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Foreword

More than twenty-five generations of semiconductor chips have followed Moore’s
law (which states that the number of devices that can be placed on a single die
doubles about every two years). Up to today, this has led to the development of
Systems-on-a-Chip (SoCs) with more than one hundred million devices. Accord-
ing to industry forecasts, this increase in device density will continue at least until
the end of this decade, resulting in SoCs with about a billion devices. Despite this
tremendous increase in the number of functions per chip, the reliability of a chip
with respect to permanent hardware faults has remained more or less the same over
the years — a mean-time-to-fail (MTTF) of about one thousand years. This implies
that in the past decades the reliability per function has increased as dramatically as
the increase in the number of devices per chip.

Itis an architectural challenge to exploit these technological advances in function
dependability in order to increase the dependability of services at the system level,
particularly in the field of safety-critical control applications. In these application a
service reliability at the system level of better than 100 000 years must be achieved.
Despite the observed remarkable level of reliability of state-of-the-art semiconduc-
tor chips, such a high system reliability can only be achieved by the implementation
of fault-tolerance. Fault tolerance can be realized by replicating functions at inde-
pendent fault-containment units (FCU), i.e. on independent SoCs and matching the
independently computed outputs by a (replicated) voter, outvoting the result of a
faulty component. In order to achieve the necessary level of independence of the
FCUs — also with respect to spatial proximity faults —a physically distributed archi-
tecture is an absolute requirement. The physical distribution of nodes that is needed
in order to assure independent failures of FCUs is thus dictated by dependability
concerns and will not be affected by a further increase of the functional capabilities
of the ever more powerful SoCs.

Today’s state of the art distributed systems, e.g., in the automotive industry, are
federated. In a federated architecture every function is hosted at a dedicated node
computer. The communication to the other nodes of a given distributed application
subsystem is realized by a dedicated network. This leads to a high number of
system nodes — close to 100 in current premium cars — and a large number of
cables and connector points. The main advantages of a federated architecture are
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the strong fault isolation properties and the physically constrained possibilities of
error propagation. Other advantages relate to the clear management responsibility
for a distributed application subsystem and the possibility to protect the intellectual
property of the software provider.

A significant reduction in the number of node computers and the number of
cables could be achieved if a single SoC could host several functions of different
criticality and if many different virtual communication channels with known tem-
poral properties could share a single physical wire. This reduction in the number of
nodes and cabling points leads already to a marked improvement in the hardware de-
pendability. A further dependability improvement can be realized if the integrated
architecture provides structural support for the implementation of transparent fault
tolerance by replicating functions on different SoCs and voting on the results.

However, even a slight interference between the diverse software functions im-
plemented within a multi-criticality node could cancel out all those stipulated ad-
vantages. An integrated architecture must thus contain effective mechanisms for
fault isolation, error containment and diagnosis in order not to lose the advantages
of the federated approach.

The first part of this very readable book by Roman Obermaisser gives an excellent
survey about existing architectures for safety-critical applications and discusses the
issues that must be considered when moving from a federated to an integrated archi-
tecture. It then focuses on one key topic, the amalgamation of the event-triggered
and the time-triggered control paradigm into a coherent integrated architecture.
The architecture provides for the integration of independent distributed application
subsystems by introducing multi-criticality nodes and virtual networks of known
temporal properties. In order to reduce the complexity of application software de-
velopment, a virtual network with a single name-space can span multiple physical
networks and hide the physical gateways between these networks. The subjects
of fault isolation, error containment and diagnosis are treated with utmost care
in order to maintain the advantages of the federated approach and to avoid any
increase in application software complexity when moving to an integrated envi-
ronment. The architecture supports the migration of legacy software by emulating
widely used communication interfaces, such as the CAN interface in both, the value
and the temporal domain. The architecture has been implemented on a distributed
TTP/C/LINUX prototype. The feasibility and the tangible advantages of this new
architecture have been demonstrated on practical examples taken from the automo-
tive industry. I am sure that the interested reader will gain deep insights into the
architecture and design of integrated embedded systems, both at the conceptual and
at the practical level.

Hermann Kopetz
Vienna University of Technology



Preface

The shift from federated to integrated systems is a hot topic in many indus-
tries, such as the automotive and the avionic domain. In a federated system, each
major function (e.g., autopilot in avionic system or brake-by-wire in automotive
system) has its own dedicated computer system with internal redundancy, while an
integrated system is characterized by the integration of multiple functions within
a single distributed computer system. Federated systems have been preferred for
ultra-dependable applications due to the natural separation of application functions,
thus minimizing interactions and dependencies between the various autonomous
computer systems. The ability to reason about the behaviour of an application
function in isolation helps in controlling overall complexity. However, integrated
systems promise massive cost savings through the reduction of resource duplication.
In addition, integrated systems permit an optimal interplay of application functions,
reliability improvements with respect to wiring and connectors, and overcome limi-
tations for spare components and redundancy management. An ideal future system
architecture combines the complexity management advantages of the federated ap-
proach, but also realizes the functional integration and hardware efficiency benefits
of an integrated system.

The major contribution of this work is the introduction of a generic system archi-
tecture for integrated systems that preserves the advantages of the federated system
approach. This goal is reached by the provision of error containment mechanisms
through generic architectural services. In addition, the integrated architecture sup-
ports different paradigms of temporal control. It has been recognized that commu-
nication protocols fall into two general categories with corresponding strengths and
deficiencies: event-triggered and time-triggered control. Event-triggered protocols
(e.g., TCP/IP, CAN, Ethernet, ARINC629) offer flexibility and resource efficiency.
Time-triggered protocols (e.g., TTP, SafeBus, FlexRay, Spider) excel with respect
to predictability, composability, error detection and error containment. Through
the support for both time-triggered and event-triggered communication activities,
the integrated architecture is suitable for mixed-criticality and legacy integration.
Safety-critical time-triggered applications coexist with event-triggered legacy ap-
plications and newly developed, non-critical event-triggered applications.

Our starting-point is a time-triggered architecture, for which we assume a set of
four fundamental, basic services: a predictable, fault-tolerant time-triggered trans-
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port service, clock synchronization, error containment, and a membership service.
On top of these basic services, we construct higher-level services for handling im-
precise temporal specifications in the event-triggered subsystem: an event-triggered
transport service, gateway services, membership information for event-triggered ap-
plication tasks, and additional error containment mechanisms for preventing prop-
agation of software faults. Furthermore, this book devises a solution for the reuse
of event-triggered legacy applications in the proposed system architecture. We
describe a generic model for the establishment of existing event-triggered com-
munication protocols on top of basic, time-triggered architectural services. This
approach supports a gradual evolution of systems and improves event-triggered
communication services through a reliable underlying time-triggered subsystem.

The CAN emulation in the Time-Triggered Architecture is an application of the
generic system architecture for the integration of event-triggered and time-triggered
services. The CAN emulation is of high industrial relevance for the automotive do-
main, since the CAN protocol is widely used in present day automotive networks
for powertrain and body/comfort functions. Despite the use of time-triggered ar-
chitectures in future by-wire cars, CAN is likely to remain as a communication
protocol for non-safety critical functions due to the higher flexibility and average
performance. Even for safety-related functions, CAN-based legacy applications
will not be replaced instantly.

This work is a revised version of my dissertation, which was carried out at the
Vienna University of Technology during 2002-2003. This work has been sup-
ported, in part, by the NextTTA Research Project ’High-Confidence Architecture
for Distributed Control Applications’ (IST-2001-32111).

The completion of this book would not have been possible without the continuous
support from various people and institutions. Above all, I would like to thank
my thesis advisor Prof. Hermann Kopetz for his valuable support and numerous
fruitful discussions. I have been honored to share his long experience in the field
of distributed real-time systems. I would also like to thank him for providing the
foreword to this book. Furthermore, my gratitude goes to my secondary advisor
Prof. Wolfgang Kastner for interesting discussions and helpful suggestions. I would
also like to thank Jack Stankovic, who provided suggestions for my thesis and
established the contacts with Kluwer Academic Publishers.

Thanks also to all my colleagues from the department of Technische Informatik
at the Vienna University of Technology, who have given me their support by proof-
reading as well as a very pleasant working environment. I would particularly like
to express my thanks and appreciation to Philipp Peti for his close cooperation and
friendship and for his valuable inputs.

Comments and suggestions concerning this book will be welcomed and can be
sent to me by e-mail at ro@vmars. tuwien. ac. at.

ROMAN OBERMAISSER



Chapter 1

INTRODUCTION

Advances in computer and communication technologies have made it feasible
to extend the application of embedded computer systems to more and more crit-
ical applications, such as automotive and avionic systems. Due to the many dif-
ferent and, partially, contradicting requirements, there exists no single model for
building systems that interact with a physical environment. Well-known trade-
offs are predictability versus flexibility, and resource adequacy versus best-effort
strategies [Kopetz, 1997]. Thus, the chosen system model depends heavily on the
requirements of the application.

For example, in safety-critical real-time control applications, such as X-by-wire
systems in the automotive or avionic domain, a system’s inability to provide its
specified services can result in a catastrophe involving endangerment of lives and/or
financial loss an order of magnitude higher than the overall cost of the system. These
hard real-time systems must be designed according to the resource adequacy policy
by providing sufficient computing resources to handle the specified worst-case load
and fault scenarios.

At present, two different paradigms are prevalent in the design of real-time ar-
chitectures. In event-triggered architectures the system activities, such as sending
a message or starting computational activities, are triggered by the occurrence of
events in the environment or the computer system. In time-triggered architectures,
activities are triggered by the progression of global time. The major contrast be-
tween event-triggered and time-triggered approaches lies in the location of control.
Time-triggered systems exhibit autonomous control and interact with the environ-
ment according to an internal predefined schedule, whereas event-triggered systems
are under the control of the environment and must respond to stimuli as they occur.

The time-triggered approach is generally preferred for safety-critical sys-
tems [Kopetz, 1995b; Rushby, 2001a]. For example, in the automotive industry
a time-triggered architecture will provide the ability to handle the communication

R. Obermaisser, Event-Triggered and Time-Triggered Control Paradigms,
DOI 10.1007/978-0-387-23044-3 1, © 2005 Springer Science + Business Media, Inc.
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needs of by-wire cars [Bretz, 2001]. In addition to hard real-time performance, time-
triggered architectures help in managing the complexity of fault-tolerance and cor-
responding formal dependability models, as required for the establishment of ultra-
high reliability [Suri et al., 1995] (failure rates in the order of 10~ %failures/hour).
The predetermined points in time of the periodic message transmissions allow error
detection and establishing of membership information. Redundancy can be es-
tablished transparently to applications [Bauer and Kopetz, 2000], i.e. without any
modification of the function and timing of application systems. A time-triggered
system also supports replica determinism [Poledna, 1995], which is essential for es-
tablishing fault-tolerance through active redundancy. Furthermore, time-triggered
systems support temporal composability [Kopetz and Obermaisser, 2002] via a
precise specification of the interfaces between subsystems, both in the value and
time domain. The communication controller in a time-triggered system decides au-
tonomously when a message is transmitted. The communication network interface
is a temporal firewall which isolates the temporal behavior of the host and the rest
of the system.

In non safety-critical (soft real-time) applications, however, the event-triggered
control paradigm may be preferred due to higher flexibility and resource efficiency.
Event-triggered architectures support dynamic resource allocation strategies and
resource sharing. In event-triggered systems the provision of resources can be
biased towards average demands, thus allowing timing failures to occur during
worst-case scenarios in favor of more cost-effective solutions. If the correlation
between the resource usages of different applications is known, resources can be
multiplexed between different applications while providing probabilistic guarantees
for communication latencies and sufficiency of buffering capacities.

In addition to the classification of distributed real-time systems into event-
triggered and time-triggered systems according to the employed paradigm of con-
trol, one can perform a differentiation of computer systems according to the level of
integration into federated and integrated systems. These two classes of systems dif-
fer in the allocation of functions to the available computer systems. In a federated
system, every major subsystem is implemented on its own dedicated distributed
computer system. Subsystems are interconnected by gateways in order to realize
a limited level of coordination in the interaction with the controlled object. An
integrated system, on the other hand, is characterized by the integration of multiple
application subsystems within a single distributed computer system. An integrated
architecture provides a framework for the construction of such an integrated system.
By restoring the level of fault isolation and error containment of a federated sys-
tem, an integrated architecture promises a better coordination of control functions,
a significant reduction of hardware resources and an overall improvement in the
dependability.
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1.1  Goal of this book

Many computer systems in the avionics and automotive domain are mixed-
criticality systems. For example, in-vehicle electronics in the automotive industry
involve numerous functions with different criticality levels. The spectrum starts at
control applications for comfort electronics like seat and window movement con-
trols that are non safety-critical. Modern cars also contain safety-related functions
such as engine management and anti-lock braking. X-by-wire systems, which use
electronics for control without mechanical or hydraulic backup systems impose the
highest reliability requirements in automotive and avionic applications.

The objective of this book is the development of an integrated system archi-
tecture for the coexistence of subsystems with different degrees of synchrony and
criticality. A single distributed computing platform serves as a shared resource for
different functions and supports both the event-triggered and time-triggered control
paradigms.

The primary goal of the integrated system architecture is the support for ultra-
dependable hard real-time systems through a stable set of architectural services.
In particular, error containment mechanisms must ensure the protection of safety-
critical functions from the effects of misbehaving functions of lower levels of crit-
icality. Otherwise, the potential for error propagation from a non-critical function
to a function of higher criticality would elevate the criticality of the first one to the
level of the second one.

A secondary goal of the integrated architecture is the establishment of generic
higher-level services tailored to non safety-critical applications. In these applica-
tions, emphasis lies on low-cost, flexibility and resource efficiency. For economic
reasons, non safety-critical applications can be designed non resource-adequately.
Furthermore, incomplete knowledge about computational latencies and input load
can lead to imprecise temporal specifications. We aim at providing higher-level
services in an integrated architecture for handling these imprecise temporal spec-
ifications and the resulting occasional timing failures. These services include a
best-effort communication service, gateway services, membership information, and
additional error containment mechanisms for preventing propagation of software
faults.

This book devises solutions for the integration of the event-triggered and time-
triggered communication paradigms in a proposed system architecture by layering
event-triggered communication on top of a time-triggered communication service.
The layering of event-triggered on top of time-triggered services promises to mini-
mize the effects of the best-effort communication service on the basic transport ser-
vice. Furthermore, the event-triggered protocol can benefit from the fault-tolerance
mechanisms of the underlying time-triggered basic transport protocol. The event-
triggered and time-triggered communication services, as well as the corresponding
applications employ a single fault-tolerant distributed computer system. Event-
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triggered and time-triggered functions share common computing resources, instead
of using dedicated physical networks and node computers.

The proposed integrated system architecture will result in quantifiable cost re-
ductions in the development and deployment of embedded systems in the areas
of system hardware cost and maintenance. The integration of event-triggered and
time-triggered communication services on top of a single physical network reduces
physical wiring. In addition, the sharing of components via encapsulated execution
environments for applications of different levels of criticality leads to a reduction
of the overall number of components. In order to quantify these savings, we will
estimate the implications of the sharing of physical networks and node computers
onto the required number of hardware units on-board a high-end car.

Let us assume that the multiplexing of component and network resources will
result in a reduction of 20% of the hardware units and a corresponding reduction
in the number of wiring points of a car. On the other side, the new hardware units
will be more powerful and may thus cost more. If we consider a typical high-end
distributed system on board a car with 50 components, each node costing on average
about € 35 and 1000 wires, each wire costing about € 0.5, then the total hardware
cost of such a system is about €2250. If an integrated system is deployed, the
number of components will be reduced to 40 components of € 40 each (increase of
the node cost by € 5), and the number of wires to 800. The total hardware cost will
thus be reduced to € 2000 or € 250 per system. A hardware cost reduction of about
10% can thus be realized. The induced savings in the hardware domain during the
production of 100 000 cars amount then to about € 25 Mio.

For estimating the implications with respect to maintenance cost, let us assume
that the cost of maintenance of an electronic system onboard a car is about € 300 per
car over the lifetime of a car. By reducing the number of components by 20% and
the number of wiring points by 20%, a reduction of the maintenance cost by 20%
can be expected. The induced savings in the maintenance domain in 100 000 cars
amount then to about € 6 Mio, not considering the image gain of the manufacturer
due to the improved dependability of its product.

A further economically relevant goal of this book is the reuse of event-triggered
legacy applications. At present, the CAN protocol is widely used in automotive
networks. In modern cars CAN is employed for powertrain, and body/comfort net-
works [Leen et al., 1999]. Body and comfort networks control seat and window
movement and other non-critical user interfaces. Powertrain networks intercon-
nect electronic control units (ECUs) for engine management, anti-locking braking
(ABS), electronic stability programs (ESP) [Bosch, 1998], transmission control,
and cruise control.

Driven by the introduction of X-by-wire functionality, future generations of cars
will contain time-triggered networks [Bretz, 2001]. However, due to the higher
flexibility and average performance, an event-triggered CAN communication ser-
vice is likely to remain as the communication infrastructure for non safety-critical
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applications in cars. Even for safety-related functions, time-triggered solutions will
not replace CAN-based solutions instantly. In this context, the CAN emulation in a
time-triggered environment enables the integration of applications for which a CAN
communication service is preferable, as well as the integration of CAN legacy ap-
plications into a time-triggered computing platform. By providing CAN execution
environments within nodes of a time-triggered system in combination with CAN
overlay networks, there is the potential for a significant reduction in the number of
ECUs and wiring. In addition to lower cost, this strategy increases reliability as
wiring and connectors are currently a prevalent source of faults in the automotive
area [Swingler and McBride, 1999].

We will demonstrate the utility of the concepts for the integration of event-
triggered and time-triggered services by instantiating the proposed integrated sys-
tem architecture for employing a CAN communication service on top of the Time-
Triggered Architecture [Kopetz and Bauer, 2003]. This instantiation provides an
authentic CAN communication service, as required for the integration of CAN-
based legacy applications. We identify and establish significant properties of a
conventional CAN network (message ordering, message permanence, message can-
celability, transmission latencies). We further show that this CAN emulation solves
prevalent problems of the CAN protocol [Bosch, 1991] (e.g., fault-tolerant atomic
broadcast, inaccessibility). Animplementation ofthis CAN emulation model serves
as a proof-of-concept of our integrated system architecture.

1.2  Overview

The book is organized as follows: Chapter 2 introduces the basic terms and
concepts that are used throughout this book. The first part of this chapter describes
distributed real-time systems and concepts of dependability. Afterwards, we give a
brief overview of different synchrony models and present the event-triggered and
time-triggered communication system paradigms. In addition, we map these control
paradigms to prevalent models of computation.

Chapter 3 focuses on the requirement of an integrated system architecture for
ultra-dependable real-time systems. We discuss four integration directions, with
emphasis on the necessary architectural services. We summarize the basic services
of an integrated architecture for ultra-dependable systems and outline higher-level
services for easing application development.

Chapter 4 presents the integrated system architecture for the event-triggered and
time-triggered control paradigms. We relate this architecture to the well-studied
models of synchronous and asynchronous systems. Subsequently, we specify the
basic and higher-level services of the integrated system architecture. The second
part of this chapter defines the underlying fault hypothesis and provides information
about the construction of error detection and error containment mechanisms.

Chapter 5 performs an instantiation of the integrated system architecture for
providing CAN communication services on top of the Time-Triggered Architecture.
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We first give a brief introduction about the Time-Triggered Architecture and the
CAN protocol. We identify significant properties of CAN and present a solution
for emulated CAN communication services. The chapter ends with an overview of
a prototype implementation.

Chapter 6 demonstrates the CAN emulation’s ability to handle the communica-
tion needs of newly developed CAN applications and CAN-based legacy applica-
tions. The analysis occurs through a comparison of measurement results from the
prototype implementation with simulations of a conventional CAN network. In par-
ticular, this chapter discusses the improvements of the CAN emulation in relation
to a physical CAN network.

Finally, the book ends with a conclusion in chapter 7 summarizing the key results
of the presented work.



