MULTIPLE CRITERIA DECISION ANALYSIS: STATE OF THE ART SURVEYS

Recent titles in the

INTERNATIONAL SERIES IN OPERATIONS RESEARCH & MANAGEMENT SCIENCE Frederick S. Hillier, Series Editor, Stanford University

Zhu, J. / QUANTITATIVE MODELS FOR PERFORMANCE EVALUATION AND BENCHMARKING Ehrgott, M. & Gandibleux, X. / MULTIPLE CRITERIA OPTIMIZATION: State of the Art Annotated Bibliographical Surveys

- Bienstock, D. / Potential Function Methods for Approx. Solving Linear Programming Problems
- Matsatsinis, N.F. & Siskos, Y. / INTELLIGENT SUPPORT SYSTEMS FOR MARKETING DECISIONS
- Alpern, S. & Gal, S. / THE THEORY OF SEARCH GAMES AND RENDEZVOUS
- Hall, R.W./HANDBOOK OF TRANSPORTATION SCIENCE 2nd Ed.
- Glover, F. & Kochenberger, G.A. / HANDBOOK OF METAHEURISTICS
- Graves, S.B. & Ringuest, J.L. / MODELS AND METHODS FOR PROJECT SELECTION: Concepts from Management Science, Finance and Information Technology
- Hassin, R. & Haviv, M./ TO QUEUE OR NOT TO QUEUE: Equilibrium Behavior in Queueing Systems
- Gershwin, S.B. et al/ANALYSIS & MODELING OF MANUFACTURING SYSTEMS
- Maros, I./ COMPUTATIONAL TECHNIQUES OF THE SIMPLEX METHOD
- Harrison, T., Lee, H. & Neale, J./ THE PRACTICE OF SUPPLY CHAIN MANAGEMENT: Where Theory And Application Converge
- Shanthikumar, J.G., Yao, D. & Zijm, W.H./ STOCHASTIC MODELING AND OPTIMIZATION OF MANUFACTURING SYSTEMS AND SUPPLY CHAINS
- Nabrzyski, J., Schopf, J.M., Weglarz, J./ GRID RESOURCE MANAGEMENT: State of the Art and Future Trends
- Thissen, W.A.H. & Herder, P.M./ CRITICAL INFRASTRUCTURES: State of the Art in Research and Application
- Carlsson, C., Fedrizzi, M., & Fullér, R./ FUZZY LOGIC IN MANAGEMENT
- Soyer, R., Mazzuchi, T.A., & Singpurwalla, N.D./ MATHEMATICAL RELIABILITY: An Expository Perspective
- Chakravarty, A.K. & Eliashberg, J./ MANAGING BUSINESS INTERFACES: Marketing, Engineering, and Manufacturing Perspectives
- Talluri, K. & van Ryzin, G./ THE THEORY AND PRACTICE OF REVENUE MANAGEMENT
- Kavadias, S. & Loch, C.H./ PROJECT SELECTION UNDER UNCERTAINTY: Dynamically Allocating Resources to Maximize Value
- Brandeau, M.L., Sainfort, F., Pierskalla, W.P./ OPERATIONS RESEARCH AND HEALTH CARE: A Handbook of Methods and Applications
- Cooper, W.W., Seiford, L.M., Zhu, J./ HANDBOOK OF DATA ENVELOPMENT ANALYSIS: Models and Methods
- Luenberger, D.G./ LINEAR AND NONLINEAR PROGRAMMING, 2nd Ed.
- Sherbrooke, C.C./ OPTIMAL INVENTORY MODELING OF SYSTEMS: Multi-Echelon Techniques, Second Edition
- Chu, S.-C., Leung, L.C., Hui, Y. V., Cheung, W./ 4th PARTY CYBER LOGISTICS FOR AIR CARGO
- Simchi-Levi, Wu, Shen/ HANDBOOK OF QUANTITATIVE SUPPLY CHAIN ANALYSIS: Modeling in the E-Business Era
- Gass, S.I. & Assad, A.A./ AN ANNOTATED TIMELINE OF OPERATIONS RESEARCH: An Informal History
- Greenberg, H.J./ TUTORIALS ON EMERGING METHODOLOGIES AND APPLICATIONS IN OPERATIONS RESEARCH
- Weber, C./ UNCERTAINTY IN THE ELECTRIC POWER INDUSTRY: Methods and Models for Decision Support

* A list of the early publications in the series is at the end of the book *

MULTIPLE CRITERIA DECISION ANALYSIS: STATE OF THE ART SURVEYS

Edited by JOSÉ FIGUEIRA University of Coimbra

SALVATORE GRECO University of Catania

MATTHIAS EHRGOTT University of Auckland

Springer

eBook ISBN: 0-387-23081-5 Print ISBN: 0-387-23067-X

©2005 Springer Science + Business Media, Inc.

Print ©2005 Springer Science + Business Media, Inc. Boston

All rights reserved

No part of this eBook may be reproduced or transmitted in any form or by any means, electronic, mechanical, recording, or otherwise, without written consent from the Publisher

Created in the United States of America

Visit Springer's eBookstore at: and the Springer Global Website Online at: http://ebooks.kluweronline.com http://www.springeronline.com

Contents

List of H	igures	xiii
List of 7	Tables	xvii
Introduc	tion	xxi
José Fig	ueira, Salvatore Greco, Matthias Ehrgott	
1.	Human Reflection about Decision	xxi
2.	Technical Reflection about Decision: MCDA Researchers before MCDA	xxii
3.	The Reasons for this Collection of State-of-the-Art Surveys	xxiv
4.	A Guided Tour of the Book	XXV
5.	Acknowledgment to the Referees	xxxiv
Refe	rences	xxxiv
Part I	An Overview of MCDA Techniques Today	
1		
Paradig	ns and Challenges	3
Bernara	lRov	
1.	What Are the Expectations that Multicriteria Decision Aiding (MCDA) Responde to?	Δ
2	Three Basic Concents	7
2.	How to Take Into Account Imperfect Knowledge?	12
Э. Л	An Operational Point of View	12
- 1 . 5	Conclusion	14
J. Defe	Conclusion	1/
Kelt	stelices	18
Part II	Foundations of MCDA	
2		
Preferen	ce Modelling	27
Meltem	Öztürk, Alexis Tsoukiàs, Philippe Vincke	
1.	Introduction	28
2.	Purpose	28
3	Nature of Information	30

3.	Nature of Information	30
4.	Notation and Basic Definitions	32
5.	Languages	33

6.	Preference Structures	39
7.	Domains and Numerical Representations	48
8.	Logic of Preferences	56
9.	Conclusion	59
Refe	prences	60
3		
Conjoin	t measurement tools for MCDM	73
Denis B	ouyssou, Marc Pirlot	
1.	Introduction and Motivation	74
2.	Definitions and Notation	89
3.	The Additive Value Model in the "Rich" Case	92
4.	The Additive Value Model in the "Finite" Case	102
5.	Extensions	112
Refe	erences	119
Part III	Outranking Methods	
4		
ELECT	RE Methods	133
JoséFig	gueira, Vincent Mousseau, Bernard Roy	
1.	Introduction: A Brief History	134
2.	Main Features of ELECTRE Methods	136
3.	A Short Description of ELECTRE Methods	139
4.	Recent Developments and Future Issues	149

5.	Software and Applications	151
6.	Conclusion	153
References		153

5

PROME	PROMETHEE Methods	
Jean-Pie	erre Brans, Bertrand Mareschal	
1.	History	164
2.	Multicriteria Problems	164
3.	The PROMETHEE Preference Modelling Information	168
4.	The PROMETHEE I and II Rankings	171
5.	The GAIA Visual Interactive Module	175
6.	The PROMETHEE VI Sensitivity Tool (The "Human Brain")	181
7.	PROMETHEE V: MCDA under Constraints	182
8.	The PROMETHEE GDSS Procedure	183
9.	The DECISION LAB Software	186
Refe	rences	189
6		
Other O	Other Outranking Approaches	
Jean-Ma	urc Martel, Benedetto Matarazzo	

1.	Introduction	198
2.	Other Outranking Methods	198

vi

Contents		vii
3.	Pairwise Criterion Comparison Approach	221
4.	One Outranking Method for Stochastic Data	254
5.	Conclusions	259
Refe	rences	260
Part IV	Multiattribute Utility and Value Theories	
7		
MAUT - Iames S	Multiattribute Utility Theory	265
1.	Introduction	266
2	Preference Representations Under Certainty and Under Risk	267
3	Ordinal Multiattribute Preference Functions for the Case of	207
0.	Certainty	273
4. 5.	Cardinal Multiattribute Preference Functions for the Case of Risk Measurable Multiattribute Preference Functions for the Case of	278
	Certainty	281
6.	The Relationships Among the Multiattribute Preference Functions	290
7.	Concluding Remarks	292
Refe	rences	294
8		
UTA Me	ethods	297
Yannis S	iskos, Evangelos Grigoroudis, Nikolaos F. Matsatsinis	
1.	Introduction	298
2.	The UTA Method	302
3.	Variants of the UTA Method	313
4.	Applications and UTA-based DSS	328
5.	Concluding Remarks and Future Research	334
Refe	rences	335
9		
The Ana Mea	lytic Hierarchy and Analytic Network Processes for the surement of Intangible Criteria and for Decision-Making	345
Thomas	L. Saaty	246
1.	Introduction	346
2.	Pairwise Comparisons; inconsistency and the Principal Eigenvector	348
3.	Stimulus Response and the Fundamental Scale	354
4.	Hospice Decision	359
5.	Rating Alternatives One at a Time in the AHP – Absolute Measurement	369
6.	Paired Comparisons Imply Dependence	372
7.	When is a Positive Reciprocal Matrix Consistent?	373
,. 8	In the Analytic Hierarchy Process Additive Composition is Necessary	375
9. 9	Benefits Opportunities Costs and Risks	377
10	On the Admission of China to the World Trade Organization (WTO)	378
10.	The Analytic Network Process (ANP)	382
11.	The many the fact work i focos (Alla)	302

12.	Two Examples of Estimating Market Share – The ANP with a Single	200
10	Benefits Control Criterion	389
13.	Outline of the Steps of the ANP	400
14.	Complex Decisions with Dependence and Feedback	403
15.	Conclusions	405
Refe	rences	406
10		
On the M	Athematical Foundation of MACBETH	409
Carlos A	. Bana e Costa, Jean-Marie De Corte, Jean-Claude Vansnick	
1.	Introduction	410
2.	Previous Research and Software Evolution	412
3.	Types of Preferential Information	414
4.	Numerical Representation of the Preferential Information	415
5.	Consistency – Inconsistency	416
6.	Consistency Test for Preferential Information	417
7.	Dealing with Inconsistency	420
8.	The MACBETH Scale	432
9.	Discussion About a Scale	435
10.	MACBETH and MCDA	437
Refe	rences	438
11 Dealing	with Uncertainties in MCDA	445
Theodor	J Stewart	
1.	What is Uncertainty?	446
2.	Probabilistic Models and Expected Utility	450
3.	Pairwise Comparisons	454
4.	Risk Measures as Surrogate Criteria	457
5.	Scenario Planning and MCDA	460
6.	Implications for Practice	466
Refe	rences	467
10		
12 Chaire	Danking and Sections in France Multiple Criteric Desision Aid	471
Detected	Kanking and Sorting in Fuzzy Multiple Criteria Decision Aid	4/1
Patrick I	Meyer, Marc Roubens	172
1.	Introduction The Date Set	472
2.	Valued Preference Delation and Outranking Delation	474
з. Л	Aggregation Procedures	179
4. 5	Aggregation Flocenties	+/0 100
э. С		402
6. 7	The TOMASO Method	483
/. o	I ne Unoice Problem	502
o. Refe		503
I.C.I.C	101000	201

viii

Contents

13		
Decision	Rule Approach	507
Salvatore	e Greco, Benedetto Matarazzo, Roman Słowiński	
1.	Introduction	508
2.	Dominance-based Rough Set Approach (DRSA) to Multiple-criteria Classification	511
3.	Variable-Consistency Dominance-Based Rough Set Approach (VC- DRSA)	525
4.	Induction of Decision Rules from Rough Approximations of Upward and Downward Unions of Decision Classes	527
5.	Extensions of DRSA	536
6.	DRSA for Multiple-criteria Choice and Ranking	544
7.	Conclusions	555
Refe	rences	557
14		
Fuzzy M	easures and Integrals in MCDA	563
Michel C	Grabisch, Christophe Labreuche	
1.	Introduction	564
2.	Measurement Theoretic Foundations	566
3.	Unipolar Scales	570
4.	Bipolar Scales	583
5.	Ordinal Scales	595
6.	Concluding Remarks	604
Refe	rences	604
15		
Verbal E	Decision Analysis	609
Helen M	oshkovich, Alexander Mechitov, David Olson	
1.	Features of Unstructured Decision Problems	610
2.	Main Principles of Verbal Decision Analysis	610
3.	Decision Methods for Multicriteria Alternatives Ranking	615
4.	Decision Methods for Multicriteria Alternatives' Classification	625
5.	Place of Verbal Decision Analysis in MCDA	628
6.	Conclusion	633
Refe	rences	634
Part VI	Multiobjective Mathematical Programming	
16		
Interacti	ve Methods	641
Pekka K	Torhonen	
1	Introduction	642
2.	Basic Definitions and Some Theory	643
3	Principles for Implementing Interactive Methods	645
3. 4	Generating Nondominated Solutions	649
5	Solving Multiple Objective Problems	652
5. 6	Final Solution	656
0. 7	Examples of Software Systems: VIG and VIMDA	657
<i>.</i>		007

ix

MULTIPLE CRITERIA DECISION ANALYSIS

8.	Concluding Remarks	661
Refe	erences	662
17		
1/ Multich	iastiva Draznommina	667
Matthia	s Ebroott Margaret M. Wiecek	007
1 1	Introduction	668
2	Problem Formulation and Solution Concepts	669
2.	Properties of the Solution Sets	673
Э. Д	Conditions for Efficiency	675
	Generation of the Solution Sets	676
5.	Approximation of the Pareto Set	692
0. 7	Specially Structured Problems	696
7. 8	Current and Euture Passarch Directions	707
0. 0	Conclusions	707
7. Ref	erences	708
iter		100
18		
Multipl	e Objective Linear Programming with Fuzzy Coefficients	723
Masahi	ro Inuiguchi	
1.	Introduction	724
2.	Problem Statement and Approaches	725
3.	Modality Constrained Programming Approach	731
4.	Modality Goal Programming	749
5.	Modal Efficiency Approach	754
6.	Concluding Remarks	757
Ref	erences	757
19		
MCDM	Location Problems	761
Stefan I	Nickel, Justo Puerto, Antonio M. Rodríguez-Chía	
1.	Introduction	762
2.	Location Problems	764
3.	Continuous Multicriteria Location Problems	767
4.	Multicriteria Network Location Problems	776
5.	Multicriteria Discrete Location Problems	783
6.	Conclusions	787
Ref	erences	787

Part VII Applications

20		
Multicriteria Decision Aid/Analysis in Finance		799
Jaap Spr	onk, Ralph E. Steuer, Constantin Zopounidis	
1.	Introduction	800
2.	Financial Decision Making	801
3.	MCDA in Portfolio Decision-Making Theory	819
4.	MCDA in Discrete Financial Decision-Making Problems	835

х

Co	ntents		xi
	5.	Conclusions and Future Perspectives	848
	Refere	nces	849
21			
21 M(DA an	d Energy Planning	859
Da	nae Die	akoulaki Carlos Henggeler Antunes António Gomes Martins	007
Du	1.	Introduction	860
	2.	Multiobiective Programming Models for Energy Planning	863
	3.	Energy Planning Decisions with Discrete Alternatives	874
	4.	Conclusions	890
	Refere	nces	891
~~			
22	1		800
Мu	Desigr	1 – Problems and Issues	899
Jo	ão Clím	aco, José Craveirinha	
	1.	Motivation	900
	2.	Overview of Current Evolutions in Telecommunication Networks and Services	900
	3.	Multicriteria Analysis in Telecommunication Network Planning and Design	908
	4.	Review and Discussion of Applications of MA to Telecommunication Network Planning	912
	5.	Future Trends	941
	Refere	nces	944
•••			
23	1.1.1.		052
M	intiple (Interia Decision Analysis and Sustainable Development	933
Gi	useppe	Munda The Concept of Sustainable Development	054
	1. 2	Macauring Sustainability. The Jacua of Sustainability. Assessment	934
	2.	Indexes	958
	3.	A Defensible Axiomatic Setting for Sustainability Composite Indi-	062
	4	Cators Warning! Not Always Dankings Have to Do Trusted	963
	4. 5	The Josue of the "Quality of the Social Decision Processes"	900
	з. с	The Issue of the Quanty of the Social Decision Processes	9/1
	0.	Sustainability Policies	976
	7	Conclusion	980
	7. Refere	ences	981
			/01

Part VIII MCDM Software

24	
Multiple Criteria Decision Support Software	989
H. Roland Weistroffer, Charles H. Smith, Subhash C. Narula	
1. Introduction	990
2. Software Overview	990
3. Concluding Remarks	1009

References	1011
Contributing Authors	1019
Index	1035

xii

List of Figures

0.1		
2.1	Graphical representation of <i>R</i> .	34
2.2	Matrix representation of <i>R</i> .	34
2.3	Graphical representation of the semiorder.	55
3.1	Comparing the length of two rods.	78
3.2	Comparing the length of composite rods.	79
3.3	Using standard sequences.	81
3.4	Building a standard sequence on X_2 .	94
3.5	Building a standard sequence on X_1 .	95
3.6	The grid.	96
3.7	The entire grid.	97
3.8	The Thomsen condition.	99
3.9	Restricted solvability on X_1 .	100
3.10	Value function when X_i is discrete.	106
3.11	Value function when X_i is continuous.	107
4.1	Inferring parameter values for ELECTRE TRI.	151
5.1	Preference function.	169
5.2	Valued outranking graph.	172
5.3	The PROMETHEE outranking flows.	173
5.4	Profile of an alternative.	175
5.5	Projection on the GAIA plane.	176
5.6	Alternatives and criteria in the GAIA plane.	177
5.7	PROMETHEE II ranking. PROMETHEE decision axis	
	and stick.	179
5.8	Piloting the PROMETHEE decision stick.	180
5.9	"Human Brain".	181
5.10	Two types of decision problems.	182
5.11	Conflict between DM's.	186
5.12	Overview PROMETHEE GDSS procedure.	186
5.13	Main window.	187

MULTIPLE CRITERIA DECISION ANALYSIS

5.14	PROMETHEE rankings, action profiles, GAIA plane.	188
5.15	Walking weights.	188
6.1	Set of feasible weights.	202
6.2	ORESTE flow chart.	210
6.3	Outranking graph.	215
6.4	Geometrical interpretation of preferences indices.	228
6.5	Indifference areas.	232
6.6	Indifference areas: rectangular.	233
6.7	Indifference areas: rhomboidal.	234
6.8	Indifference areas: elliptical.	234
6.9	Aggregated semiorder structure.	236
6.10	Aggregated pseudo-order structure.	236
6.11	Partial profile of action a_h .	241
6.12	Partial profiles and partial broken lines of a_r , a_s , a_t .	242
6.13	Partial frequencies of a_r, a_s, a_t .	243
6.14	Determination of a relation between the two alternatives	
	$a,b \in A$ on the basis of the values of global indices.	254
6.15	Partial preorder.	259
7.1	Choice between two lotteries.	279
7.2	Additive Independence Criterion for Risk.	280
7.3	Piecewise linear approximation of $v_1(\cdot)$.	289
7.4	Piecewise linear approximation of $v_2(\cdot)$.	289
8.1	The aggregation and disaggregation paradigms in MCDA [44].	300
8.2	The disaggregation-aggregation approach [96].	301
8.3	The normalized marginal value function.	303
8.4	Post-optimality analysis [43].	306
8.5	Ordinal regression curve (ranking versus global value).	307
8.6	Normalized marginal value functions.	313
8.7	A non-monotonic partial utility function [18].	316
8.8	Distributional evaluation and marginal value function.	319
8.9	Distribution of the actions A_1 and A_2 on $u(\mathbf{g})$ [43].	321
8.10	Simplified decision support process based on disaggre-	
	gation approach [44].	329
8.11	Methodological flowchart of MARKEX [63].	332
9.1	Comparisons according to volume.	359
9.2	To choose the best hospice plan, one constructs a hierar-	
	chy modeling the benefits to the patient, to the institution,	
	and to society. This is the benefits hierarchy of two sep-	261
	arate hierarchies.	361

xiv

9.3	To choose the best hospice plan, one constructs a hierar- chy modeling the community, institutional, and societal	
	costs. This is the costs hierarchy of two separate hierarchies.	362
9.4	Employee evaluation hierarchy.	371
9.5	Hierarchies for rating benefits, costs, opportunities, and risks.	380
9.6	Prioritizing the strategic criteria to be used in rating the BOCR.	381
9.7	How a hierarchy compares to a network.	384
9.8	The supermatrix of a network and detail of a component	
	in it.	385
9.9	The supermatrix of a hierarchy with the resulting limit	
	matrix corresponding to hierarchical composition.	385
9.10a	School choice hierarchy composition.	388
9.10b	Supermatrix of school choice hierarchy gives same re-	
	sults as hierarchic composition.	388
9.11	The clusters and nodes of a model to estimate the relative	
	market share of Walmart, Kmart and Target.	391
9.12	The clusters and nodes of a model to estimate the relative	
	market share of footware.	398
9.13	Hierarchy for rating benefits, opportunities, costs and risks.	405
10.1	Example of sub-type b inconsistency.	417
10.2	Example of incompatibility between (*) and (**).	424
10.3	Procedure for all cases of inconsistency.	431
10.4	Suggestion of change to resolve inconsistency.	433
10.5	Matrix of judgements and basic MACBETH scale.	434
10.6	Representations of the MACBETH scale.	435
10.7	"Greatest" closed intervals included in the free and de-	
	pendent intervals.	437
12.1	Comparing two fuzzy intervals.	476
12.2	Interpretation of the discriminant functions.	493
12.3	Representation of the students problem.	495
12.4	Classes for $\varepsilon = 0.1, k = 1$.	496
12.5	Classes for $\varepsilon = 0.1, k = 1$.	497
12.6	Visual representation of the classes, $k = 6$, $\varepsilon' = 0.1$.	499
12.7	Results for the <i>l</i> -nearest neighbour algorithm, $\varepsilon' = 0.1$,	
	k = 6.	501
13.1	Decision tree representing knowledge included from Table 13.1	. 535
13.2	The hierarchy of attributes and criteria for a car classifi-	
	cation problem.	544
14.1	Different cases of interaction.	578
14.2	Ternary alternatives for $n = 2$.	593

16.1	Illustrating the projection of a feasible and an infeasible	
	aspiration level point onto the nondominated surface.	651
16.2	An example of the Pareto Race screen.	660
16.3	The screen of the computer-graphics interface in VIMDA.	661
18.1	Fuzzy inequality and equality relations.	726
18.2	L-R fuzzy number $\tilde{a} = (a^{L}, a^{R}, \alpha, \beta)_{LR}$.	728
18.3	Possibility and necessity measures.	731
18.4	Differences among six extended fuzzy relations.	736
18.5	Relations among VWF, WF1, WF2, MF1, MF2, SF1,	
	SF2 and VSF.	739
18.6	Relations among VWF, MF1, MF2 and VSF.	740
18.7	$\mathrm{WF1}(ilde{a}_i^\mathrm{T} oldsymbol{x} \simeq_i ilde{b}_i).$	746
18.8	Fuzzy max $\widetilde{\max}(\tilde{a}, \tilde{b})$.	746
18.9	Symmetric triangular fuzzy number \hat{a} defined by $E_*(\tilde{a})$	
	and $E^*(\tilde{a})$.	748
18.10	Two differences between fuzzy numbers \tilde{a} and \tilde{b} .	751
20.1	The neo-classical view on the objective of the firm.	811
20.2	Situations leading to MCDA in the firm.	812
20.3	A bird's-eye view of the framework.	817
20.4	Feasible regions Z of (MC-Unrestr) and (MC-Bounds)	
	for the same eight securities.	826
20.5	Continuous, bullet-shaped, and unbounded feasible re-	
	gion Z created by securities A, B and C.	827
20.6	Nondominated frontiers as a function of changes in the	
	value of upper bound parameter μ .	830
20.7	An ellipsoidal feasible region projected onto two dimen-	
	sional risk-return space	834
21.1	Typical hierarchical structure of criteria used in energy	000
21.2	planning.	882
21.2	MCDA methods in energy planning applications.	000
22.1	State transition diagram.	914
22.2	Example of priority regions.	930
23.1	A systemic vision of sustainability issues.	956
23.2	impact matrix for the 4 chosen cities according to the	067
22.2	Selected Indicators.	90/ 075
23.3	The ideal problem structuring in SNICE.	9/5

List of Tables

2.1	Principal t-norms and t-conorms.	37
2.2	Various ε -representations with ε =1.	55
3.1	Evaluation of the 5 offices on the 5 attributes.	84
5.1	Evaluation table.	165
5.2	Weights of relative importance.	168
5.3	Types of generalised criteria ($P(d)$: Preference function).	170
5.4	Single criterion net flows.	176
6.1	Rank evaluation of alternatives (impact matrix).	201
6.2	The concordance/discordance indices.	201
6.3	Concordance matrix.	203
6.4	Rank evaluation of alternatives (impact matrix).	204
6.5	Regime matrix.	204
6.6	Position-matrix.	208
6.7	City-block.	208
6.8	Preference matrix for a criterion with ordinal evaluation.	211
6.9	Preference matrix for a criterion (Max) with evaluation	
	on a ratio scale.	211
6.10	Preference importance table for g_j , a, b .	212
6.11	Combined preferences with weights variable.	212
6.12	Evaluation of alternatives*.	213
6.13	Criteria g_1 and g_3 (ordinal scales).	213
6.14	Criterion g_2 (ordinal scale).	214
6.15	Criterion g_4 (ratio scale MIN).	214
6.16	Preference structure of weights.	214
6.17	Pairwise comparison between a_1 and a_4 .	214
6.18	Axiomatic system of MAPPAC basic indices.	227
6.19	Preference indices.	228
6.20	Table of observed stochastic dominances.	258
6.21	Explicable concordances indices.	259

8.1	Criteria values and ranking of the DM.	309
8.2	Marginal value functions (initial solution).	311
8.3	Linear programming formulation (post-optimality analysis).	312
8.4	Post-optimality analysis and final solution.	312
8.5	Marginal value functions (final solution).	313
8.6	LP size of UTA models.	317
8.7	Indicative applications of the UTA methods.	335
9.1	The fundamental scale of absolute numbers.	356
9.2	Which drink is consumed more in the U.S.? An example	
	of estimation using judgments.	358
9.3	The entries in this matrix respond to the question: Which	
	criterion is more important with respect to choosing the	
	best hospice alternative and how strongly?	364
9.4	The entries in this matrix respond to the question: Which	
	subcriterion yields the greater benefit with respect to in-	
o r	stitutional benefits and how strongly?	365
9.5	The entries in this matrix respond to the question: Which	
	model yields the greater benefit with respect to direct care	265
06	The entries in this metric merced to the superior. Which	303
9.0	criterion is a greater determinant of cost with respect to	
	the care method and how strongly?	365
97	The entries in this matrix respond to the question: Which	505
).1	criterion incurs greater institutional costs and how strongly?	366
98	The entries in this matrix respond to the question: Which	500
2.0	model incurs greater cost with respect to institutional	
	costs for recruiting staff and how strongly?	366
9.9	Synthesis (P=Priorities, M=Model).	367
9.9	(continued)	368
9.10	Ranking intensities.	371
9.11	Ranking alternatives.	372
9.12	Random index.	374
9.13	Calculating returns arithmetically.	376
9.14	Normalized criteria weights and normalized alternative	
	weights from measurements in the same scale (additive	
	synthesis).	377
9.15	Priority Ratings for the Merits: Benefits, Costs, Oppor-	
	tunities, and Risks. Intensities: Very High (0.42), High	
	(0.26), Medium (0.16), Low (0.1), Very Low (0.06).	381
9.16	Four methods of synthesizing BOCR using the ideal mode.	382

xviii

List of Tables		
9.17	The supermatrix.	389
9.18	The limit supermatrix.	389
9.19	The unweighted supermatrix.	392
9.19	(continued)	393
9.20	The cluster matrix.	394
9.21	The weighted supermatrix.	395
9.21	(continued)	396
9.22	The synthesized results for the alternatives.	397
9.23	Footwear actual statistics and model results along with	
	the compatibility index.	401
9.24	Priority ratings for the merits: Benefits, opportunities,	
	costs and risks.	405
9.25	Overall syntheses of the alternatives.	406
12.1	Number of alternatives per evaluation level.	485
12.2	Score of each of the evaluation levels.	485
12.3	Profiles of the students.	495
12.4	Importance indexes for the students problem.	498
12.5	Global accuracy.	498
12.6	Per class accuracy: Precise assignments.	499
12.7	Assignments of the elements to intervals of classes.	499
12.8	Importance indexes.	500
12.9	Global and weighted accuracy in %.	501
13.1	Data table presenting examples of comprehensive evalu-	
	ations of students.	511
13.2	Quality of classification and Shapley value for classifi-	
	cation <i>Cl</i> and set of criteria <i>P</i> .	522
13.3	Evaluations of new students.	532
13.4	Evaluations of new students.	533
13.5	Information table of the illustrative example.	536
13.6	Students with interval evaluations.	538
13.7	Example of missing values in the evaluation of students.	541
13.8	Substitution of missing values in the evaluation of students.	542
13.9	Decision table with reference objects.	551
13.10	A fragment of S_{PCT} .	552
13.11	Ranking of warehouses for sale by decision rules and the	
	Net Flow Score procedure.	554
15.1	Criteria for applicant evaluation.	616
15.2	Comparison of hypothetical alternatives.	618
15.3	An Example of a joint ordinal scale.	619

MULTIPLE CRITERIA DECISION ANALYSIS

15.4	Effectiveness of STEP-ZAPROS.	624
19.1	Summary of references.	766
20.1	Applications of MCDA approaches in bankruptcy and	
	credit risk assessment.	845
20.2	Applications of MCDA approaches in portfolio selection	
	and management.	846
20.3	Applications of MCDA approaches in the assessment of	
	corporate performance.	847
20.4	Applications of MCDA approaches in investment appraisal.	848
20.5	Applications of MCDA approaches in other financial	
	decision-making problems.	848
21.1	Broad categories of planning problems in power systems.	864
21.2	Key aspects in problem structuring in papers of Group A.	880
21.3	Key aspects in problem structuring in papers of Group B.	880
21.4	Key aspects in problem structuring in papers of Group C.	880
21.5	Key aspects in problem structuring in papers of Group D.	881
23.1	Example of composite indicators. (Source: OECD; JRC,	
	2002, cited in [72, p. 4])	962
23.2	Normalised impact matrix.	968
23.3	Outranking matrix of the 4 cities according to the 9 indicators.	968
23.4	Possible ranking.	968
23.5	Weighted outranking matrix.	969
23.6	Possible ranking with new scores.	970
24.1	Software by problem type.	992

XX

Introduction

José Figueira, Salvatore Greco, Matthias Ehrgott

1. Human Reflection about Decision

Decision has inspired reflection of many thinkers since the ancient times. The great philosophers Aristotle, Plato, and Thomas Aquinas, to mention only a few names, discussed the capacity of humans to decide and in some manners claimed that this possibility is what distinguishes humans from animals. To illustrate some important aspects of decision, let us briefly quote two important thinkers: Ignatius of Loyola (1491-1556) and Benjamin Franklin (1706-1790).

To consider, reckoning up, how many advantages and utilities follow for me from holding the proposed office or benefice [...], and, to consider likewise, on the contrary, the disadvantages and dangers which there are in having it. Doing the same in the second part, that is, looking at the advantages and utilities there are in not having it, and likewise, on the contrary, the disadvantages and dangers in not having the same. [...] After I have thus discussed and reckoned up on all sides about the thing proposed, to look where reason more inclines: and so, according to the greater inclination of reason, [...], deliberation should be made on the thing proposed.

This fragment from the "Spiritual Exercises" of St. Ignatius of Loyola [14] has been taken from a paper by Fortemps and **Słowiński** [12].

London, Sept 19, 1772

Dear Sir,

In the affair of so much importance to you, wherein you ask my advice, I cannot, for want of sufficient premises, advise you what to determine, but if you please I will tell you how. [...], my way is to divide half a sheet of paper by a line into two columns; writing over the one Pro, and over the other Con. [...] When I have thus got them all together in one view, I endeavor to estimate their respective weights; and where I find two, one on each side, that seem equal, I strike them both out. If I find a reason pro equal to some two reasons con, I strike out the three. If I judge some two reasons con, equal to three reasons pro, I strike out the five; and thus proceeding I find at length where the balance lies; and if, after a day or two of

further consideration, nothing new that is of importance occurs on either side, I come to a determination accordingly. [...] I have found great advantage from this kind of equation, and what might be called moral or prudential algebra. Wishing sincerely that you may determine for the best, I am ever, my dear friend, yours most affectionately.

B. Franklin

This letter from Benjamin Franklin to Joseph Prestly has been taken from a paper by MacCrimmon [17].

What is interesting in the above two quotations is the fact that decision is strongly related to the comparison of different points of view, some in favour and some against a certain decision. This means that decision is intrinsically related to a plurality of points of view, which can roughly be defined as criteria. Contrary to this very natural observation, for many years the only way to state a decision problem was considered to be the definition of a single criterion, which amalgamates the multidimensional aspects of the decision situation into a single scale of measure. For example, even today the textbooks of Operations Research suggest to deal with a decision problem as follows: to first define an objective function, i.e., a single point of view like a comprehensive profit index (or a comprehensive cost index) representing the preferability (or dis-preferability) of the considered actions and then to maximize (minimize) this objective. This is a very reductive, and in some sense also unnatural, way to look at a decision problem. Thus, for at least thirty years, a new way to look at decision problems has more and more gained the attention of researchers and practitioners. This is the approach considered by Loyola and Franklin, i.e., the approach of explicitly taking into account the pros and the cons of a plurality of points of view, in other words the domain of Multiple Criteria Decision Analysis (MCDA). Therefore, MCDA intuition is closely related to the way humans have always been making decisions. Consequently, despite the diversity of MCDA approaches, methods and techniques, the basic ingredients of MCDA are very simple: a finite or infinite set of actions (alternatives, solutions, courses of action, ...), at least two criteria, and, obviously, at least one decision-maker (DM). Given these basic elements, MCDA is an activity which helps making decisions mainly in terms of choosing, ranking or sorting the actions.

2. Technical Reflection about Decision: MCDA Researchers before MCDA

Of course, not only philosophers reasoned about decision-making. Many important technical aspects of MCDA are linked to classic works in economics, in particular, welfare economics, utility theory and voting oriented social choice theory (see [28]). Aggregating the opinion or the preferences of voters or individuals of a community into collective or social preferences is quite similar a

Introduction

problem to devising comprehensive preferences of a decision-maker from a set of conflicting criteria in MCDA [7].

Despite the importance of Ramon Llull's (1232-1316) and Nicolaus Cusanus's (1401-1464) concerns about and interests in this very topic, the origins of voting systems are often attributed to Le Chevalier Jean-Charles de Borda (1733-1799) and Marie Jean Antoine Nicolas de Caritat (1743-1794), Le Marquis de Condorcet. However, Ramon Llull introduced the pairwise comparison concept before Condorcet [13], while Nicolaus Cusanus introduced the scoring method about three and a half centuries before Borda [27]. Furthermore, it should be noted that a letter from Pliny the Younger (\approx AD 105) to Titus Aristo shows that he introduced the ternary approval voting strategy and was interested in voting systems a long time before Ramon Llull and Nicolaus Cusanus [18, Chapter 2]. Anyway, Borda's scoring method [4] has some similarities with current utility and value theories as has Condorcet's method [10] with the outranking approach of MCDA. In the same line of concerns, i.e., the aggregation of individual preferences into collective ones, Jeremy Bentham (1748-1832) introduced the utilitarian calculus to derive the total utility for the society from the aggregation of the personal interests of the individuals of a community [3]. Inspired by Bentham's works, Francis Ysidro Edgeworth (1845-1926), a utilitarian economist, was mainly concerned with the maximization of the utility of the different competing agents in economy. Edgeworth tried to find the competitive equilibrium points for the different agents. He proposed to draw indifference curves (lines of equal utility) for each agent and then derive the contract curve, a curve that corresponds to the notion of the Pareto or efficient set [21]. Not long afterwards, Vilfredo Federico Damaso Pareto (1848-1923) gave the following definition of ophelimity [utility] for the whole community [22]:

We will say that the members of a collectivity enjoy maximum ophelimity in a certain position when it is impossible to find a way of moving from that position very slightly in such a manner that the ophelimity enjoyed by each of the individuals of that collectivity increases or decreases. That is to say, any small displacement in departing from that position necessarily has the effect of increasing the ophelimity which certain individuals enjoy, of being agreeable to some, and disagreeable to others.

From this definition it is easy to derive the concept of dominance, which today is one of the fundamental concepts in MCDA.

MCDA also benefits from the birth and development of game theory. Félix Edouard Justin Emile Borel (1871-1956) and John von Neumann (1903-1957) are considered the founders of game theory [5, 6, 20, 19]. Many concepts from this discipline had a strong impact on the development of MCDA.

The concept of efficient point was first introduced in 1951 by Tjalling Koopmans (1910-1985) in his paper "Analysis of production as an efficient combination of activities" [15]: A possible point in the commodity space is called efficient whenever an increase in one of its coordinates (the net output of one good) can be achieved only at the cost of a decrease in some other coordinate (the net output of a good).

In the same year (1951) Harold William Kuhn (born 1925) and Albert William Tucker (1905-1995) introduced the concept of vector maximum problem [16]. In the sixties, basic MCDA concepts were explicitly considered for the first time. As two examples we mention Charnes' and Cooper's works on goal programming [8] and the proposition of ELECTRE methods by Roy [23]. The seventies saw what is conventionally considered the "official" starting point of MCDA, the conference on "Multiple Criteria Decision Making" organised in 1972 by Cochrane and Zeleny at Columbia University in South Carolina [9]. Since then MCDA has seen a tremendous growth which continues today.

3. The Reasons for this Collection of State-of-the-Art Surveys

The idea of MCDA is so natural and attractive that thousands of articles and dozens of books have been devoted to the subject, with many scientific journals regularly publishing articles about MCDA. To propose a new collection of state-of-the-art surveys of MCDA in so rich a context may seem a rash enterprise. Indeed, some objections come to mind. There are many and good handbooks and reviews on the subject (to give an idea consider [1,11, 25, 26, 29]). The main ideas are well established for some years and one may question the contributions this volume can provide. Moreover, the field is so large and comprises developments so heterogeneous that it is almost hopeless to think that an exhaustive vision of the research and practice of MCDA can be given.

We must confess that at the end of the work of editing this volume we agree with the above remarks. However, we believe that a new and comprehensive collection of state-of-the-art surveys on MCDA can be very useful. The main reasons which, despite our original resistance, brought us to propose this book are the following:

- 1 Many of the existing handbooks and reviews are not too recent. Since MCDA is a field which is developing very quickly this is an important reason.
- 2 Even though the field of research and application of MCDA is so large, there are some main central themes around which MCDA research and applications have been developed. Therefore our approach was to try to present the at least in our opinion most important of these ideas.

With reference to the first point, we can say that we observed many theoretical developments which changed MCDA over the last ten years. We tried to consider

Introduction

these changes as much as possible and in this perspective strong points of the book are the following:

- 1 It presents the most up-to-date discussions on well established methodologies and theories such as outranking based methods and MAUT.
- 2 The book also contains surveys of new, recently emerged fields such as conjoint measurement, fuzzy preferences, fuzzy integrals, rough sets and others.

Following these points we drafted a list of topics and asked well known researchers to present them. We encouraged the authors to cooperate with the aim to present different perspectives if topics had some overlap. We asked the authors to present a comprehensive presentation of the most important aspects of the field covered by their chapters, a simple yet concise style of exposition, and considerable space devoted to bibliography and survey of relevant literature. We also requested a sufficiently didactic presentation and a text that is useful for researchers in MCDA as well as for people interested in real life applications.

The importance of these requirements is related also to the specific way the MCDA community looks at its research field. It can be summarized in the observation that there is a very strong and vital link between theoretical and methodological developments on the one hand and real applications on the other hand. Thus, the validity of theoretical and methodological developments can only be measured in terms of the progress given to real world practice. Moreover, interest of MCDA to deal with concrete problems is related to the consideration of a sound theoretical basis which ensures the correct application of the methodologies taken into account.

In fact, not only the chapters of our book but rather all MCDA contributions should satisfy the requirements stated out above, because they should be not too "esoteric" and therefore understandable for students, theoretically well founded, and applicable to some advantage in reality.

4. A Guided Tour of the Book

Of course, this book can be read from the first to the last page. However, we think that this is not the only possibility and it may not even be the most interesting possibility. In the following we propose a guided tour of the book suggesting some reference points that are hopefully useful for the reader.

4.1 Part I: An Overview of MCDA Techniques Today

This part is important because MCDA is not just a collection of theories, methodologies, and techniques, but a specific perspective to deal with decision problems. Losing this perspective, even the most rigorous theoretical developments and applications of the most refined methodologies are at risk of being meaningless, because they miss an adequate consideration of the aims and of the role of MCDA. We share this conviction with most MCDA researchers. Bernard Roy discusses these "pre-theoretical" assumptions of MCDA and gives an overview of the field. Bernard Roy, besides giving many important theoretical contributions, engaged himself in thorough reflections on the meaning and the value of MCDA, proposing some basic key concepts that are accepted throughout the MCDA community.

4.2 Part II: Foundations of MCDA

This part of the book is related to a fundamental problem of MCDA, the representation of preferences. Classically, for example in economics, it is supposed that preference can be represented by a utility function assigning a numerical value to each action such that the more preferable an action, the larger its numerical value. Moreover, it is very often assumed that the comprehensive evaluation of an action can be seen as the sum of its numerical values for the considered criteria. Let us call this the classical model. It is very simple but not too realistic. Indeed, there is a lot of research studying under which conditions the classical model holds. These conditions are very often quite strict and it is not reasonable to assume that they are satisfied in all real world situations. Thus, other models relaxing the conditions underlying the classical model have been proposed. This is a very rich field of research, which is first of all important for those interested in the theoretical aspects of MCDA. However, it is also of interest to readers engaged in applications of MCDA. In fact, when we adopt a formal model it is necessary to know what conditions are supposed to be satisfied by the preferences of the DM. In the two chapters of this part problems related to the representations of preferences are discussed.

Meltem Öztürk, Alexis Tsoukiàs, and Philippe Vincke present a very exhaustive review of preference modelling, starting from classical results but arriving at the frontier of some challenging issues of scientific activity related to fuzzy logic and non-classical logic.

Denis Bouyssou and Marc Pirlot discuss the axiomatic basis of the different models to aggregate multiple criteria preferences. We believe that this chapter is very important for the future of MCDA. Initially, the emphasis of MCDA research was on proposal of new methods. But gradually the necessity to understand the basic conditions underlying each method and its specific axiomatization became more and more apparent. This is the first book on MCDA with so much space dedicated to the subject of foundations of MCDA.

4.3 Part III: Outranking Methods

In this part of the book the class of outranking based multiple criteria decision methods is presented. Given what is known about the decision-maker's prefer-

ences and given the quality of the performances of the actions and the nature of the problem, an outranking relation is a binary relation S defined on the set of potential actions A such that aSb if there are enough arguments to decide that a is at least as good as b, whereas there is no essential argument to refute that statement [24]. Methods which strictly apply this definition of outranking relation are the ELECTRE methods. They are very important in many respects, not least historically, since ELECTRE I was the first outranking method [2].

However, within the class of outranking methods we generally consider all methods which are based on pairwise comparison of actions. Thus, another class of very well known multiple criteria methods, PROMETHEE methods, are considered in this part of the book. Besides ELECTRE and PROMETHEE methods, many other interesting MCDA methods are based on the pairwise comparison of actions. José Figueira, Vincent Mousseau and Bernard Roy present the ELECTRE methods; Jean-Pierre Brans and Bertrand Mareschal present the PROMETHEE methods and Jean-Marc Martel and Benedetto Matarazzo review the rich literature of other outranking methods.

4.4 Part IV: Multiattribute Utility and Value Theories

In this part of the book we consider multiple attribute utility theory (MAUT). This MCDA approach tries to assign a utility value to each action. This utility is a real number representing the preferability of the considered action. Very often the utility is the sum of the marginal utilities that each criterion assigns to the considered action. Thus, this approach very often coincides with what we called the classical approach before. As we noted in commenting Part I, this approach is very simple at first glance. It is often applied in real life, e.g., every time we aggregate some indices by means of a weighted sum we are applying this approach. Despite its simplicity the approach presents some technical problems. The first are related to the axiomatic basis and to the construction of marginal utility functions (i.e., the utility functions relative to each single criterion), both in case of decision under certainty and uncertainty. These problems are considered by James Dyer in a comprehensive chapter about the fundamentals of this approach.

Yannis Siskos, Vangelis Grigoroudis and Nikolaos Matsatsinis present the very well known UTA methods, which on the basis of the philosophy of the aggregation-disaggregation approach and using linear programming, build a MAUT model that is as consistent as possible with the DM's preferences expressed in actual previous decisions or on a "training sample". The philosophy of aggregation-disaggregation can be summarized as follows: How is it possible to assess the decision-maker's preference model leading to exactly the same decision as the actual one or at least the most "similar" decision?

Thomas Saaty presents a very well known methodology to build utility functions, the AHP (Analytic Hierarchy Process) and its more recent extension, the ANP (Analytic Network Process). AHP is a theory of measurement that uses pairwise comparisons along with expert judgments to deal with the measurement of qualitative or intangible criteria. The ANP is a general theory of relative measurement used to derive composite priority ratio scales from individual ratio scales that represent relative measurements of the influence of elements that interact with respect to control criteria. The ANP captures the outcome of dependence and feedback within and between clusters of elements. Therefore AHP with its dependence assumptions on clusters and elements is a special case of the ANP.

Carlos Bana e Costa, Jean-Claude Vansnick, and Jean-Marie De Corte present another MCDA methodology based on the additive utility model. This methodology is MACBETH (Measuring Attractiveness by a Categorical Based Evaluation Technique). It is an MCDA approach that requires only qualitative judgements about differences of values of attractiveness of one action over another action to help an individual or a group to quantify the relative preferability of different actions. In simple words, the MACBETH approach tries to answer the following questions: How can we build an interval scale of preferences on a set of actions without forcing evaluators to produce direct numerical representations of their preferences? How can we coherently aggregate these qualitative evaluations using an additive utility model?

4.5 Part V: Non-Classical MCDA Approaches

Many approaches have been proposed in MCDA besides outranking methods and multiattribute utility theory. In this part of the book we try to collect information about some of the most interesting proposals. First, the question of uncertainty in MCDA is considered. Theo Stewart discusses risk and uncertainty in MCDA. It is necessary to distinguish between internal uncertainties (related to decision-maker values and judgements) and external uncertainties (related to imperfect knowledge concerning consequences of actions). The latter, corresponding to the most accepted interpretation of uncertainty in the specialized literature, has been considered in the chapter. Four broad approaches for dealing with external uncertainties are discussed. These are multiattribute utility theory and some extensions; stochastic dominance concepts, primarily in the context of pairwise comparisons of alternatives; the use of surrogate risk measures such as additional decision criteria; and the integration of MCDA and scenario planning.

The second consideration is the fuzzy set approach to MCDA. Most real world decision problems take place in a complex environment where conflicting systems of logic, uncertain and imprecise knowledge, and possibly vague

xxviii

Introduction

preferences have to be considered. To face such complexity, preference modeling requires the use of specific tools, techniques, and concepts which allow the available information to be represented with the appropriate granularity. In this perspective, fuzzy set theory has received a lot of attention in MCDA for a long time. Patrick Meyer and Marc Roubens present the fuzzy set approach to MCDA for choice, ranking, and sorting problems. In this chapter, several MCDA approaches based on fuzzy evaluations are reviewed. The authors give details on a sorting procedure for the assignment of alternatives to graded classes when the available information is given by interacting points of view and a subset of prototypic alternatives whose assignment is given beforehand. A software dedicated to that approach (TOMASO) is briefly presented. Finally they recall the concepts of good and bad choices based on dominant and absorbent kernels in the valued digraph that corresponds to an ordinal valued outranking relation.

Salvatore Greco, Benedetto Matarazzo and **Roman Słowiński** present the decision rule approach to MCDA. This approach represents the preferences in terms of "if ..., then ..." decision rules such as, for example, "if the maximum speed of car x is at least 175 km/h and its price is at most \$12000, then car x is comprehensively at least medium". This approach is related to rough set theory and to artificial intelligence. Its main advantages are the following. The DM gives information in the form of examples of decisions, which requires relatively low cognitive effort and which is quite natural. The decision model is also expressed in a very natural way by decision rules. This permits an absolute transparency of the methodology for the DM. Another interesting feature of the decision rule approach is its flexibility, since any decision rule model can be expressed in terms of decision rules and, even better, the decision rule model can be much more general than all other existing decision models used in MCDA.

Michel Grabisch and Christophe Labreuche present the fuzzy integral approach that is known in MCDA for the last two decades. In very simple words this methodology permits a flexible modeling of the importance of criteria. Indeed, fuzzy integrals are based on a capacity which assigns an importance to each subset of criteria and not only to each single criterion. Thus, the importance of a given set of criteria is not necessarily equal to the sum of the importance of the whole subset of criteria is smaller than the sum of the importances of its individual criteria, then we observe a redundancy between criteria, which in some way represents overlapping points of view. On the other hand, if the importances of its members, then we observe a synergy between criteria, the evaluations of which reinforce one another. On the basis of the importance of specific fuzzy

integrals, the most important of which are the Choquet integral (for cardinal evaluations) and the Sugeno integral (for ordinal evaluations).

Finally, Helen Moshkovich, Alexander Mechitov and David Olson present the verbal decision methods MCDA. This is a class of methods originated from the work of one of the MCDA pioneers, the late Oleg Larichev. The idea of verbal decision analysis is to build a decision model using mostly qualitative information expressed in terms of a language that is natural for the DM. Moreover, measurement of criteria and preference elicitation should be psychologically valid. The methods, besides being mathematically sound, should check the DM's consistency and provide transparent recommendations.

4.6 Part VI: Multiobjective Mathematical Programming

The classical formulation of an Operations Research model is based on the maximization or minimization of an objective function subject to some constraints. A very rich and powerful arsenal of methodologies and techniques has been developed and continues to be developed within Operations Research. However, it is very difficult to summarize all the points of view related to the desired results of the decision at hand in only one objective function. Thus, it seems natural to consider a very general formulation of decision problems where a set of objective functions representing different criteria have to be "optimized". To deal with these types of problems requires not only to generalize the methodologies developed for classical single objective optimization problems, but also to introduce new methodologies and techniques permitting to compare different objectives according to the preferences of the DM. In this part of the book we tried to give adequate space to these two sides of multiobjective programming problems.

Emphasis on the side of gathering information from the decision-maker and consequent preference representation is given in the first chapter of this part, in which Pekka Korhonen introduces the main concepts and basic ideas of interactive methods dealing with multiobjective programming problems. The basic observation is that, since the DM tries to "maximize" a set of criteria in conflict with each other and an increment of one criterion can only be reached by accepting a decrement of at one or more other criteria, we need to compare the advantages coming from increments with respect to some criteria with the disadvantages coming from corresponding decrements of other criteria. A utility or value function representing DM preferences would seem the most appropriate for this aim, but the key assumption in multiple objective programming is that this utility function is unknown. Therefore many methodologies have been proposed with the aim of developing a fruitful dialogue with the DM permitting, on the one hand, to provide the DM with relevant information about non-dominated solutions and, on the other hand, to obtain useful information