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Preface

The possibility of the present collection of review papers came up the last
day of IWAP 2002. The idea was to gather in a single volume a sample of the
many applications of probability.

As a glance at the table of contents shows, the range of covered topics is
wide, but it sure is far away of being close to exhaustive.

Picking up a name for this collection not easier than deciding on a criterion
for ordering the different contributions. As the word ‘advances” suggests, each
paper represents a further step toward understanding a class of problems. No
last word on any problem is said, no subject is closed.

Even though there are some overlaps in subject matter, it does not seem
sensible to order this eclectic collection except by chance, and such an order
is already implicit in a lexicographic ordering by first author’s last name: No-
body (usually, that is) chooses a last name, does she/he? So that is how we
settled the matter of ordering the papers.

We thank the authors for their contribution to this volume.

We also thank John Martindale, Editor, Kluwer Academic Publishers, for
inviting us to edit this volume and for providing continual support and encour-
agement.
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Abstract We present a unified view to models for text databases, proving new relations
between empirical and theoretical models. A particular case that we cover is the
Web. We also introduce a simple model for random queries and the size of their
answers, giving experimental results that support them. As an example of the
importance of text modeling, we analyze time and space overhead of inverted
files for the Web.

1.1 Introduction

Text databases are becoming larger and larger, the best example being the
World Wide Web (or just Web). For this reason, the importance of the infor-
mation retrieval (IR) and related topics such as text mining, is increasing every
day [Baeza-Yates & Ribeiro-Neto, 1999]. However, doing experiments in large
text collections is not easy, unless the Web is used. In fact, although reference
collections such as TREC [Harman, 1995] are very useful, their size are sev-
eral orders of magnitude smaller than large databases. Therefore, scaling is an
important issue. One partial solution to this problem is to have good models
of text databases to be able to analyze new indices and searching algorithms
before making the effort of trying them in a large scale. In particular if our
application is searching the Web. The goals of this article are two fold: (1) to
present in an integrated manner many different results on how to model nat-
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ural language text and document collections, and (2) to show their relations,
consequences, advantages, and drawbacks.

We can distinguish three types of models: (1) models for static databases,
(2) models for dynamic databases, and (3) models for queries and their an-
swers. Models for static databases are the classical ones for natural language
text. They are based in empirical evidence and include the number of differ-
ent words or vocabulary (Heaps’ law), word distribution (Zipf’s law), word
length, distribution of document sizes, and distribution of words in documents.
We formally relate the Heaps’ and Zipf’s empirical laws and show that they
can be explained from a simple finite state model.

Dynamic databases can be handled by extensions of static models, but there
are several issues that have to be considered. The models for queries and their
answers have not been formally developed until now. Which are the correct
assumptions? What is a random query? How many occurrences of a query are
found? We propose specific models to answer these questions.

As an example of the use of the models that we review and propose, we
give a detailed analysis of inverted files for the Web (the index used in most
Web search engines currently available), including their space overhead and
retrieval time for exact and approximate word queries. In particular, we com-
pare the trade-off between document addressing (that is, the index references
Web pages) and block addressing (that is, the index references fixed size log-
ical blocks), showing that having documents of different sizes reduces space
requirements in the index but increases search times if the blocks/documents
have to be traversed. As it is very difficult to do experiments on the Web as a
whole, any insight from analytical models has an important value on its own.

For the experiments done to backup our hypotheses, we use the collections
contained in TREC-2 [Harman, 1995], especially the Wall Street Journal (WSJ)
collection, which contains 278 files of almost 1 Mb each, with a total of 250
Mb of text. To mimic common IR scenarios, all the texts were transformed to
lower-case, all separators to single spaces (except line breaks); and stopwords
were eliminated (words that are not usually part of query, like prepositions,
adverbs, etc.). We are left with almost 200 Mb of filtered text. Throughout the
article we talk in terms of the size of the filtered text, which takes 80% of the
original text. To measure the behavior of the index as grows, we index the
first 20 Mb of the collection, then the first 40 Mb, and so on, up to 200 Mb.
For the Web results mentioned, we used about 730 thousand pages from the
Chilean Web comprising 2.3Gb of text with a vocabulary of 1.9 million words.

This article is organized as follows. In Section 2 we survey the main em-
pirical models for natural language texts, including experimental results and
a discussion of their validity. In Section 3 we relate and derive the two main
empirical laws using a simple finite state model to generate words. In Sections
4 and 5 we survey models for document collections and introduce new models
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for random user queries and their answers, respectively. In Section 6 we use
all these models to analyze the space overhead and retrieval time of different
variants of inverted files applied to the Web. The last section contains some
conclusions and future work directions.

1.2 Modeling a Document
In this section we present distributions for different objects in a document.

They include characters, words (unique and total) and their length.

1.2.1 Distribution of Characters
Text is composed of symbols from a finite alphabet. We can divide the sym-

bols in two disjoint subsets: symbols that separate words and symbols that
belong to words. It is well known that symbols are not uniformly distributed.
If we consider just letters (a to z), we observe that vowels are usually more
frequent than most consonants (e.g., in English, the letter ‘e’ has the highest
frequency.) A simple model to generate text is the Binomial model. In it, each
symbol is generated with certain fixed probability. However, natural language
has a dependency on previous symbols. For example, in English, a letter ‘f’
cannot appear after a letter ‘c’ and vowels, or certain consonants, have a higher
probability of occurring after ‘c’. Therefore, the probability of a symbol de-
pends on previous symbols. We can use a finite-context or Markovian model
to reflect this dependency. The model can consider one, two or more letters to
generate the next symbol. If we use letters, we say that it is a -order model
(so the Binomial model is considered a 0-order model). We can use these mod-
els taking words as symbols. For example, text generated by a 5-order model
using the distribution of words in the Bible might make sense (that is, it can
be grammatically correct), but will be different from the original [Bell, Cleary
& Witten, 1990, chapter 4]. More complex models include finite-state models
(which define regular languages), and grammar models (which define context
free and other languages). However, finding the correct complete grammar for
natural languages is still an open problem.

For most cases, it is better to use a Binomial distribution because it is simpler
(Markovian models are very difficult to analyze) and is close enough to reality.
For example, the distribution of characters in English has the same average
value of a uniform distribution with 15 symbols (that is, the probability of
two letters being equal is about 1/15 for filtered lowercase text, as shown in
Table 1).

1.2.2 Vocabulary Size

What is the number of distinct words in a document? This set of words is re-
ferred to as the document vocabulary. To predict the growth of the vocabulary
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size in natural language text, we use the so called Heaps’ Law [Heaps, 1978],
which is based on empirical results. This is a very precise law which states that
the vocabulary of a text of words is of size where K
and depend on the particular text. The value of K is normally between 10
and 100, and is a positive value less than one. Some experiments [Araújo et
al, 1997; Baeza-Yates & Navarro,1999] on the TREC-2 collection show that
the most common values for are between 0.4 and 0.6 (see Table 1). Hence,
the vocabulary of a text grows sub-linearly with the text size, in a proportion
close to its square root. We can also express this law in terms of the number of
words, which would change K.

Notice that the set of different words of a language is fixed by a constant
(for example, the number of different English words is finite). However, the
limit is so high that it is much more accurate to assume that the size of the
vocabulary is instead of O(1) although the number should stabilize for
huge enough texts. On the other hand, many authors argue that the number
keeps growing anyway because of the typing or spelling errors.

How valid is the Heaps’ law for small documents? Figure 1 shows the evo-
lution of the value as the text collection grows. We show its value for up to
1 Mb (counting words). As it can be seen, starts at a higher value and con-
verges to the definitive value as the text grows. For 1 Mb it has almost reached
its definitive value. Hence, the Heaps’ law holds for smaller documents but the

value is higher than its asymptotic limit.

Figure 1. Value of as the text grows. We added at the end the value for the 200 Mb
collection.

For our Web data, the value of is around 0.63. This is larger than for
English text for several reasons. Some of them are spelling mistakes, multiple
languages, etc.
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1.2.3 Distribution of Words
How are the different words distributed inside each document?. An approx-

imate model is the Zipf’s Law [Zipf, 1949; Gonnet & Baeza-Yates, 1991],
which attempts to capture the distribution of the frequencies (that is, number
of occurrences) of the words in the text. The rule states that the frequency
of the most frequent word is times that of the most frequent word.
This implies that in a text of words with a vocabulary of V words, the
most frequent word appears times, where is the harmonic
number of order of V, defined as

so that the sum of all frequencies is The value of depends on the text.
In the most simple formulation, and therefore
However, this simplified version is very inexact, and the case (more
precisely, between 1.7 and 2.0, see Table 1) fits better the real data [Araújo
et al, 1997]. This case is very different, since the distribution is much more
skewed, and Experimental data suggests that a better model is

where c is an additional parameter and is such that all frequencies
add to This is called a Mandelbrot distribution [Miller, Newman & Fried-
man, 1957; Miller, Newman & Friedman, 1958]. This distribution is not used
because its asymptotical effect is negligible and it is much harder to deal with
mathematically.

It is interesting to observe that if, instead of taking text words, we take
no Zipf-like distribution is observed. Moreover, no good model is

known for this case [Bell, Cleary & Witten, 1990, chapter 4]. On the other
hand, Li [Li, 1992] shows that a text composed of random characters (separa-
tors included) also exhibits a Zipf-like distribution with smaller and argues
that the Zipf distribution appears because the rank is chosen as an indepen-
dent variable. Our results relating the Zipf’s and Heaps’ law (see next sec-
tion), agree with that argument, which in fact had been mentioned well before
[Miller, Newman & Friedman, 1957].

Since the distribution of words is very skewed (that is, there are a few hun-
dred words which take up 50% of the text), words that are too frequent, such
as stopwords, can be disregarded. A stopword is a word which does not carry
meaning in natural language and therefore can be ignored (that is, made not
searchable), such as "a", "the", "by", etc. Fortunately the most frequent
words are stopwords, and therefore half of the words appearing in a text do
not need to be considered. This allows, for instance, to significantly reduce the
space overhead of indices for natural language texts. Nevertheless, there are
very frequent words that cannot be considered as stopwords.
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For our Web data, which is smaller than for English text. This
what we expect if the vocabulary is larger. Also, to capture well the central part
of the distribution, we did not take in account very frequent and unfrequent
words when fitting the model. A related problem is the distribution of
(strings of exactly characters), which follow a similar distribution [Egghe,
2000].

1.2.4 Average Length of Words

A last issue is the average length of words. This relates the text size in
words with the text size in bytes (without accounting for punctuation and other
extra symbols). For example, in the different sub-collections of TREC-2 col-
lection, the average word length is very close to 5 letters, and the range of
variation of this average in each sub-collection is small (from 4.8 to 5.3). If
we remove the stopwords, the average length of a word increases to little more
than 6 letters (see Table 1). If we take the average length in the vocabulary, the
value is higher (between 7 and 8 as shown in Table 1). This defines the total
space needed for the vocabulary. Figure 2 shows how the average length of the
vocabulary words and the text words evolve as the filtered text grows for the
WSJ collection.

Figure 2. Average length of the words in the vocabulary (solid line) and in the text (dashed
line).

Heaps’ law implies that the length of the words of the vocabulary increase
logarithmically as the text size increases, and longer and longer words should
appear as the text grows. This is because if for large there are different
words, then their average length must be at least (count-
ing once each different word). However, the average length of the words in the
overall text should be constant because shorter words are common enough (e.g.
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stopwords). Our experiment of Figure 2 shows that the length is almost con-
stant, although decreases slowly. This balance between short and long words,
such that the average word length remains constant, has been noticed many
times in different contexts. It can be explained by a simple finite-state model
where the separators have a fixed probability of occurrence, since this implies
that the average word length is one over that probability. Such a model is con-
sidered in [Miller, Newman & Friedman, 1957; Miller, Newman & Friedman,
1958], where: (a) the space character has probability close to 0.2, (b) the space
character cannot appear twice subsequently, and (c) there are 26 letters.

1.3 Relating the Heaps’ and Zipf’s Law
In this section we relate and explain the two main empirical laws: Heaps’

and Zipf’s. In particular, if both are valid, then a simple relation between their
parameters holds. This result is from [Baeza-Yates & Navarro,1999].

Assume that the least frequent word appears O(1) times in the text (this is
more than reasonable in practice, since a large number of words appear only
once). Since there are different words, then the least frequent word has
rank The number of occurrences of this word is, by Zipf’s law,

and this must be O(1). This implies that, as grows, This equal-
ity may not hold exactly for real collections. This is because the relation is
asymptotical and hence is valid for sufficiently large and because Heaps’
and Zipf’s rules are approximations. Considering each collection of TREC-2
separately, is between 0.80 and 1.00. Table 1 shows specific values for K
and (Heaps’ law) and (Zipf’s law), without filtering the text. Notice that

is always larger than On the other hand, for our Web data, the match is
almost perfect, as

The relation of the Heapst’ and Zipt’s Laws is mentioned in a line of a paper
by Mandelbrot [Mandelbrot, 1954], but no proof is given. In the Appendix
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we give a non trivial proof based in a simple finite-state model for generating
words.

1.4 Modeling a Document Collection
The Heaps’ and Zipf’s laws are also valid for whole collections. In par-

ticular, the vocabulary should grow faster (larger and the word distribution
could be more biased (larger That would match better the relation
which in TREC-2 is less than 1. However, there are no experiments on large
collections to measure these parameters (for example, in the Web). In addi-
tion, as the total text size grows, the predictions of these models become more
accurate.

1.4.1 Word Distribution Within Documents
The next issue is the distribution of words in the documents of a collec-

tion. The simplest assumption is that each word is uniformly distributed in
the text. However, this rule is not always true in practice, since words tend to
appear repeated in small areas of the text (locality of reference). A uniform
distribution in the text is a pessimistic assumption since it implies that queries
appear in more documents. However, a uniform distribution can have different
interpretations. For example, we could say that each word appears the same
number of times in every document. However, this is not fair if the document
sizes are different. In that case, we should have occurrences proportional to
the document size. A better model is to use a Binomial distribution. That is, if

is the frequency of a word in a set of D documents with words overall, the
probability of finding the word times in a document having words

For large we can use the Poisson approximation
with Some people apply these formulas using the average for all
the documents, which is unfair if document sizes are very different.

A model that approximates better what is seen in real text collections is
to consider a negative binomial distribution, which says that the fraction of
documents containing a word times is

where and are parameters that depend on the word and the document col-
lection. Notice that if we use the average
number of words per document, so this distribution also has the problem of be-
ing unfair if document sizes are different. For example, for the Brown Corpus

8

is
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[Francis & Kucera, 1982] and the word “said”, we have and
[Church & Gale, 1995]. The latter reference gives other models derived from a
Poisson distribution. Another model related to Poisson which takes in account
locality of reference is the Clustering Model [Thom & Zobel, 1992].

1.4.2 Distribution of Document Sizes
Static databases will have a fixed document size distribution. Moreover, de-

pending on the database format, the distribution can be very simple. However,
this is very different for databases that grow fast and in a chaotic manner, such
as the Web. The results that we present next are based in the Web.

The document sizes are self-similar [Crovella & Bestavros, 1996], that is,
the probability distribution remains unchanged if we change the size scale. The
same behavior appears in Web traffic. This can be modeled by two different
distributions. The main body of the distribution follows a Logarithmic Normal
curve, such that the probability of finding a Web page of bytes is given by

where the average and standard deviation are 9.357 and 1.318, respec-
tively [Barford & Crovella, 1998]. See figure of an example in 3 (from [Crov-
ella & Bestavros, 1996]).

Figure 3. Left: Distribution for all file sizes. Right: Right tail distribution for different file
types. All logarithms are in base 10. (Both figures are courtesy of Mark Crovella).

The right tail of the distribution is “heavy-tailed”. That is, the majority of
documents are small, but there is a non trivial number of large documents.
This is intuitive for image or video files, but it is also true for textual pages. A
good fit is obtained with the Pareto distribution, that says that the probability
of finding a Web page of bytes is
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for and zero otherwise. The cumulative distribution is

where and are constants dependent on the particular collection [Barford
& Crovella, 1998]. The parameter is the minimum document size, and is
about 1.36 for textual data, being smaller for images and other binary formats
[Crovella & Bestavros, 1996; Willinger & Paxson, 1998] (see the right side of
Figure 3). Taking all Web documents into account, using we get

and 93% of all the files have a size below this value. The parameters
of these distributions were obtained from a sample of more than 50 thousand
Web pages requested by several users in a period of two months. Recent results
show that these distributions are still valid [Barford et al, 1999], but the exact
parameters for the distribution of all textual documents is not known, although
average page size is estimated in 6Kb including markup (which is traditionally
not indexed).

1.5

1.5.1

Models for Queries and Answers

Motivation

When analyzing or simulating text retrieval algorithms, a recurrent problem
is how to model the queries. The best solution is to use real users or to extract
information from query logs. There are a few surveys and analyses of query
logs with respect to the usage of Web search engines [Pollock & Hockley,
1997; Jensen et al, 1998; Silverstein et al, 1998]. The later reference is the
study of 285 million AltaVista user sessions containing 575 million queries.
Table 2 gives some results from that study, done in September of 1998. Another
recent study on Excite, shows similar statistics, and also the queries topics
[Spink et al, 2002]. Nevertheless, these studies give little information about
the exact distribution of the queries. In the following we give simple models
to select a random query and the corresponding average number of answers
that will be retrieved. We consider exact queries and approximate queries. An
approximate query finds a word allowing up to errors, where we count the
minimal number of insertions, deletions, and substitutions.

1.5.2 Random Queries
As half of the text words are stopwords, and they are not typical user queries,

stopwords are not considered. The simplest assumption is that user queries
are distributed uniformly in the vocabulary, i.e. every word in the vocabulary
can be searched with the same probability. This is not true in practice, since
unfrequent words are searched with higher probability. On the other hand,
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approximate searching makes this distribution more uniform, since unfrequent
words may match with errors with other words, with little relation to the
frequencies of the matched words. In general, however, the assumption of
uniform distribution in the vocabulary is pessimistic, at least because a match
is always found.

Looking at the results in the AltaVista log analysis [Silverstein et al, 1998],
there are some queries much more popular than others and the range is quite
large. Hence, a better model would be to consider that the queries also follow
a Zipf’s like distribution, perhaps with larger than 2 (the log data is not avail-
able to fit the best value). However, the actual frequency order of the words
in the queries is completely different from the words in the text (for example,
“sex” and “xxx” appear between the top most frequent word queries), which
makes a formal analysis very difficult. An open problem, which is related to
the models of term distribution in documents, is whether the distribution for
query terms appearing in a collection of documents is similar to that of docu-
ment terms. This is very important as these two distributions are the base for
relevance ranking in the vector model [Baeza-Yates & Ribeiro-Neto, 1999].
Recent results show that although queries also follow a Zipf distribution (with
parameter from 1.24 to 1.42 [Baeza-Yates & Castillo, 2001; Baeza-Yates &
Saint-Jean, 2002]), the correlation to the word distribution of the text is low
(0.2) [Baeza-Yates & Saint-Jean, 2002]. This implies that choosing queries at
random from the vocabulary is reasonable and even pessimistic.

Previous work by DeFazio [DeFazio, 1993] divided the query vocabulary in
three segments: high (words representing the most used 90% of the queries),
moderate (next 5% of the queries), and low use (words representing the least
used 5% of the queries). Words are then generated by first randomly choosing
the segment, the randomly picking a token within that segment. Queries are
formed by choosing randomly one to 50 words. According to currently avail-
able data, real queries are much shorter, and the generation algorithm does not
produce the original query distribution. Another problem is that the query vo-
cabulary must be known to use this model. However, in our model, we can
generate queries from the text collection.
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1.5.3 Number of Answers

Now we analyze the expected number of answers that will be obtained us-
ing the simple model of the previous section. For a simple word search, we
will find just one entry in the vocabulary matching it. Using Heaps’ law, the
average number of occurrences of each word in the text is
Hence, the average number of occurrences of the query in the text is
This fact is surprising, since one can think in the process of traversing the text
word by word, where each word of the vocabulary has a fixed probability of
being the next text word. Under this model the number of matching words
is a fixed proportion of the text size (this is equivalent to say that a word of
length should appear about times). The fact that this is not the case
(demonstrated experimentally later) shows that this model does not really hold
on natural language text.

The root of this fact is not in that a given word does not appear with a
fixed probability. Indeed, the Heaps’ law is compatible with a model where
each word appears at fixed text intervals. For instance, imagine that Zipf’s
law stated that the word appeared times. Then, the first word could
appear in all the odd positions, the second word in all the positions multiple
of 4 plus 2, the third word in all the multiples of 8 plus 4, and so on. The
real reason for the sublinearity is that, as the text grows, there are more words,
and one selects randomly among them. Asymptotically, this means that the
length of the vocabulary words must be and therefore, as the
text grows, we search on average longer and longer words. This allows that
even in the model where there are matches, this number is indeed
[Navarro, 1998]. Note that this means that users search for longer words when
they query larger text collections, which seems awkward but may be true, as
the queries are related to the vocabulary of the collection.

How many words of the vocabulary will match an approximate query? In
principle, there is a constant bound to the number of distinct words which
match a given query with errors, and therefore we can say that O(1) words
in the vocabulary match the query. However, not all those words will appear
in the vocabulary. Instead, while the vocabulary size increases, the number
of matching words that appear increases too, at a lower rate. This is the same
phenomenon observed in the size of the vocabulary. In theory, the total number
of words is finite and therefore V = O(1), but in practice that limit is never
reached and the model describes reality much better. We show
experimentally that a good model for the number of matching words in the
vocabulary is (with Hence, the average number of occurrences
of the query in the text is [Baeza-Yates & Navarro, 1999].
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1.5.4 Experiments
We present in this section empirical evidence supporting our previous state-

ments. We first measure V, the number of words in the vocabulary in terms of
(the text size). Figure 4 (left side) shows the growth of the vocabulary. Using

least squares we fit the curve The relative error is very small
(0.84%). Therefore, for the WSJ collection.

We measure now the number of words that match a given pattern in the
vocabulary. For each text size, we select words at random from the vocabulary
allowing repetitions. In fact, not all user queries are found in the vocabulary in

Figure 4. Vocabulary tests for the WSJ collection. On the left, the number of words in the
vocabulary. On the right, number of matching words in the vocabulary.
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practice, which reduces the number of matches. Hence, this test is pessimistic
in that sense.

We test and 3 errors. To avoid taking into account queries with
very low precision (e.g. searching a 3-letter word with 2 errors may match too
many words), we impose limits on the length of words selected: only words of
length 4 or more are searched with one error, length 6 or more with two errors,
and 8 or more with three errors.

We perform a number of queries which is large enough to ensure a relative
error smaller than 5% with a 95% confidence interval. Figure 4 (right side)
shows the results. We use least squares to fit the curves for

for and for In all cases the relative error
of the approximation is under 4%. The exponents are the values mentioned
later in this article. One possible model for is because for

we have and when as expected.
We could reduce the variance in the experiments by selecting once the set

of queries from the index of the first 20 Mb. However, our experiments have
shown that this is not a good policy. The reason is that the first 20 Mb will
contain almost all common words, whose occurrence lists grow faster than the
average. Most uncommon words will not be included. Therefore, the result
would be unfair, making the results to look linear when they are in fact sublin-
ear.

1.6 Application: Inverted Files for the Web

1.6.1 Motivation

Web search engines currently available use inverted files that reference Web
pages [Baeza-Yates & Ribeiro-Neto, 1999]. So, reference pointers should have
as many bits as needed to reference all Web pages (currently, about 3 billion).
The number and size of pointers is directly related with the space overhead of
the inverted file. For the whole Web, this implies at least 600 GB. Some search
engines also index word locations, so the space needed is increased. One way
to reduce the size of the index is to use fixed logical blocks as reference units,
trading the reduction of space obtained with an extra cost at search time. The
block mechanism is a logical layer and the files do not need to be physically
split or concatenated. In which follows we explain this technique in more
detail.

Assume that the text is logically divided into “blocks”. The index stores all
the different words of the text (the vocabulary). For each word, the list of the
blocks where the word appears is kept. We call the size of the blocks and

the number of blocks, so that The exact organization is shown in
Figure 5. This idea was first used in Glimpse [Manber & Sun Wu, 1994].



Modeling Text Databases 15

Figure 5. The block-addressing indexing scheme.

At this point the reader may wonder which is the advantage of pointing to
artificial blocks instead of pointing to documents (or files), this way following
the natural divisions of the text collection. If we consider the case of simple
queries (say, one word), where we are required to return only the list of match-
ing documents, then pointing to documents is a very adequate choice. More-
over, as we see later, it may reduce space requirements with respect to using
blocks of the same size. Moreover, if we pack many short documents in a log-
ical block, we will have to traverse the matching blocks (even for these simple
queries) to determine which documents inside the block actually matched.

However, consider the case where we are required to deliver the exact posi-
tions which match a pattern. In this case we need to sequentially traverse the
matching blocks or documents to find the exact positions. Moreover, in some
types of queries such as phrases or proximity queries, the index can only tell
that two words are in the same block, and we need to traverse it in order to
determine if they form a phrase.

In this case, pointing to documents of different sizes is not a good idea
because larger documents are searched with higher probability and searching
them costs more. In fact, the expected cost of the search is directly related
to the variance in the size of the pointed documents. This suggests that if the
documents have different sizes it may be a good idea to (logically) partition
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large documents into blocks and to put together small documents, such that
blocks of the same size are used.

In [Baeza-Yates & Navarro,1999], we show analytically and experimentally
that using fixed size blocks it is possible to have a sublinear-size index with
sublinear search times, even for approximate word queries. A practical exam-
ple shows that the index can be in space and in retrieval time for ap-
proximate queries with at most two errors. For exact queries the exponent low-
ers to 0.85. This is a very important analytical result which is experimentally
validated and makes a very good case for the practical use of this kind of in-
dex. Moreover, these indices are amenable to compression. Block-addressing
indices can be reduced to 10% of their original size [Bell et al, 1993], and the
first works on searching the text blocks directly in their compressed form are
just appearing [Moura et al, 1998a; Moura et al, 1998] with very good perfor-
mance in time and space.

Resorting to sequential searching to solve a query may seem unrealistic for
current Web search engine architectures, but makes perfect sense in a near fu-
ture when a remote access could be as fast as a local access. Another practical
scenario is a distributed architecture where each logical block is a part of a Web
server or a small set of Web servers locally connected, sharing a local index.

As explained before, pointing to documents instead of blocks may or may
not be convenient in terms of query times. We analyze now the space and later
the time requirements when we point to Web pages or to logical blocks of fixed
size. Recall that the distribution has a main body which is log-normal (that we
approximate with a uniform distribution) and a Pareto tail.

We start by relating the free parameters of the distribution. We call C the cut
point between both distributions and the fraction of documents smaller than
C. Since Then the integral over the tail (from C to infinity) must be
which implies that We also need to know the value of the
distribution in the uniform part, which we call and it holds For
the occurrences of a word inside a document we use the uniform distribution
taking into account the size of the document.

1.6.2 Space Overhead

As the Heaps’ law states that a document with words has different
words, we have that each new document of size added to the collection will
insert new references to the lists of occurrences (since each different word
of each different document has an entry in the index). Hence, an index of
blocks of size takes space. If, on the other hand, we consider the Web
document size distribution, we have that the average number of new entries in
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the occurrence list per document is

where was defined in Section 1.4.2.
To determine the total size of the collection, we consider that documents

exist, whose average length is given by

and therefore the total size of the collection is

The final size of the occurrence lists is (using Eq. (6.1))

We consider now what happens if we take the average document length
and use blocks of that fixed size (splitting long documents and putting short
documents together as explained). In this case, the size of the vocabulary is

as before, and we assume that each block is of a fixed size We
have introduced a constant to control the size of our blocks. In particular, if
we use the same number of blocks as Web pages, then Then the size of
the lists of occurrences is

(using Eq. (6.3)). Now, if we divide the space taken by the index of documents
by the space taken by the index of blocks (using the previous equation and
Eq. (6.4)), the ratio is
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which is independent of and C; and is about 85% for
and We approximated which corresponds to all the
Web pages, because the value for textual pages is not known. This shows that
indexing documents yields an index which takes 85% of the space of a block
addressing index, if we have as many blocks as documents. Figure 6 shows the
ratio as a function of and As it can be seen, the result varies slowly with

while it depends more on (tending to 1 as the document size distribution
is more uniform).

The fact that the ratio varies so slowly with is good because we already
know that the value is quite different for small documents. As a curiosity, see
that if the documents sizes were uniformly distributed in all the range (that is,
letting the ratio would become which is close to 0.94 for
intermediate values. On the other hand, letting (as in the simplified
model [Crovella & Bestavros, 1996]) we have a ratio near 0.83. As another
curiosity, notice that there is a value which gives the minimum ratio for
document versus block index (that is, the worst behavior for the block index).
This is for quite close to the real values (0.63 in our Web
experiments).

If we want to have the same space overhead for the document and the block
indices, we simply make the expression of Eq. (6.5) equal to 1 and obtain

for that is, we need to make the blocks larger
than the average of the Web pages. This translates into worse search times. By
paying more at search time we can obtain smaller indices (letting grow over
1.48).

1.6.3 Retrieval Time

We analyze the case of approximate queries, given that for exact queries
the result is the same by using The probability of a given word to be
selected by a query is The probability that none of the words in a
block is selected is therefore The total amount of work of an
index of fixed blocks is obtained by multiplying the number of blocks times
the work to do per selected block times the probability that some word in
the block is selected. This is

where for the last step we used that
provided

We are interested in determining in which cases the above formula is sub-
linear in Expressions of the form are whenever
(since On the other hand, if then is far
away from 1, and therefore is
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Figure 6. On the left, ratio between block and document index as a function of for fixed
(the dashed line shows the actual value for the Web). On the right, the same as a

function of for (the dashed lines enclose the typical values). In both cases we use
and the standard

For the search cost to be sublinear, it is thus necessary that
When this condition holds, we derive from Eq. (6.6) that
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We consider now the case of an index that references Web pages. As we
have shown, if a block has size then the probability that it has to be traversed
is We multiply this by the cost to traverse it and integrate
over all the possible sizes, so as to obtain its expected traversal cost (recall
Eq. (6.6))

which we cannot solve. However, we can separate the integral in two parts, (a)
and (b) In the first case the traversal probability

is and in the second case it is Splitting the integral in two
parts and multiplying the result by we obtain the total amount of
work:

where since this is an asymptotic analysis we have considered
as C is constant.

On the other hand, if we used blocks of fixed size, the time complexity
(using Eq. (6.7)) would be where The ratio between
both search times is

which shows that the document index would be asymptotically slower than
a block index as the text collection grows. In practice, the ratio is between

and . The value of is not important here since it is a constant,
but notice that is usually quite large, which favors the block index.

1.7 Concluding Remarks

The models presented here are common to other processes related to human
behavior [Zipf, 1949] and algorithms. For example, a Zipf like distribution
also appears for the popularity of Web pages with [Barford et al, 1999].
On the other hand, the phenomenon of sublinear vocabulary growing is not ex-
clusive of natural language words. It appears as well in many other scenarios,
such as the number of different words in the vocabulary that match a given
query allowing errors as shown in Section 5, the number of states of the de-
terministic automaton that recognizes a string allowing errors [Navarro, 1998],
and the number of suffix tree nodes traversed to solve an approximate query
[Navarro & Baeza-Yates, 1999]. We believe that in fact the finite state model
for generating words used in Section 3 could be changed for a more general


