncogenic retroviruses has a long and rich history, the relatively recent characterization of complex human retroviruses, particularly human immunodeficiency virus (HIV) and human T-cell leukemia virus (HTLV), has reinforced the timeliness of this volume. As discussed in this monograph, HIV is not considered to be an oncogenic virus, yet the immunosuppressive characteristics of this virus are typical of retroviruses, which share the ability to cause chronic or persistent infections through manipulation of immune responses, leading to the increased appearance of tumors. Characterization of HTLV-induced tumors has provided us with insights about the ability of these viruses to encode accessory proteins that contribute both to oncogenesis and to viral replication, but lack cellular proto-oncogene counterparts.

The monograph begins with a general introduction and discussion of mechanisms of retrovirus-induced cancers. Subsequent chapters focus on more specific topics. Studies of both viral oncogenes and structural genes have provided key information about the intricate cross-talk between signaling pathways and how viral genes can disrupt or manipulate them. Experiments using fish retroviruses suggest that distinct biological niches select for unique mechanisms and tumor types, including tumors that contribute to virus spread, but regress under specific environmental conditions. Recent advances in sequencing methods have allowed us to understand the propensity of various retroviruses to integrate in or near cellular genes as well as to identify new cellular proto-oncogenes and tumor suppressor
genes. Our ability to manipulate the mouse genome has created opportunities to use retroviruses to understand the relationships between cellular genes and their contribution to tumors. The prevalence of endogenous retroviruses in the genomes of many organisms suggest that these organisms provide a necessary source of genetic diversity, but also the risk that recombinant viruses with new and deadly characteristics may emerge (e.g., KoRV and XMRV). Recent characterization of cellular genes that antagonize retrovirus replication indicate that interactions between viruses and their hosts is an ongoing tango in which the partners may change leads. As we learn more about these fascinating organisms, our ability to harness retroviruses as genetic tools for gene therapy and discovery will expand. Students, both young and old, should revel in the opportunities for insights that retroviruses will continue to provide.

Austin, TX

Jaquelin Dudley
Contents

1 Overview of Retrovirology ... 1
 Naomi Rosenberg

2 Mechanisms of Oncogenesis by Retroviruses 31
 Karen L. Beemon and Mohan Bolisetty

3 Deregulation of Signal Transduction Pathways by Oncogenic Retroviruses 53
 Sandra K. Ruscetti and Joan L. Cmarik

4 Genetics of Host Resistance to Retroviruses and Cancer 95
 Chioma M. Okeoma and Susan R. Ross

5 Endogenous Retroviruses and Cancer ... 119
 Jaquelin P. Dudley, Jennifer A. Mertz, Sanchita Bhadra,
 Massimo Palmarini, and Christine A. Kozak

6 Retroviruses and Insights into Cancer: Retroviral Regulatory/Accessory Genes and Cancer 163
 Matthew Kesic and Patrick L. Green

7 Cancers Induced by Piscine Retroviruses 191
 Sandra L. Quackenbush, James W. Casey, Paul R. Bowser,
 and Joel Rovnak

8 The Immune Response to Oncogenic Retroviruses 219
 Melanie R. Rutkowski and William R. Green

9 Retrovirus-induced Immunodeficiency and Cancer 259
 Laura S. Levy
10 Retroviruses as Tools to Identify Oncogenes and Tumor Suppressor Genes ... 285
 James C. Neil and Monica A. Stewart

11 Emerging Retroviruses and Cancer .. 307
 Maribeth V. Eiden and Dwayne L. Taliaferro

Index ... 335
Contributors

Karen Beemon
Johns Hopkins University, 3400 N. Charles Street, Baltimore, MD 21218
KLB@jhu.edu

Sanchita Bhadra
Section of Molecular Genetics and Microbiology and Institute for Cellular and
Molecular Biology, The University of Texas at Austin, Austin, TX
Current address: Accacia International, 2113 Wells Branch Parkway,
Austin, TX 78728
sanchitabhadra@yahoo.com

Mohan Bolisetty
Department of Biology, Johns Hopkins University, Baltimore, MD 21210
mbolise1@jhu.edu

Paul R. Bowser
Department of Microbiology and Immunology, Cornell University,
Ithaca, NY 14850
prb4@cornell.edu

James W. Casey
Department of Microbiology and Immunology, Cornell University,
Ithaca, NY 14850
jwc3@cornell.edu

Joan L. Cmarik
Laboratory of Cancer Prevention, National Cancer Institute-Frederick,
Frederick, Maryland 21702-1201
Jaquelin Dudley (editor)
The University of Texas at Austin, Section of Molecular Genetics and Microbiology and Institute for Cell and Molecular Biology, One University Station, A5000, Austin, TX 78712-0162
jdudley@uts.cc.utexas.edu

Maribeth Eiden
LCMR/National Institutes of Mental Health, Building 49, MSC 4483, Bethesda, MD 20892
eidenm@mail.nih.gov

Patrick Green
Ohio State University, Departments of Veterinary Biosciences and Molecular Virology, Immunology, and Medical Genetics, Columbus, OH 43210
Green.466@osu.edu

William Green
Dartmouth Medical School, Department of Microbiology, Borwell Bldg. 603W, One Medical Center Drive, Lebanon, NH 03756
William.r.green@dartmouth.edu

Matthew Kesic
Center for Retrovirus Research, Immunology and Medical Genetics, The Ohio State University, Columbus, OH 43210

Christine Kozak
Laboratory of Molecular Microbiology, Viral Biology Section, National Institutes of Allergy and Infectious Diseases, NIH, Building 4-329, 4 Memorial Drive, Bethesda, MD 20892-0460
ckozak@niaid.nih.gov

Laura Levy
Tulane School of Medicine, Department of Microbiology and Immunology, 1430 Tulane Ave., SL-38, New Orleans, LA 70112
llevy@tulane.edu

Jennifer A. Mertz
Section of Molecular Genetics and Microbiology and Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX
Current address: Constellation Pharmaceuticals, 215 1st Street, Cambridge, MA 02142
mertzja@gmail.com
Jim Neil
Molecular Oncology Laboratory, MRC/University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, United Kingdom
j.neil@vet.gla.ac.uk

Chioma M. Okeoma
Department of Microbiology, The University of Iowa, 51 Newton Road. 3-612 Bowen Science Building, Iowa City, IA 52242
chioma-okeoma@uiowa.edu

Massimo Palmarini
MRC/University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH Scotland, United Kingdom
m.palmarini@vet.gla.ac.uk

Sandra Quackenbush
Colorado State University, Department of Microbiology, Immunology, and Pathology, 315 Pathology Building, Fort Collins, CO 80523
Sandra.Quackenbush@colostate.edu

Naomi Rosenberg
Sackler School of Graduate Biomedical Sciences, Tufts University School of Medicine, 136 Harrison Avenue, Boston, MA 02111-1800
naomi.rosenberg@tufts.edu

Susan Ross
University of Pennsylvania School of Medicine, Department of Microbiology, 313 BRBII/III, 421 Curie Blvd, Philadelphia, PA 19104-6142
rosss@mail.med.upenn.edu

Joel Rovnak
Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523
joel.rovnak@colostate.edu

Sandra Ruscetti
National Cancer Institute, Frederick Retroviral Molecular Pathogenesis Section, Basic Research Laboratory, Building 469, Room 205, Frederick, MD 21702-1201
ruscetti@ncifcrf.gov
Melanie R. Rutkowski
Department of Microbiology and Immunology, and the Norris Cotton Cancer Center, Dartmouth Medical School, Lebanon, NH 03756
Melanie.R.Rutkowski@dartmouth.EDU

Monica A. Stewart
Molecular Oncology Laboratory, MRC/University of Glasgow Centre for Virus Research, Institute of Infection, Immunity and Inflammation, College of Medicine, Veterinary Medicine and Life Sciences, University of Glasgow, Bearsden, Glasgow G61 1QH, United Kingdom

Dwayne L. Taliaferro
Laboratory of Cellular and Molecular Regulation, National Institute of Mental Health, Bethesda, MD 20892
Abstract In the 100 years since their discovery, retroviruses have played a special role in virology and in molecular biology. These agents have been at the center of cancer research and shaped our understanding of cell growth, differentiation and survival in ways that stretch far beyond investigations using these viruses. The discovery of retroviral oncogenes established the central paradigm that altered cellular genes can provide a dominant signal initiating cancer development. Their unique replication mechanism and their integration into cellular DNA allow these viruses to alter the properties of their hosts beyond the life span of the infected individual and contribute to the evolution of species. This same property has made retroviral vectors an important tool for gene therapy. Indeed, the impact of retrovirus research has been far-reaching and despite the amazing progress that has been made, retroviruses continue to reveal new insights into the host – pathogen interaction.

Keywords Oncogene • Endogenous virus • Retrovirus replication • Retrovirus classification • Insertional mutagenesis

Introduction

Studies of retroviruses have shaped our knowledge of cancer, development, differentiation, and gene regulation for over a century. Indeed, the impact that retrovirus research has had on modern molecular biology and oncogenesis cannot be overstated. Our knowledge of the ways in which cellular genes can be corrupted and can contribute to cancer derive their fundamental underpinnings from studies of these agents. The concept that a cellular gene can become an oncogene was validated by research conducted using retroviruses, and many genes that participate in human tumor development were first isolated as retroviral genes or targets of retroviral
insertional mutagenesis. Studies of retrovirus-mediated oncogenesis have led to broader insights as well. Perhaps better than any other virus group, retroviruses illustrate how studies directed at understanding fundamental virological mechanisms reveal insights into basic cellular process. Novel ways to disrupt normal cell function, to regulate gene expression, and to transfer genetic information from one type of nucleic acid to another have all emerged from study of these viruses.

The ability of some retroviruses to induce tumors has been known since the turn of the 20th century. In 1908, Ellerman and Bang described a chicken erythroleukemia that was caused by a retrovirus followed by isolation of Rous sarcoma virus from a chicken fibrosarcoma by Peyton Rous (Rosenberg and Jolicoeur, 1997). These discoveries marked the beginning of experimentation that led to our current understanding of retroviruses as cancer-causing agents. Subsequent studies extended the general paradigm to mammalian hosts. The discoveries of Bittner and Gross revealed that retroviruses were associated with mammary tumors and thymic lymphomas in mice. The list of animals affected by oncogenic retroviruses expanded as the 20th century progressed to include cats, cows, rats, sheep and goats, koalas, several primates, and some fish (Rosenberg and Jolicoeur, 1997). Predictably, the isolation of human T-cell leukemia virus (HTLV) marked the discovery of a retrovirus that caused malignant disease in humans (Poiesz et al., 1980). The strong tools developed for retrovirus research and associated understanding of the biology of these agents provided a strong foundation that almost certainly facilitated the isolation of human immunodeficiency virus (HIV). Although HIV is not an oncogenic virus, the critical importance of HIV to human health made retrovirus research a major national priority and has contributed to a broader understanding of all retroviruses as well as the immune response (see also chapter on Retrovirus-Induced Immunodeficiency and Cancer).

Retrovirus Structure

Retroviruses are enveloped viruses that have an irregular spherical to conical capsid (Coffin, 1992) (Fig. 1.1). The envelope contains a lipid bilayer derived from cellular membrane by the budding process, which occurs when a newly formed virus particle is released from the cell. The virus Env proteins, SU (surface) and TM (transmembrane), exist as a heterotrimer in the bilayer with the SU protein protruding from the surface of the virion. Structural proteins associated with the protein shell include CA (capsid, the major component of the shell), MA (matrix, a protein on the inner surface of the cell membrane), and NC (nucleocapsid, a protein that is condensed in the core of the particle in association with the RNA genome). The viral enzymes – protease (PR), reverse transcriptase (RT), and integrase (IN) – are also packaged in the virion. The viral genome exists as a dimer of two single-stranded positive-sense RNAs. In addition to these components, small amounts of cellular RNAs (Rulli et al., 2007) and proteins are packaged in the virion. For example, cellular tRNAs are specifically bound to viral RNAs for priming reverse transcription. Members of the APOBEC family of cellular proteins, which may affect retrovirus replication, also may be packaged (Huthoff and Towers, 2008) (see also chapter on Genetics of Host Resistance to Retroviruses and Cancer).
Retrovirus Classification

Retroviruses are members of the family *Retroviridae* and are enveloped RNA-containing viruses that utilize reverse transcription of their genome as an obligate step in virus replication (Linial et al., 2005). These viruses are further divided into two subfamilies: *Orthoretrovirinae* and *Spumaretrovirinae* (Table 1.1) based on differences in morphology, pattern of gene expression, and processing of viral proteins. *Spumaretrovirinae* virions contain a large amount of reverse transcribed DNA, a feature that is distinctive to this subfamily. All oncogenic retroviruses are members of the *Orthoretrovirinae*, which contains six genera that are distinguished based on virion morphology, genome and protein structure, and sequence relationships. Among these, only the genus Lentivirus lacks oncogenic members.

All retroviruses contain four genes, *gag*, *pro*, *pol*, and *env*, all of which encode proteins required for replication (Linial et al., 2005). The *gag* gene encodes virion structural proteins, the *pro* domain encodes a protease contained within the virion necessary for maturation of the virus particle, the *pol* gene encodes RT and IN (enzymes required for reverse transcription and integration of the genome), and...
<table>
<thead>
<tr>
<th>Genus</th>
<th>Properties</th>
<th>Disease(s)</th>
<th>Host(s)</th>
<th>Representative Virus(es)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpharetrovirus</td>
<td>gag, pol, pro, env genes (some with v-onc genes); C-type morphology; plasma membrane assembly; endogenous and exogenous members</td>
<td>malignancies, wasting</td>
<td>chickens</td>
<td>Avian leukosis virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and osteopetrosis</td>
<td>other birds</td>
<td>Rous sarcoma virus</td>
</tr>
<tr>
<td>Betaretrovirus</td>
<td>gag, pol, pro, env genes (some with accessory genes; no v-onc genes); B- or D-type morphology; cytoplasmic assembly; endogenous and exogenous members</td>
<td>malignancies</td>
<td>mice</td>
<td>Mouse mammary tumor virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>immunodeficiencies</td>
<td>primates</td>
<td>Jaagsiekte sheep retrovirus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>sheep</td>
<td>Mason-Pfizer monkey virus</td>
</tr>
<tr>
<td>Gammararetrovirus</td>
<td>gag, pol, pro, env (some with v-onc genes); C-type morphology; plasma membrane assembly; endogenous and exogenous members</td>
<td>malignancies</td>
<td>mice</td>
<td>Murine leukemia virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>immunosuppression</td>
<td>primates</td>
<td>Reticuloendotheliosis virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neurologic disease</td>
<td>guinea pigs</td>
<td>Abelson murine leukemia virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>pigs</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>cats</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>birds</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>snakes</td>
<td></td>
</tr>
<tr>
<td>Deltaretrovirus</td>
<td>gag, pol, pro, env, tax, rex, HBZ; C-type morphology; plasma membrane assembly; no endogenous members</td>
<td>malignancies</td>
<td>cows</td>
<td>Bovine leukemia virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neurologic disease</td>
<td>humans</td>
<td>Human T-lymphotrophic virus</td>
</tr>
<tr>
<td>Epsilonretrovirus</td>
<td>gag, pol, env; pro, accessory genes; no endogenous members</td>
<td>malignancies</td>
<td>fish</td>
<td>Walleye dermal sarcoma virus</td>
</tr>
<tr>
<td>Lentivirus</td>
<td>gag, pol, env; pro, accessory genes; no endogenous members; distinctive morphology compared to other Orthoretrovirinae</td>
<td>malignancies</td>
<td>humans</td>
<td>Human immunodeficiency virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>immunodeficiency</td>
<td>other primates</td>
<td>Feline immunodeficiency virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>malignancies</td>
<td>fish</td>
<td>Visna/maedi virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>malignancies</td>
<td>cats</td>
<td>Equine infectious anemia virus</td>
</tr>
<tr>
<td></td>
<td></td>
<td>neurologic disease</td>
<td>sheep</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>arthritis</td>
<td>goats</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>horses</td>
<td></td>
</tr>
</tbody>
</table>

the env gene encodes SU and TM (proteins that interact with cellular receptors and mediate entry and early steps in infection) (Fig. 1.2). Some members of the Betaretrovirus, Deltaretrovirus, Epsilonretrovirus and Lentivirus genera also contain additional genes that influence viral and host gene expression as well as viral pathogenesis. In addition, some members of the Alpharetrovirus and Gammaretrovirus genera contain oncogenes, sequences derived from normal cellular genes that have been captured and stably incorporated into the retroviral genome. With the exception of Rous sarcoma virus, all retroviruses that contain oncogenes are replication defective due to the absence of complete coding sequences for at least one of the four retrovirus genes required for replication. The overview presented here will focus on the Orthoretrovirinae genera that contain oncogenic viruses.

Retrovirus Replication

Infection by retroviruses begins with binding of the Env glycoprotein to a cellular receptor (Fig. 1.3). This interaction is the major determinant of virus host range. Many receptors for retroviruses have been identified in the past fifteen years, and these molecules participate in a number of normal cellular functions. For example, the receptor for viruses like Moloney murine leukemia virus (MuLV) and related murine viruses is the cationic amino acid transporter (Kim et al., 1991), whereas the receptor for subgroup B avian leukemia
viruses is a member of the tumor necrosis factor (TNF) family (Bates, Young and Varmus, 1993), and the receptor for mouse mammary tumor virus is transferrin receptor I (Ross et al., 2002). In addition to performing an array of functions, the receptors have a range of structures. For example, the subgroup A avian leukemia viruses (ALVs) use a single transmembrane spanning protein as a receptor, whereas the cationic ion transporter is a multiple transmembrane spanning molecule, as are the receptors for all known gammaretroviruses.

Virus entry involves the fusion of viral and cellular membranes, a process similar to that employed by a wide range of enveloped viruses (Barnard, Elleder and Young, 2006; Marsh and Helenius, 2006). Fusion involves juxtaposition of viral and cellular membranes through a series of conformational changes that expose a virus-encoded fusion protein. The retroviral Env proteins are class I fusion molecules similar to the fusion proteins of orthomyxo- and paramyxoviruses as well as those of filoviruses and coronaviruses. Env contains an N-terminal SU subunit that
interacts with the receptor and a C-terminal TM subunit that orchestrates membrane fusion (Barnard, Elleder and Young, 2006). Conformational changes allow interaction with cellular receptors to expose the fusion peptide at the N-terminus of TM and allow insertion of the peptide into the cellular membrane. Additional conformational changes lead to the first step of membrane fusion, called hemifusion, which is followed by further conformational alterations that complete the process and allow virus delivery into the cell.

The triggers that mediate viral entry differ depending on the retrovirus. For most, including murine gammaretroviruses like Moloney MuLV (McClure et al., 1990), MMTV (Redmond, Peters and Dickson, 1984; Ross et al., 2002), alpharetroviruses (Mothes et al., 2000) and Jaagsiekte sheep retrovirus (JSRV) (Bertrand et al., 2008), a pH-dependent step is required. The amphotrophic MuLV 10A1 (McClure et al., 1990; Nussbaum, Roop and Anderson, 1993) and HIV (McClure, Marsh and Weiss, 1988) use a pH-independent pathway. The pH-dependent pathway involves endocytic uptake, an event that follows interaction with the receptor. Exposure to low pH in the endosome initiates hemifusion. However, different viruses vary with respect to the precise details of these events. For example, alpharetroviruses can remain in a receptor-primed state for an extended period of time before the entry process is completed by low pH exposure (Barnard, Elleder and Young, 2006; Mothes et al., 2000). Dynamin, a molecule important for calveolar and clathrin-mediated endocytosis, has been implicated in the entry of several of these viruses (Bertrand et al., 2008; Brindley and Maury, 2008; Lee, Zhao and Anderson, 1999), suggesting that endocytic uptake is mediated via these organelles. Lipid rafts are involved in the entry of others (Diaz-Griffero, Jackson and Brojatsch, 2005; Narayan, Barnard and Young, 2003).

Once internalized, uncoating of the virion and replication of the RNA genome begins (Goff, 2001; Suzuki and Craigie, 2007), although the details of uncoating are unknown. Reverse transcription begins at this stage and is primed by a tRNA that is packaged in the virion (Telesnitsky and Goff, 1997; Wilhelm and Wilhelm, 2001). RT has two required two activities, a polymerase, which uses either RNA or DNA as a template for DNA synthesis, and a nuclease called RNase H. The polymerase copies the genome while the RNase H activity degrades RNA associated with newly synthesized DNA. Both strands of the genome are used in a process that involves two strand transfers to generate a double-stranded DNA copy (provirus) (Fig. 1.4a). Similar to replication of all RNA viruses, reverse transcription is highly error-prone (Svarovskaia et al., 2003). The enzyme lacks a proof-reading function, and the strand transfer mechanism critical to copying of the genome can be imprecise, resulting in deletions or sequence duplications. This replication process is of central importance to the generation of retroviruses containing oncogenes and also facilitates variations in SU and the LTR, a feature critical for leukemogenesis of some viruses that lack oncogenes.

Completion of reverse transcription generates 5’ and 3’ direct repeats known as long terminal repeats (LTRs) (Telesnitsky and Goff, 1997; Wilhelm and Wilhelm, 2001). This structure contains U3 sequences derived from a unique region at the 3’ end of the RNA genome, R sequences repeated at both the 3’ and 5’ ends of the RNA
 genome, and U5 sequences derived from unique sequences at the 5' end of the genome (Fig. 1.4b). The proviral DNA is associated with some capsid derived proteins and IN in the pre-integration complex (PIC) (Goff, 2001; Suzuki and Craigie, 2007). Although PIC composition is not identical or even characterized for all types of retroviruses, entry of viral DNA into the nucleus and its integration into the host
Retrovirology

Overview of Retrovirology

genome requires this structure. Although not yet fully understood, integration of the provirus is essential for subsequent virus gene expression.

The double-stranded linear form of the provirus is the substrate for integration into the host DNA, an event that is mediated by IN (Brown, 1997; Katz et al., 1990). Integration is specific with respect to retrovirus sequences, and inverted repeats at the ends of the LTR are required. Integrase first removes two (or in some instances three) bases from the ends of the LTRs to expose a 3' OH on each end of the linear double-stranded DNA. The exposed OH groups attack phosphodiester bonds on the cellular DNA in a staggered fashion, with four to six bp (depending on the virus) separating the points of attack on each of the cellular DNA strands. The viral sequences are then joined to the cellular sequences in a transesterification reaction using the energy generated by breakage of the phosphodiester bonds (Bushman, Fujiwara and Craigie, 1990; Craigie, Fujiwara and Bushman, 1990; Engelman, Mizuuchi and Craigie, 1991). Cellular enzymes complete the integration reaction to generate a direct repeat of cellular sequences flanking the integration site. The length of this repeat is characteristic of the virus and reflects the spacing of the bases involved in the transesterification reaction. These events ensure that integration is specific with respect to viral sequences and that the integrated provirus preserves the order of elements in the retrovirus genome (Brown, 1997).

In contrast to the specificity with respect to viral sequences, integration into host sequences is influenced by sequence and structural features that exhibit only weak specificity at the nucleotide level (Bushman et al., 2005). Different types of virus have a propensity to integrate in particular types of sequences. For example, gammaretroviruses tend to integrate near the promoter regions of transcriptionally active genes (Hematti et al., 2004; Wu et al., 2003), whereas lentiviruses tend to integrate into transcription units without a preference for introns or exons (Mitchell et al., 2004; Schroder et al., 2002). In contrast, alpharetroviruses integrate in a more random fashion (Barr et al., 2005; Mitchell et al., 2004; Narezkina et al., 2004). The features that control these differences are not fully understood, but both IN and Gag play a role (Lewinski et al., 2006). In addition, cellular factors that promote the interaction of the PIC with chromatin are important (Bushman et al., 2005). For example, LEDGF/p75 (Engelman and Cherepanov, 2008), a member of the hepatoma-derived growth factor family, has been implicated in targeting integration to regions transcription units (Ciuffi et al., 2005). Other features that may influence targeting include chromatin structure and cell-cycle differences (Bushman et al., 2005). This latter idea originates in the observation that gammaretrovirus PICs and those produced by most other retroviruses typically enter the nucleus during mitosis, whereas lentivirus PICs can enter the nucleus in the absence of cell division (Suzuki and Craigie, 2007). Promoter trap assays that monitor activation of a promoterless marker gene inserted into a retrovirus gene is monitored reveal that these genes are activated more frequently in the setting of MuLV compared to HIV (De Palma et al., 2005). These data suggest that integration near promoters is important for full expression of MuLV viral genes, and that this feature influenced the evolution of viral integration patterns.

Integration is an obligate step that is required for expression of viral proteins by the Orthoretrovirinae. Expression of these sequences is mediated by host cell machinery using sequences within the LTR to guide and regulate the process.
RNA polymerase II and cellular factors mediate transcriptional initiation at the first base of R. Polyadenylation of the transcripts requires cis-acting sequences in the 3′ LTR. Enhancer sequences located primarily in the U3 region of the 5′ LTR are recognized by host transcription factors and regulate levels of proviral expression. Such interactions affect not only virus replication, but also have a strong impact on pathogenicity, influencing both the ability of the virus to induce disease as well as the target cell. For example, these differences influence the oncogenicity of viruses derived from Akv1 such as the SL3 series of MULVs (Lenz et al., 1984; Morrison, Soni and Lenz, 1995) and affect the erythroid cell tropism of Friend MULV (Chatis et al., 1983).

Transcription of the provirus generates a minimum of two mRNAs. The unspliced RNA encodes the Gag, Pro and Pol proteins, and also serves as the genome (Rabson and Graves, 1997). A singly spliced env mRNA contains 5′ sequences identical to those in the unspliced RNA upstream of a donor splice site in the untranslated region and is joined to a downstream acceptor to eliminate the pol gene. For viruses that contain oncogenes, the strategy of expression generally reflects the genome structure and the relationship of the oncogene to viral sequences. Some viral oncogenes are expressed from unspliced mRNA, whereas others use spliced mRNAs, often using the same signals that generate the env mRNA.

Some retroviruses of the Betaretrovirus, Deltaretrovirus and Epsilonretrovirus genera encode additional proteins that are expressed from spliced mRNAs. The functions of these molecules vary and range from regulatory molecules that affect viral and cellular gene expression to molecules that stimulate immune cells. MMTV expresses the Sag protein, a superantigen that stimulates immune cells and is important for transmission of infection in host animals (Acha-Orbea and MacDonald, 1995; Ross, 2008). This virus also encodes Rem, a molecule that influences export of unspliced MMTV RNAs from the nucleus (Indik et al., 2005; Mertz et al., 2005) as well as well as virus expression (Mertz, Lozano and Dudley, 2009). HTLV expresses the regulatory proteins Tax, Rex, and HBZ. Tax interacts with cellular transcription factors, including CREB, to increase HTLV transcription and functions in a similar fashion to influence expression of a number of cellular genes involved in cell proliferation, migration, cell cycle, apoptosis, and transformation (Giam and Jeang, 2007; Legros et al., 2009; Wycuff and Marriott, 2005). Rex facilitates the nuclear export and expression of incompletely spliced viral RNAs leading to increased virus replication (Legros et al., 2009; Younis and Green, 2005), whereas HBZ is expressed from an anti-sense transcript and influences pathogenicity (Matsuoka and Green, 2009; Satou et al., 2006) (see also chapter on Retroviral Regulatory/Accessory Genes). Walleye dermal sarcoma virus (WDSV), an Epsilonretrovirus, encodes several additional proteins, including a viral cyclin (Holzschu, Lapiere and Lairmore, 2003), but the expression mechanisms have not been completely elucidated (see also chapter on Cancers Induced by Piscine Retroviruses).

Viral proteins are translated on cellular ribosomes, primarily by a cap-dependent mechanism (Bolinger and Boris-Lawrie, 2009; Rabson and Graves, 1997; Swanstrom and Wills, 1997). However, some evidence for IRES-mediated mechanisms has been presented for several viruses including RSV (Deffaud and Darlix, 2000) and MULV...
Overview of Retrovirology

(Berlioz and Darlix, 1995; Vagner et al., 1995). Gag, Pro and Pol are produced from a genome-length transcript using several strategies. Most retroviruses use one or two ribosomal frameshifts to produce Pro and Pol (Falk et al., 1993; Jacks and Varmus, 1985; Mador, Panet and Honigman, 1989), yet some viruses, including MuLV and FeLV use termination codon readthrough (Hatfield et al., 1992; Yoshinaka et al., 1985a, b). Ribosome frameshifting involves ribosome pausing produced by a combination of repeat or “shifty” sequences and stable secondary structure that causes a change in reading frame. Termination codon readthrough in MuLV involves the interaction of virally encoded RT and eRF1 (Orlova et al., 2003). This interaction enhances readthrough and allows self-regulation of RT production. These mechanisms are critical for production of different optimal amounts of the various viral proteins from a single genomic mRNA (Swanstrom and Wills, 1997).

For all Orthoretrovirinae except Betaretroviruses, the virion proteins assemble at the plasma membrane using Gag proteins in a cytoplasmic complex after interaction with Env and cellular proteins associated with the membrane. Betaretroviruses assemble in the cytoplasm. Packaging sequences (ψ) usually located near the 5′ end of the viral genome, are required for insertion of the genome into the nascent virion (D’Souza and Summers, 2005; Mann, Mulligan and Baltimore, 1983). Packaging signals do not share a common primary sequence; their function appears to be mediated by a complex structure adopted during the packaging process. The NC portion of the Gag polyprotein, in concert with the Ψ sequences, select the sequences that will be inserted into the nascent virion (Berkowitz et al., 1995; Zhang and Barklis, 1995). The genome is packaged as a dimer containing two copies of the RNA genome and dimerization, which is influenced by RNA structure and the chaperone activity of NC, is also important for packaging (Greatorex, 2004; Housset et al., 1993; Paillart et al., 2004). Viruses that contain mutations limiting or abolishing dimerization display reduced infectivity or are non-infectious. The newly formed virus buds from the cell, leaving the host cell intact. Depending on the virus, final processing steps mediated by Pro occur as the virion buds from the cell or soon thereafter, producing the mature virion (Swanstrom and Wills, 1997). The absence of virally-mediated cell lysis by most retroviruses and failure of the immune system to recognize infected cells may ensure life-long persistence that promotes viral oncogenesis (see also chapter on Immune Response to Oncogenic Retroviruses).

Retrovirus Replication and Effects on the Host

The retrovirus replication strategy allows virus propagation, but aspects of the life cycle, especially the ability of the virus to integrate and to associate its DNA permanently with the host cell, have a major impact on the outcome of infection. This feature [specify what feature] is linked to the ability of many retroviruses to induce tumors as well as their ability to alter host cell gene expression. The intimate and stable association with the cellular genome allows retroviral elements to influence the genetic composition of host cells and, in many cases, the
evolution of entire species. Furthermore, because integration preserves the
structure of the viral genes and because infectious retroviruses can be produced
after all gene products are supplied in trans, these viruses have been useful as
vectors for gene therapy. These and other unique features of the replication cycle
explain the far-reaching impacts of retroviral research on eukaryotic molecular
biology and cell biology.

Endogenous Viruses

As noted above, a unique feature of retrovirus replication is the obligate require-
ment for integration into the host genome for efficient expression. Integrated
proviral DNA remains a stable part of the cellular genome. Even though reverse
transcription is an error-prone process with high potential for alteration of the
provirus, integration fixes its position and sequence since further replication
occurs through the cellular machinery. If a germ cell is infected, then the retrovi-
rus becomes permanently part of the genetic makeup of offspring resulting from
that cell. Although germline infections are rare, such insertions have occurred
many times throughout mammalian evolution, indicating that retroviral insertions
are stable and ubiquitous. These viruses, referred to as endogenous viruses,
become normal components of the genome (Jern and Coffin, 2008; Stoye, 2001)
(see also chapter on Endogenous Retroviruses and Cancer).

Because of their stability, endogenous viruses have been used as genetic
markers to determine evolutionary relationships. Despite this inherent stability,
endogenous virus LTRs, which are direct repeats, have been particularly suscep-
tible to recombination events. While such recombination events are extremely
rare in the lifetime of individual cells, evolution has produced many events that
result in the deletion of all retroviral sequences except a single or “solo” LTR
(Hughes and Coffin, 2001). For example, human endogenous retroviruses com-
prise about 8% of the human genome, but most of these sequences represent solo
LTRs (Jern and Coffin, 2008). Nonetheless, as illustrated by their large number
in the human genome, such sequences contribute greatly to the overall genetic
makeup of an organism.

Although many endogenous viruses have been silenced by mutations occur-
rning in the millions of years since germline introduction, some remain active or
are activated under certain circumstances. Many endogenous viruses, such as
Akv1, a mouse endogenous gammaretrovirus, contribute by recombination to
replication-competent viruses that directly cause tumor development (Coffin,
Stoye and Frankel, 1989). Components of other endogenous viruses regulate
susceptibility of the host to particular viruses by encoding proteins that block
cellular receptors, or interfere with other steps in infection. Indeed, certain retro-
viral genes and their functions were identified before their association with
endogenous viruses became evident (Jern and Coffin, 2008). The Sag proteins
encoded by endogenous MMTVs (Mtvs) and the Fv4 locus, actually an endogenous
murine gammaretrovirus, are salient examples. The open reading frame that encodes Sag was identified through sequence analysis of MMTV (Donehower, Huang and Hager, 1981) some years before the significance of the coding region was understood. The significance of the open reading frame was revealed through studies of host products that influenced the T-cell response in particular strains of mice (Abe and Hodes, 1989; Janeway et al., 1989), a property known long before the discovery of its function as a superantigen. Understanding these seemingly disparate features helped advance our understanding of MMTV transmission (Acha-Orbea and MacDonald, 1995). In a similar fashion, Fv4 was identified as a locus that restricted infection by MuLV (Kai et al., 1976) prior to the discovery that an endogenous virus-encoded Env protein (Ikeda and Sugimura, 1989) functioned through super-infection resistance mechanisms to block the incoming virus (Taylor, Gao and Sanders, 2001).

Other Consequences of Integration

Retrovirus integration disrupts cellular sequences at the point of integration and can affect the expression of cellular genes over long distances. These changes can occur through the effects of viral enhancer sequences located primarily within the LTR or through mechanisms that allow transcription beginning in viral sequences to proceed into cellular sequences. In addition, integration affects the relationship of normal cellular regulatory and coding sequences by disrupting the positioning of these elements within a gene. All of these events may upregulate expression of cellular genes and, in rare instances when the integration occurs near a proto-oncogene, cell growth can be altered (Rosenberg and Jolicoeur, 1997). In some cases, integration can disrupt a gene, resulting in a truncated protein product that lacks regulatory sequences and functions independently of normal cellular cues. Such events are believed to be required for oncogenesis by retroviruses that lack oncogenes (see also chapter on Retroviruses as Tools to Identify Oncogenes and Tumor Suppressor Genes).

Tumor induction is not the inevitable consequence of retrovirus regulation of a neighboring gene. Some integrations result in altered gene expression in ways that do not induce disease, but influence host phenotype in other ways. One classical example is illustrated by the effects of a gibbon ape leukemia virus (GaLV)-derived endogenous virus. GaLV integrated into an early primate that produced Old World monkeys and great apes. As a consequence, these animals express pancreatic amylase gene in the parotid gland (Samuelson et al., 1990; Ting et al., 1992), a modification that may have influenced the preference for starchy foods displayed by these primates and their relatives today.

Although upregulation of cellular gene expression is one consequence of retroviral integration, these events can occasionally result in loss of gene expression. Loss of expression, like activation, is often associated with oncogenesis caused by infection with retroviruses that lack oncogenes. Because of their relatively random nature, integrations that inactivate gene expression typically affect only one of two
copies of a somatic cell gene. Thus, many inactivation events have minimal consequences to the cell compared to gene activations. Nevertheless, integrations resulting in haploinsufficiency of genes that encode tumor suppressors have been reported. For example, integration into the gene encoding the p53 tumor suppressor has been documented in Friend MuLV-induced tumors (Ben-David and Bernstein, 1991; Ben-David et al., 1988). Integrations affecting \(NF1\), a gene that encodes a Ras pathway regulatory protein (GAP) also have been reported (Buchberg et al., 1990; Cho et al., 1995). Similar to the situation with gene activation, integrations that lead to loss of gene expression are not invariably associated with tumor induction. Furthermore, an endogenous MuLV integrated in the \(Hrs\) locus of HRS/J mice is responsible for disrupting the gene, causing the hairless phenotype of these mice (Stoye et al., 1988).

The products of endogenous viruses also affect host function and development. A particularly striking example is syncytin-1 and syncytin-2, molecules involved in placenta morphogenesis (Mi et al., 2000). These molecules are products of the endogenous \(Env\) genes; syncytin-1 is encoded by the \(env\) gene of the ERVWE1 human endogenous retrovirus (HERV-W) locus and syncytin-2 is encoded by HERV-FRD (Blaise et al., 2003; Mallet et al., 2004; Mangeney et al., 2007). Syncytins are specifically expressed by trophoblasts, cells that form the boundary between the mother and the fetus in the placenta. These proteins are important for fusion of cytotrophoblasts, an important step in the development of the placenta. The molecule also has immunosuppressive properties that may allow immunologic tolerance of the placenta, a structure that expresses both maternal and fetal antigens (Mangeney et al., 2007).

The ability of retroviruses to integrate stably and express genes other than those encoding viral proteins led to their use as tools to manipulate gene expression and function. The ability to remove coding sequences from the retrovirus genome and maintain infectious, but non-replicating, virus particles paved the way for the development of retrovirus vectors. At the outset, experiments used retroviruses to overexpress non-viral genes of interest and study their effects on cellular processes. These experiments were rapidly extended by development of retrovirus vectors designed to introduce genes that have the potential to stably correct genetic deficiencies (Thomas, Ehrhardt and Kay, 2003).

Perhaps the most striking example that highlights both the tremendous benefits and risks inherent in these vectors have been demonstrated by investigators who used gammaretroviral vectors to treat human subjects suffering from X-linked severe combined immunodeficiency (X-SCID) (Santilli et al., 2008). Individuals with this disorder fail to express a functional membrane protein called the common \(\gamma\) chain, a critical component of cytokine receptors required for the development of immune cells. As a consequence of the mutation, these individuals are profoundly immunodeficient and typically succumb to their disease by their teenage years or earlier (De Ravin and Malech, 2009). When gammaretroviral vectors expressing the common \(\gamma\) chain were introduced into these subjects, immune function was restored in dramatic fashion, a change that allowed the individuals to resume a normal lifestyle (Hacein-Bey-Abina et al., 2002). Unfortunately, five of the 20 subjects developed leukemia as
a consequence of integration properties that made the retroviral vector an attractive approach for gene transfer (Hacein-Bey-Abina et al., 2003; Howe et al., 2008; Neven et al., 2009). In four of the five affected subjects, the retroviral vector had inserted in the vicinity of the \textit{LMO2} gene (Nam and Rabbitts, 2006). LMO2 functions in concert with the SCL and E47 transcription factors during hematopoiesis. Thus, these tumors arose by insertional mutagenesis, a mechanism long known to be involved in tumor induction by many oncogenic retroviruses that do not encode oncogenes (see also chapter on Mechanisms of Oncogenesis by Retroviruses).

As our understanding of integration patterns of particular retroviruses has emerged, strategies using lentivirus-based vectors, which lack the propensity to integrate near promoters, are being tested. Such vectors have not yet shown the high frequency of oncogene activation that characterizes gammaretrovirus-based vectors (Cattoglio et al., 2007). In addition, strategies including the use of insulator sequences or self-inactivating (SIN) vectors that maintain expression of the “payload” gene that is designed to correct a genetic deficiency, but prevent or minimize activation of cellular genes are being explored (Howe et al., 2008; Montini et al., 2009; Montini et al., 2006; Thornhill et al., 2008). This work both builds on our deep knowledge of retrovirus replication extends this knowledge through study of the properties of different vectors.

Factors Influencing Infection

As noted earlier, the ability of retroviruses to infect cells is mediated by interactions that involve the virion protein SU and a cellular receptor (Hunter, 1997). Thus, expression of the appropriate cellular receptor is a major determinant of susceptibility to infection. For example, most murine leukemia viruses that infect mouse and other rodent species do not infect human cells, which lack proteins that function as receptors because of sequence differences. Alpharetroviruses use a variety of receptors and their ability to infect different types of chicken and other avian cells is largely controlled at the level of host cell receptor expression. Host range restrictions are important for limiting mixed infections that allow exchange of retrovirus information, creating a new virus with higher fitness or an enhanced ability to spread. Such restriction could also limit the types of cells that are susceptible to infection. The expression patterns of CD4, the receptor for HIV, control the interaction of this virus with host cells, although similar examples for oncogenic retroviruses have not been described.

Although interactions between the SU protein and the cellular receptor play a central role in determining host range, other factors can affect virus entry. Env proteins encoded by endogenous viruses can restrict infection by blocking the ability of the receptor to interact with virus encountering the surface of the cell. This phenomenon, called superinfection resistance, has been documented in mice, chickens and sheep (Jern and Coffin, 2008). As noted earlier, the \textit{Fv4} locus, first identified as a cellular gene that restricted infection with some MuLVs (Kai et al.,
1976), was later revealed to be an endogenous provirus that retained the ability to encode an Env protein that blocks the receptor needed for MuLV infection (Ikeda and Sugimura, 1989; Taylor, Gao and Sanders, 2001). A similar phenomenon occurs in some chickens that are resistant to ALVs (Weiss, 1993).

In addition to restriction mediated by Env gene products, Gag-related molecules can also restrict infection. One example involves an endogenous JSRV that encodes a mutant Gag that prevents release of virions containing normal Gag proteins in a dominant fashion (Arnaud, Murcia and Palmarini, 2007). Association between the normal and mutant forms inhibits the normal trafficking of the function Gag protein to restrict infection. The *Fv1* locus is a second example. This locus was originally identified by its ability to partially restrict replication of different types of MuLVs in mice and in tissue culture cells (Lilly, 1967). Restriction is influenced by CA sequences encoded by the viruses (Boone et al., 1988; Kozak and Chakraborti, 1996) and is not absolute. Replication is affected after reverse transcription, but before entry into the nucleus and integration (Jolicoeur and Baltimore, 1976; Pryciak and Varmus, 1992). Although the mechanism by which *Fv1* orchestrates its effects remain poorly understood, the gene responsible is related to a retroviral *gag* gene with similarity to the ERV-L family of endogenous retroviruses (Best et al., 1996).

In addition to the receptor, other cellular gene products may also influence virus replication (Wolf and Goff, 2008). Some cytidine deaminases of the APOBEC family of proteins. Some members of this family interfere with replication during reverse transcription by promoting A to G mutations through deamination of cytidines to deoxyuracils (Harris and Liddament, 2004; Huthoff and Towers, 2008; Wolf and Goff, 2008). This change causes guanine to adenine substitutions when DNA is generated during reverse transcription. APOBEC proteins are incorporated into virions of some types of retroviruses when virus is released and exert their effects following infection of cells. In addition to their role in editing, these molecules may affect infection and tumorigenesis by MMTV and MuLVs using additional mechanisms (Ross, 2009).

An important mechanism by which retroviral infection is restricted relates to the cell cycle status of the cell. As noted earlier, unlike the PIC of lentiviruses, gammaretrovirus PICs and perhaps those encoded by other retroviruses, enter the nucleus much more efficiently when the nuclear membrane has broken down during the mitotic phase of the cell cycle (Suzuki and Craigie, 2007). This feature restricts infection with these viruses to dividing cells. This requirement likely has a strong influence on the phenotypes of different tumors induced by these viruses, many of which cause hematopoietic cancers. Cell replication is tightly controlled during the differentiation events that give rise to these cells; end-stage or fully differentiated cells and the earliest stem cells that give rise to hematopoietic cells are usually not in cycle, whereas many cells in intermediate stages are dividing. Intermediate stages of hematopoietic cell differentiation are more susceptible to infection and tumor development (Rosenberg and Jolicoeur, 1997).
Overview of Retrovirology

Types of Oncogenic Viruses

Although oncogenic retroviruses belong to five different genera based on taxonomic classification, these agents can be further divided based on their ability to replicate independently (Rosenberg and Jolicoeur, 1997). Many oncogenic viruses contain a full complement of functional replication genes and induce tumors by affecting the expression of cellular genes as a consequence of integration and insertional mutagenesis. Other oncogenic retroviruses are defective for replication after recombination with cellular sequences and loss of structural genes. Viruses of this type were initially isolated as mixed stocks that contained both the replication-competent retrovirus that participated in the recombination event and the replication-defective virus. These viruses usually contain oncogenes that induce tumors rapidly because the oncogene product plays a dominant and direct role in tumor induction (see also chapter on Deregulation of Signal Transduction Pathways by Oncogenic Retroviruses).

Replication-Competent Viruses and Tumor Induction

Most retrovirus-induced tumors arise following infection with a replication-competent virus that expresses the four basic genes found in all retroviruses. A wide range of gammaretroviruses and alpharetroviruses have oncogenic capacity (Maeda, Fan and Yoshikai, 2008). As noted earlier, tumors arise when one of these viruses integrates in the vicinity of a cellular gene and alters the expression of that gene (Rosenberg and Jolicoeur, 1997). Insertional mutagenesis usually involves up-regulation of the cellular gene by one of several mechanisms (Mikkers and Berns, 2003; Rosenberg and Jolicoeur, 1997). The most flexible mechanism involves the effect of the LTR enhancer sequences on cellular sequences. Because enhancers are relatively independent of position with respect to transcriptional orientation and can reportedly act over >100 kilobases, proviral integration requires little precision to affect a neighboring gene. Perhaps not surprisingly, the majority of insertional mutagenesis events that activate cellular genes appear to use this mechanism.

In addition to enhancer-mediated effects, two other mechanisms increase gene expression in situations where integration has occurred upstream of the cellular gene. The first mechanism involves transcripts that readthrough the normal transcription termination and polyadenylation signals in the 3’ LTR to include cellular sequences. Depending on the virus, such readthrough transcripts may represent 15% of viral RNA (Herman and Coffin, 1986). These transcripts can then be processed to yield hybrid RNAs that encode at least a portion of the cellular gene. In second mechanism, downstream transcripts are generated. These transcripts initiate in the viral 3’ LTR to direct synthesis of a hybrid RNA containing flanking cellular sequence. Both of these mechanisms are well-documented but, for unknown reasons, tend to be associated with particular virus and tumor combinations. For example, readthrough transcripts
are often involved in ASLV-induced erythroleukemia (Fung et al., 1983; Maílhe et al., 1988) and downstream transcripts are particularly prominent in ASLV-induced bursal lymphoma (Hayward, Neel and Astrin, 1981).

A wide range of genes are activated by retroviral insertional mutagenesis, often targeting several genes in each tumor. In most cases, insertional mutagenesis affects genes that encode proteins. However, in at least one instance involving ASLV, insertion influences expression of the bic locus which encodes an miRNA (Clurman and Hayward, 1989; Eis et al., 2005; Tam, Ben-Yehuda and Hayward, 1997; Tam et al., 2002). The advent of modern genomics has facilitated rapid analysis of integration sites in a large number of tumors (Du et al., 2005; Lund et al., 2002). These studies have revealed an extensive list of genes involved in growth, survival and differentiation that contribute to tumorigenesis (see also chapters on Retroviruses as Tools to Identify Oncogenes and Tumor Suppressor genes as well as Mechanisms of Oncogenesis by Retroviruses). Many of these genes are implicated in non-retroviral tumors and, like other studies of oncogenic retroviruses, their identification in retroviral models made significant contributions to our understanding of gene activation and its role in spontaneous human tumors.

Although insertional mutagenesis is a key step in tumor induction by replication-competent retroviruses, other events are also required. In several mouse model systems, the generation of recombinant viruses, with changes in both the env gene and the LTR, is necessary for tumorigenesis (Stoye, Moroni and Coffin, 1991). Endogenous retroviruses in the host play important roles in the recombination process. Tumorigenesis then selects for recombinant viruses with enhanced transcription and with an extended host range (see also chapters on Endogenous Retroviruses and Cancer as well as Emerging Oncogenic Retroviruses).

Replication-Defective Viruses that Lack Oncogenes

Although the majority of retrovirus-induced tumors involve replication-competent viruses, a number of tumors arise after infection with viruses that have lost the capacity to replicate in the absence of helper viruses. As discussed below, the majority of these retroviruses contain oncogenes that have been captured from cellular proto-oncogenes. The spleen focus-forming virus (SFFV) originally isolated in combination with Friend MuLV is the hallmark of this type of oncogenic agent (Lee et al., 2003). SFFV induced an erythroid proliferation in mice that leads to massive splenomegaly and death of the animal. The key viral gene product responsible for disease induction is a deleted Env protein that cannot function as a virion component (Kabat, 1989). This molecule interacts with the receptor for erythropoietin, a molecule expressed by erythroid precursors that normally initiates proliferative signals after binding the hormone erythropoietin (Ferro et al., 1993; Nishigaki et al., 2001; Wang et al., 1993). Indeed, although the SFFV Env protein and erythropoietin do not interact with the receptor in identical ways, the result of the interaction is the same, leading to a signaling cascade and initiation of proliferation (see also chapter on Deregulation of Signal Transduction Pathways by Oncogenic Retroviruses).