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Preface

The goal of this book is to provide a concise but lucid explanation and deriva-
tion of the fundamentals of spread-spectrum communication systems. Although
spread-spectrum communication is a staple topic in textbooks on digital com-
munication, its treatment is usually cursory, and the subject warrants a more
intensive exposition. Originally adopted in military networks as a means of
ensuring secure communication when confronted with the threats of jamming
and interception, spread-spectrum systems are now the core of commercial ap-
plications such as mobile cellular and satellite communication. The level of
presentation in this book is suitable for graduate students with a prior graduate-
level course in digital communication and for practicing engineers with a solid
background in the theory of digital communication. As the title indicates, this
book stresses principles rather than specific current or planned systems, which
are described in many other books. Although the exposition emphasizes the-
oretical principles, the choice of specific topics is tempered by my judgment of
their practical significance and interest to both researchers and system design-
ers. Throughout the book, learning is facilitated by many new or streamlined
derivations of the classical theory. Problems at the end of each chapter are
intended to assist readers in consolidating their knowledge and to provide prac-
tice in analytical techniques. The book is largely self-contained mathematically
because of the four appendices, which give detailed derivations of mathematical
results used in the main text.

In writing this book, I have relied heavily on notes and documents prepared
and the perspectives gained during my work at the US Army Research Labo-
ratory. Many colleagues contributed indirectly to this effort. I am grateful to
my wife, Nancy, who provided me not only with her usual unwavering support
but also with extensive editorial assistance.



Chapter 1

Channel Codes

Channel codes are vital in fully exploiting the potential capabilities of spread-
spectrum communication systems. Although direct-sequence systems greatly
suppress interference, practical systems require channel codes to deal with the
residual interference and channel impairments such as fading. Frequency-
hopping systems are designed to avoid interference, but the hopping into an
unfavorable spectral region usually requires a channel code to maintain ade-
quate performance. In this chapter, some of the fundamental results of coding
theory [1], [2], [3], [4] are reviewed and then used to derive the corresponding
receiver computations and the error probabilities of the decoded information
bits.

1.1 Block Codes

A channel code for forward error control or error correction is a set of codewords
that are used to improve communication reliability. An block code uses a
codeword of code symbols to represent information symbols. Each symbol is
selected from an alphabet of symbols, and there are codewords. If
then an code of symbols is equivalent to an binary code.
A block encoder can be implemented by using logic elements or memory to map
a information word into an codeword. After the waveform
representing a codeword is received and demodulated, the decoder uses the de-
modulator output to determine the information symbols corresponding to the
codeword. If the demodulator produces a sequence of discrete symbols and the
decoding is based on these symbols, the demodulator is said to make hard deci-
sions. Conversely, if the demodulator produces analog or multilevel quantized
samples of the waveform, the demodulator is said to make soft decisions. The
advantage of soft decisions is that reliability or quality information is provided
to the decoder, which can use this information to improve its performance.

The number of symbol positions in which the symbol of one sequence differs
from the corresponding symbol of another equal-length sequence is called the
Hamming distance between the sequences. The minimum Hamming distance



2 CHAPTER 1. CHANNEL CODES

Figure 1.1: Conceptual representation of vector space of se-
quences.

between any two codewords is called the minimum distance of the code. When
hard decisions are made, the demodulator output sequence is called the received
sequence or the received word. Hard decisions imply that the overall channel
between the output and the decoder input is the classical binary symmetric
channel. If the channel symbol error probability is less than one-half, then the
maximum-likelihood criterion implies that the correct codeword is the one that
is the smallest Hamming distance from the received word. A complete decoder
is a device that implements the maximum-likelihood criterion. An incomplete
decoder does not attempt to correct all received words.

The vector space of sequences is conceptually represented as
a three-dimensional space in Figure 1.1. Each codeword occupies the center
of a decoding sphere with radius in Hamming distance, where is a positive
integer. A complete decoder has decision regions defined by planar boundaries
surrounding each codeword. A received word is assumed to be a corrupted ver-
sion of the codeword enclosed by the boundaries. A bounded-distance decoder
is an incomplete decoder that attempts to correct symbol errors in a received
word if it lies within one of the decoding spheres. Since unambiguous decod-
ing requires that none of the spheres may intersect, the maximum number of
random errors that can be corrected by a bounded-distance decoder is

where is the minimum Hamming distance between codewords and de-
notes the largest integer less than or equal to When more than errors occur,
the received word may lie within a decoding sphere surrounding an incorrect
codeword or it may lie in the interstices (regions) outside the decoding spheres.
If the received word lies within a decoding sphere, the decoder selects the in-
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correct codeword at the center of the sphere and produces an output word of
information symbols with undetected errors. If the received word lies in the in-
terstices, the decoder cannot correct the errors, but recognizes their existence.
Thus, the decoder fails to decode the received word.

Since there are words at exactly distance from the center of
the sphere, the number of words in a decoding sphere of radius is determined
from elementary combinatorics to be

Since a block code has codewords, words are enclosed in some sphere.
The number of possible received words is which yields

This inequality implies an upper bound on and, hence, The upper bound
on is called the Hamming bound.

A block code is called a linear block code if its codewords form a
subspace of the vector space of sequences with symbols. Thus, the vector sum
of two codewords or the vector difference between them is a codeword. If a bi-
nary block code is linear, the symbols of a codeword are modulo-two sums of
information bits. Since a linear block code is a subspace of a vector space,
it must contain the additive identity. Thus, the all-zero sequence is always a
codeword in any linear block code. Since nearly all practical block codes are
linear, henceforth block codes are assumed to be linear.

A cyclic code is a linear block code in which a cyclic shift of the symbols
of a codeword produces another codeword. This characteristic allows the im-
plementation of encoders and decoders that use linear feedback shift registers.
Relatively simple encoding and hard-decision decoding techniques are known
for cyclic codes belonging to the class of Bose-Chaudhuri-Hocquenghem (BCH)
codes, which may be binary or nonbinary. A BCH code has a length that is
a divisor of where and is designed to have an error-correction
capability of where is the design distance. Although the
minimum distance may exceed the design distance, the standard BCH decod-
ing algorithms cannot correct more than errors. The parameters for
binary BCH codes with are listed in Table 1.1.

A perfect code is a block code such that every sequence is at a
distance of at most from some codeword, and the sets of all sequences
at distance or less from each codeword are disjoint. Thus, the Hamming
bound is satisfied with equality, and a complete decoder is also a bounded-
distance decoder. The only perfect codes are the binary repetition codes of odd
length, the Hamming codes, the binary Golay (23,12) code, and the ternary
Golay (11,6) code. Repetition codes represent each information bit by binary
code symbols. When is odd, the repetition code is a perfect code with
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and A hard-decision decoder makes a decision based
on the state of the majority of the demodulated symbols. Although repetition
codes are not efficient for the additive-white-Gaussian-noise (AWGN) channel,
they can improve the system performance for fading channels if the number of
repetitions is properly chosen. A Hamming code is a perfect BCH code

Since a Hamming code is capable of correcting all single errors. Binary
Hamming codes with are found in Table 1.1. The 16 codewords of a
Hamming (7,4) code are listed in Table 1.2. The first four bits of each codeword
are the information bits. The Golay (23,12) code is a binary cyclic code that
is a perfect code with and

Any linear block code with an odd value of can be converted
into an extended code by adding a parity symbol. The advantage of
the extended code stems from the fact that the minimum distance of the block
code is increased by one, which improves the performance, but the decoding
complexity and code rate are usually changed insignificantly. The extended
Golay (24,12) code is formed by adding an overall parity symbol to the Golay
(23,12) code, thereby increasing the minimum distance to As a result,
some received sequences with four errors can be corrected with a complete
decoder. The (24,12) code is often preferable to the (23,12) code because the
code rate, which is defined as the ratio is exactly one-half, which simplifies

with and
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the system timing.
The Hamming weight of a codeword is the number of nonzero symbols in a

codeword. For a linear block code, the vector difference between two codewords
is another codeword with weight equal to the distance between the two origi-
nal codewords. By subtracting the codeword  c  to all the codewords, we find
that the set of Hamming distances from any codeword c is the same as the set
of codeword weights. Consequently, in evaluating decoding error probabilities,
one can assume without loss of generality that the all-zero codeword was trans-
mitted, and the minimum Hamming distance is equal to the minimum weight
of the nonzero codewords. For binary block codes, the Hamming weight is the
number of 1’s in a codeword.

A systematic block code is a code in which the information symbols appear
unchanged in the codeword, which also has additional parity symbols. In terms
of the word error probability for hard-decision decoding, every linear code is
equivalent to a systematic linear code [1]. Therefore, systematic block codes are
the standard choice and are assumed henceforth. Some systematic codewords
have only one nonzero information symbol. Since there are at most parity
symbols, these codewords have Hamming weights that cannot exceed
Since the minimum distance of the code is equal to the minimum codeword
weight,

This upper bound is called the Singleton bound. A linear block code with a
minimum distance equal to the Singleton bound is called a maximum-distance-
separable code

Nonbinary block codes can accommodate high data rates efficiently be-
cause decoding operations are performed at the symbol rate rather than the
higher information-bit rate. Reed-Solomon codes are nonbinary BCH codes
with and are maximum-distance-separable codes with
For convenience in implementation, is usually chosen so that where
is the number of bits per symbol. Thus, and the code provides cor-
rection of symbols. Most Reed-Solomon decoders are bounded-distance
decoders with

The most important single determinant of the code performance is its weight
distribution, which is a list or function that gives the number of codewords with
each possible weight. The weight distributions of the Golay codes are listed
in Table 1.3. Analytical expressions for the weight distribution are known in
a few cases. Let denote the number of codewords with weight For a
binary Hamming code, each can be determined from the weight-enumerator
polynomial

For example,the Hamming (7,4) code gives
which yields and

weight,
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otherwise. For a maximum-distance-separable code, and [2]

The weight distribution of other codes can be determined by examining all valid
codewords if the number of codewords is not too large for a computation.

Error Probabilities for Hard-Decision Decoding

There are two types of bounded-distance decoders: erasing decoders and re-
producing decoders. They differ only in their actions following the detection
of uncorrectable errors in a received word. An erasing decoder discards the
received word and may initiate an automatic retransmission request. For a sys-
tematic block code, a reproducing decoder reproduces the information symbols
of the received word as its output.

Let denote the channel-symbol error probability, which is the probability
of error in a demodulated code symbol. It is assumed that the channel-symbol
errors are statistically independent and identically distributed, which is usually
an accurate model for systems with appropriate symbol interleaving (Section
1.3). Let denote the word error probability, which is the probability that
a received word is not decoded correctly due to both undetected errors and
decoding failures. There are distinct ways in which errors may occur
among symbols. Since a received sequence may have more than errors but
no information-symbol errors,

for a reproducing decoder that corrects or few errors. For an erasing decoder,
(1-8) becomes an equality. For reproducing decoders, is given by (1-1) because
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it is pointless to make the decoding spheres smaller than the maximum allowed
by the code. However, if a block code is used for both error correction and error
detection, an erasing decoder is often designed with less than the maximum.
If a block code is used exclusively for error detection, then

Conceptually, a complete decoder correctly decodes when the number of
symbol errors exceeds if the received sequence lies within the planar bound-
aries associated with the correct codeword, as depicted in Figure 1.1. When a
received sequence is equidistant from two or more codewords, a complete de-
coder selects one of them according to some arbitrary rule. Thus, the word
error probability for a complete decoder satisfies (1-8). If a complete
decoder is a maximum-likelihood decoder.

Let denote the probability of an undetected error, and let denote
the probability of a decoding failure. For a bounded-distance decoder

Thus, it is easy to calculate once is determined. Since the set of
Hamming distances from a given codeword to the other codewords is the same
for all given codewords of a linear block code, it is legitimate to assume for
convenience in evaluating that the all-zero codeword was transmitted. If
channel-symbol errors in a received word are statistically independent and occur
with the same probability then the probability of an error in a specific set
of positions that results in a specific set of erroneous symbols is

For an undetected error to occur at the output of a bounded-distance decoder,
the number of erroneous symbols must exceed and the received word must lie
within an incorrect decoding sphere of radius Let is the number of
sequences of Hamming weight that lie within a decoding sphere of radius
associated with a particular codeword of weight Then

Consider sequences of weight that are at distance from a particular codeword
of weight where so that the sequences are within the decoding
sphere of the codeword. By counting these sequences and then summing over
the allowed values of we can determine The counting is done by
considering changes in the components of this codeword that can produce one
of these sequences. Let denote the number of nonzero codeword symbols that
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are changed to zeros, the number of codeword zeros that are changed to any
of the nonzero symbols in the alphabet, and the number of nonzero
codeword symbols that are changed to any of the other nonzero symbols.
For a sequence at distance to result, it is necessary that The number
of sequences that can be obtained by changing any of the nonzero symbols
to zeros is where if For a specified value of it is necessary
that to ensure a sequence of weight The number of sequences
that result from changing any of the zeros to nonzero symbols is

For a specified value of and hence it is necessary that
to ensure a sequence at distance The number of sequences

that result from changing of the remaining nonzero components is
where if and Summing over the allowed values

of and we obtain

Equations (1-11) and (1-12) allow the exact calculation of
When the only term in the inner summation of (1-12) that is nonzero

has the index provided that this index is an integer and
Using this result, we find that for binary codes,

where for any nonnegative integer Thus, and

for
The word error probability is a performance measure that is important pri-

marily in applications for which only a decoded word completely without symbol
errors is acceptable. When the utility of a decoded word degrades in propor-
tion to the number of information bits that are in error, the information-bit
error probability is frequently used as a performance measure. To evaluate it
for block codes that may be nonbinary, we first examine the information-symbol
error probability.

Let denote the probability of an error in information symbol at the
decoder output. In general, it cannot be assumed that is independent of
The information-symbol error probability, which is defined as the unconditional
error probability without regard to the symbol position, is

The random variables are defined so that if infor-
mation symbol is in error and if it is correct. The expected number
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of information-symbol errors is

where E[ ] denotes the expected value. The information-symbol error rate is
defined as Equations (1-14) and (1-15) imply that

which indicates that the information-symbol error probability is equal to the
information-symbol error rate.

Let denote the probability of an error in symbol of the codeword
chosen by the decoder or symbol of the received sequence if a decoding failure
occurs. The decoded-symbol error probability is

If E[D] is the expected number of decoded-symbol errors, a derivation similar
to the preceding one yields

which indicates that the decoded-symbol error probability is equal to the decoded-
symbol error rate. It can be shown [5] that for cyclic codes, the error rate among
the information symbols in the output of a bounded-distance decoder is equal
to the error rate among all the decoded symbols; that is,

This equation, which is at least approximately valid for linear block codes, sig-
nificantly simplifies the calculation of because can be expressed in terms
of the code weight distribution, whereas an exact calculation of requires ad-
ditional information.

An erasing decoder makes an error only if it fails to detect one. Therefore,
and (1-11) implies that the decoded-symbol error rate for an erasing

decoder is

The number of sequences of weight that lie in the interstices outside the
decoding spheres is
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where the first term is the total number of sequences of weight and the second
term is the number of sequences of weight that lie within incorrect decoding
spheres. When symbol errors in the received word cause a decoding failure,
the decoded symbols in the output of a reproducing decoder contain errors.
Therefore, the decoded-symbol error rate for a reproducing decoder is

Even if two major problems still arise in calculating from (1-20)
or (1-22). The computational complexity may be prohibitive when and are
large, and the weight distribution is unknown for many linear or cyclic block
codes.

The packing density is defined as the ratio of the number of words in the
decoding spheres to the total number of sequences of length From (2), it

follows that the packing density is

For perfect codes, If undetected errors tend to occur more
often then decoding failures, and the code is considered tightly packed. If

decoding failures predominate, and the code is considered loosely packed.
The packing densities of binary BCH codes are listed in Table 1.1. The codes
are tightly packed if or 15. For and or 127, the codes
are tightly packed only if or 2.

To approximate for tightly packed codes, let denote the event that
errors occur in a received sequence of symbols at the decoder input. If the

symbol errors are independent, the probability of this event is

Given event for such that it is plausible to assume that
a reproducing bounded-distance decoder usually chooses a codeword with ap-
proximately symbol errors. For such that it is plausible
to assume that the decoder usually selects a codeword at the minimum dis-
tance These approximations, (1-19), (1-24), and the identity
indicate that for reproducing decoders is approximated by

The virtues of this approximation are its lack of dependence on the code weight
distribution and its generality. Computations for specific codes indicate that the
accuracy of this approximation tends to increase with The right-hand
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side of (1-25) gives an approximate upper bound on for erasing bounded-
distance decoders, for loosely packed codes with bounded-distance decoders,
and for complete decoders because some received sequences with or more
errors can be corrected and, hence, produce no information-symbol errors.

For a loosely packed code, it is plausible that for a reproducing bounded-
distance decoder might be accurately estimated by ignoring undetected errors.
Dropping the terms involving in (1-21) and (1-22) and using (1-19) gives

The virtue of this lower bound as an approximation is its independence of
the code weight distribution. The bound is tight when decoding failures are
the predominant error mechanism. For cyclic Reed-Solomon codes, numerical
examples [5] indicate that the exact and the approximate bound are quite
close for all values of when a result that is not surprising in view of the
paucity of sequences in the decoding spheres for a Reed-Solomon code with

A comparison of (1-26) with (1-25) indicates that the latter overestimates
by a factor of less than

A        symmetric channel or uniform discrete channel is one in which
an incorrectly decoded information symbol is equally likely to be any of the
remaining symbols in the alphabet. Consider a linear block code
and a symmetric channel such that is a power of 2 and the “channel”
refers to the transmission channel plus the decoder. Among the incorrect
symbols, a given bit is incorrect in instances. Therefore, the information-bit

Let denote the ratio of information bits to transmitted channel symbols. For
binary codes, is the code rate. For block codes with information
bits per symbol, When coding is used but the information rate is
preserved, the duration of a channel symbol is changed relative to that of an
information bit. Thus, the energy per received channel symbol is

where is the energy per information bit. When a code is potentially
beneficial if its error-control capability is sufficient to overcome the degradation
due to the reduction in the energy per received symbol. For the AWGN channel
and coherent binary phase-shift keying (PSK), the classical theory indicates that
the symbol error probability at the demodulator output is

where

error probability is
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and erfc( ) is the complementary error function. Consider the noncoherent
detection of orthogonal signals over an AWGN channel. The channel
symbols for multiple frequency-shift keying (MFSK) modulation are received
as orthogonal signals. It is shown subsequently that at the demodulator
output is

which decreases as increases for sufficiently large values of The or-
thogonality of the signals ensures that at least the transmission channel is
symmetric, and, hence, (1-27) is at least approximately correct.

If the alphabets of the code symbols and the transmitted channel symbols
are the same, then the channel-symbol error probability equals the code-
symbol error probability If not, then the code symbols may be mapped
into channel symbols. If and then choosing to
be an integer is strongly preferred for implementation simplicity. Since any of
the channel-symbol errors can cause an error in the corresponding code symbol,
the independence of channel-symbol errors implies that

A common application is to map nonbinary code symbols into binary channel
symbols In this case, (1-27) is no longer valid because the transmis-
sion channel plus the decoder is not necessarily symmetric. Since there is
at least one bit error for every symbol error,

This lower bound is tight when is low because then there tends to be a single
bit error per code-symbol error before decoding, and the decoder is unlikely to
change an information symbol. For coherent binary PSK, (1-29) and (1-32)
imply that

Error Probabilities for Soft-Decision Decoding

A symbol is said to be erased when the demodulator, after deciding that a sym-
bol is unreliable, instructs the decoder to ignore that symbol during the decod-
ing. The simplest practical soft-decision decoding uses erasures to supplement
hard-decision decoding. If a code has a minimum distance and a received
word is assigned erasures, then all codewords differ in at least of the
unerased symbols. Hence, errors can be corrected if If or
more erasures are assigned, a decoding failure occurs. Let denote the proba-
bility of an erasure. For independent symbol errors and erasures, the probability
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that a received sequence has errors and erasures is
Therefore, for a bounded-distance decoder,

where denotes the smallest integer greater than or equal to This in-
equality becomes an equality for an erasing decoder. For the AWGN channel,
decoding with optimal erasures provides an insignificant performance improve-
ment relative to hard-decision decoding, but erasures are often effective against
fading or sporadic interference. Codes for which errors-and-erasures decoding
is most attractive are those with relatively large minimum distances such as
Reed-Solomon codes.

Soft decisions are made by associating a number called the metric with
each possible codeword. The metric is a function of both the codeword and
the demodulator output samples. A soft-decision decoder selects the codeword
with the largest metric and then produces the corresponding information bits
as its output. Let y denote the vector of noisy output samples

produced by a demodulator that receives a sequence of
symbols. Let denote the codeword vector with symbols
Let denote the likelihood function, which is the conditional probability
density function of y given that was transmitted. The maximum-likelihood
decoder finds the value of for which the likelihood function is
largest. If this value is the decoder decides that codeword was transmitted.
Any monotonically increasing function of may serve as the metric of a
maximum-likelihood decoder. A convenient choice is often proportional to the
logarithm of which is called the log-likelihood function. For statistically
independent demodulator outputs, the log-likelihood function for each of the

possible codewords is

where is the conditional probability density function of given the
value of

For coherent binary PSK communication over the AWGN channel, if code-
word is transmitted, then the received signal representing symbol is

where is the symbol energy, is the symbol duration, is the carrier
frequency, when binary symbol is a 1 and when binary
symbol is a 0, is the unit-energy symbol waveform, and  is indepen-
dent, zero-mean, white Gaussian noise. Since has unit energy and vanishes
outside
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For coherent demodulation, a frequency translation to baseband is provided by
multiplying by After discarding a negligible integral, we find
that the matched-filter demodulator, which is matched to produces the
output samples

These outputs provide sufficient statistics because is the sole basis
function for the signal space. Since is statistically independent of
when the are statistically independent.

The autocorrelation of each white noise process is

where is the two-sided power spectral density of  and is the
Dirac delta function. A straightforward calculation using (1-40) and assuming
that the spectrum of is confined to indicates that the variance of
the noise term of (1-39) is Therefore, the conditional probability density
function of given that was transmitted is

Since and are independent of the codeword terms involving these
quantities may be discarded in the log-likelihood function of (1-36). Therefore,
the maximum-likelihood metric is

which requires knowledge of
If each a constant, then this constant is irrelevant, and the

maximum-likelihood metric is

Let denote the probability that the metric for an incorrect codeword
at distance from the correct codeword exceeds the metric for the correct
codeword. After reordering the samples the difference between the metrics
for the correct codeword and the incorrect one may be expressed as

where the sum includes only the terms that differ, refers to the correct
codeword, refers to the incorrect codeword, and Then
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is the probability that Since each of its terms is independent,
has a Gaussian distribution. A straightforward calculation using (1-41) and

which reduces to (1-29) when a single symbol is considered and
A fundamental property of a probability, called countable subadditivity, is

that the probability of a finite or countable union of events

In communication theory, a bound obtained from this inequality is called a
union bound. To determine for linear block codes, it suffices to assume
that the all-zero codeword was transmitted. The union bound and the relation
between weights and distances imply that for soft-decision decoding satisfies

Let denote the total information-symbol weight of the codewords of weight
The union bound and (1-16) imply that

To determine for any cyclic code, consider the set of codewords
of weight The total weight of all the codewords in is Let and

denote any two fixed positions in the codewords. By definition, any cyclic
shift of a codeword produces another codeword of the same weight. Therefore,
for every codeword in that has a zero in there is some codeword in that
results from a cyclic shift of that codeword and has a zero in Thus, among
the codewords of the total weight of all the symbols in a fixed position is
the same regardless of the position and is equal to The total weight of
all the information symbols in is Therefore,

Optimal soft-decision decoding cannot be efficiently implemented except
for very short block codes, primarily because the number of codewords for
which the metrics must be computed is prohibitively large, but approximate
maximum-likelihood decoding algorithms are available. The Chase algorithm
[3] generates a small set of candidate codewords that will almost always include
the codeword with the largest metric. Test patterns are generated by first
making hard decisions on each of the received symbols and then altering the

yields

satisfies
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least reliable symbols, which are determined from the demodulator outputs
given by (1-39). Hard-decision decoding of each test pattern and the discarding
of decoding failures generate the candidate codewords. The decoder selects the
candidate codeword with the largest metric.

The quantization of soft-decision information to more than two levels re-
quires analog-to-digital conversion of the demodulator output samples. Since
the optimal location of the levels is a function of the signal, thermal noise, and
interference powers, automatic gain control is often necessary. For the AWGN
channel, it is found that an eight-level quantization represented by three bits
and a uniform spacing between threshold levels cause no more than a few tenths
of a decibel loss relative to what could theoretically be achieved with unquan-
tized analog voltages or infinitely fine quantization.

The coding gain of one code compared with a second one is the reduction in
the signal power or value of required to produce a specified information-
bit or information-symbol error probability. Calculations for specific commu-
nication systems and codes operating over the AWGN channel have shown that
an optimal soft-decision decoder provides a coding gain of approximately 2 dB
relative to a hard-decision decoder. However, soft-decision decoders are much
more complex to implement and may be too slow for the processing of high in-
formation rates. For a given level of implementation complexity, hard-decision
decoders can accommodate much longer block codes, thereby at least partially
overcoming the inherent advantage of soft-decision decoders. In practice, soft-
decision decoding other than erasures is seldom used with block codes of length
greater than 50.

Performance Examples

Figure 1.2 depicts the information-bit error probability versus
for various binary block codes with coherent PSK over the AWGN channel.
Equation (1-25) is used to compute for the Golay (23,12) code with hard
decisions. Since the packing density is small for these codes, (1-26) is used
for the BCH (63,36) code, which corrects errors, and the BCH (127,64)
code, which corrects errors. Equation (1-29) is used for Inequality
(1-49) and Table 1.2 are used to compute the upper bound on for
the Golay (23,12) code with optimal soft decisions. The graphs illustrate the
power of the soft-decision decoding. For the Golay (23,12) code, soft-decision
decoding provides an approximately 2-dB coding gain for relative
to hard-decision decoding. Only when does the BCH (127,64) begin
to outperform the Golay (23,12) code with soft decisions. If an
uncoded system with coherent PSK provides a lower than a similar system
that uses one of the block codes of the figure.

Figure 1.3 illustrates the performance of loosely packed Reed-Solomon codes
with hard-decision decoding over the AWGN channel. The lower bound in (1-
26) is used to compute the approximate information-bit error probabilities for
binary channel symbols with coherent PSK and for nonbinary channel symbols
with noncoherent MFSK. For the nonbinary channel symbols, (1-27) and (1-31)
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Figure 1.2: Information-bit error probability for binary block codes and
coherent PSK.

Figure 1.3: Information-bit error probability for Reed-Solomon codes.
Modulation is coherent PSK or noncoherent MFSK.
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are used. For the binary channel symbols, (1-34) and the lower bound in (1-33)
are used. For the chosen values of the best performance at is
obtained if the code rate is Further gains result from increasing
and hence the implementation complexity. Although the figure indicates the
performance advantage of Reed-Solomon codes with MFSK, there is a major
bandwidth penalty. Let B denote the bandwidth required for an uncoded bi-
nary PSK signal. If the same data rate is accommodated by using uncoded
binary frequeny-shift keying (FSK), the required bandwidth for demodulation
with envelope detectors is approximately 2B. For uncoded MFSK using
frequencies, the required bandwidth is because each symbol represents

bits. If a Reed-Solomon code is used with MFSK, the required band-
width becomes

Code Metrics for Orthogonal Signals

For          orthogonal symbol waveforms,                                       matched filters
are needed, and the observation vector is where each is
an                   row vector of matched-filter output samples for filter    with
components Suppose that symbol of codeword   uses unit-
energy waveform where the integer  is a function of  and If codeword

is transmitted over the AWGN channel, the received signal for symbol can
be expressed in complex notation as

where is independent, zero-mean, white Gaussian noise with two-sided
power spectral density is the carrier frequency, and is the phase.
Since the symbol energy for all the waveforms is unity,

The orthogonality of symbol waveforms implies that

A frequency translation or downconversion to baseband is followed by matched
filtering. Matched-filter which is matched to produces the output
samples

The substitution of (1-50) into (1-53), (1-52), and the assumption that each of
the has a spectrum confined to yields
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where if and otherwise, and

Since the real and imaginary components of are jointly Gaussian, this
random process is a complex-valued Gaussian random variable. Straightforward
calculations using (1-40) and the confined spectra of the indicates that
the real and are imaginary components of are uncorrelated and, hence,
independent and have the same variance Since the density of a complex-
valued random variable is defined to be the joint density of its real and imaginary
parts, the conditional probability density function of given is

The independence of the white Gaussian the orthogonality condition
(1-52), and the spectrally confined symbol waveforms ensure that both the real
and imaginary parts of are independent of both the real and imaginary parts
of unless and Thus, the likelihood function of the observation
vector y is the product of the densities specified by (1-56).

For coherent signals, the are tracked by the phase synchronization sys-
tem and, thus, ideally may be set to zero. Forming the log-likelihood function
with the set to zero, and eliminating irrelevant terms that are independent
of we obtain the maximum-likelihood metric

where is the sampled output of the filter matched to the signal
representing symbol of codeword If each then the maximum-
likelihood metric is

and the common value does not need to be known to apply this metric.
For noncoherent signals, it is assumed that each is independent and uni-

formly distributed over which preserves the independence of the
Expanding the argument of the exponential function in (1-56), expressing in
polar form, and integrating over we obtain the probability density function
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where is the modified Bessel function of the first kind and order zero, This
function may be represented by

Let denote the sampled envelope produced by the filter matched to
the signal representing symbol of codeword We form the log-likelihood

function and eliminate terms and factors that do not depend on the codeword
thereby obtaining the maximum-likelihood metric

If each then the maximum-likelihood metric is

and must be known to apply this metric.
From the series representation of it follows that

From the integral representation, we obtain

The upper bound in (1-63) is tighter for while the upper bound in
(1-64) is tighter for If we assume that is often less than 2,
then the approximation of by is reasonable. Substitution into
(1-61) and dropping an irrelevant constant gives the metric

If each then the value of is irrelevant, and we obtain the Rayleigh
metric

which is suboptimal for the AWGN channel but is the maximum-likelihood
metric for the Rayleigh fading channel with identical statistics for each of the
symbols (Section 5.6). Similarly, (1-64) can be used to obtain suboptimal met-
rics suitable for large values of
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To determine the maximum-likelihood metric for making a hard decision
on each symbol, we set and drop the subscript in (1-57) and (1-61).
We find that the maximum-likelihood symbol metric is for coherent
MFSK and for noncoherent MFSK, where the index ranges
over the symbol alphabet. Since the latter function increases monotonically
and is a constant, optimal symbol metrics or decision variables for
noncoherent MFSK are or for

Metrics and Error Probabilities for MFSK Symbols

For noncoherent MFSK, baseband matched-filter is matched to the unit-energy
waveform where If is the
received signal, a downconversion to baseband and a parallel set of matched
filters and envelope detectors provide the decision variables

The orthogonality condition (1-52) is satisfied if the adjacent frequencies are
separated by where is a nonzero integer. Expanding (1-67), we obtain

These equations imply the correlator structure depicted in Figure 1.4, where the
irrelevant constant A has been omitted. The comparator decides what symbol
was transmitted by observing which comparator input is the largest.

To derive an alternative implementation, we observe that when the waveform
is the impulse response of a filter matched
to it is Therefore, the matched-filter output
at time is


