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Preface

Magnetism and magnetic phenomena surround us. Magnetic materials pervade our lives far
beyond just compasses and common household magnets. Magnetic materials and magnetism
are used inconspicuously in many complex gadgets, ranging from magnetic recording disks
and cellular phones, to magnetic resonance imaging instruments and spintronic devices.
Understanding magnetic phenomena and developing new functional magnetic materials pose a
big challenge, but also great opportunities, to our scientists and engineers. New characterization
techniques help us to understand the fascinating behavior of newly discovered magnetic
materials, while new materials stimulate the further development of novel methods.

We understand the physical and chemical behaviors of materials through directly or indirectly
measuring a material’s structure and properties. The field of structural characterization is often
too wide; identifying the most appropriate method to employ can be difficult. One objective of
this book is to introduce the reader to various modern techniques in characterizing magnetic
materials at different length scales, focusing on neutron, x-ray, electron, and laser-light
scattering as well as proximal probes, their principles, applicability, limitations, and relationship
to competing methods.

Neutrons, photons, and electrons are three major classes of moderm probes for characterizing
structures of materials. Since all materials absorb and emit electromagnetic radiation, the
material’s characteristics frequently manifest in the way it interacts with incident particles.
Thus, the information gleaned not only depends on the wavelength of the radiation, but also on
the nature of these interactions. Neutrons interact with atomic nuclei, x-ray photons with electron
clouds, and electrons with electromagnetic potentials, i.e., both electrons and nuclei of the solid.
For magnetic structural characterization, both electrons and nuclei in materials have a magnetic
moment and, in principle, all the three sources can reveal magnetic information. In particular,
because the neutron has spin %%, the orientation of its spin is easily manipulated and when
combined with scattering geometry, it yields an opportunity to measure the spatial dependence
of the vector magnetization. However, neutrons are not handily and copiously produced. In
contrast, x-rays are easy to generate, but due to their weak spin interaction with matter, magnetic
scattering can only be observed using extraordinarily intense synchrotron radiation.

The past two decades have witnessed significant advancement in instrumentation and technique
development in characterization of magnetic materials, especially in proximal probes and laser-
light scattering, along with the newly constructed next-generation neutron and synchrotron
photon sources. In domain imaging, for example, an important branch of the field, we see an
ever-increasing spatial resolution. There is a multiplicity of techniques, ranging from magneto-
optical imaging to spin polarized scanning tunneling microscopy, that have different mechanisms
of image formation and are suitable, hence, for different measurements. For instance, magneto-
optic microscopy is based on the contrast produced by Kerr rotation of linearly polarized light
reflected off domains with different magnetization. It has a typical spatial resolution of 500-
1000nm (which can be much improved by near-field optical microscopy), but superior time
resolution of up to 10-9 sec for dynamic observations. Magnetic force microscopy (MFM), on
the other hand, measures the force that the stray magnetic field of the surface exerts on a tiny
magnetic tip attached to a flexible cantilever. Unlike other methods, it is mainly sensitive to field
gradients and its resolution is on the order of 40-100 nm. Scanning electron microscopy with
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polarization analysis (SEMPA) measures the spin polarization of secondary electrons emitted
from a magnetized sample with resolution of about 30-200 nm. Spin polarized low energy
electron microscopy (SPLEEM) is a surface-imaging technique using spin polarized electrons,
and is sensitive to the interaction between the spins of the incident electron and the spins in the
sample. Thus, surface magnetic behavior can be directly observed over a large area of view in
real time with a resolution of 20nm. High-energy transmission electron microscopy techniques
push resolution even further. A remarkable example is electron holography which is based on
retrieving the phase shift of a coherent electron wave passing though the sample as encoded
in a hologram, and provides a direct measure of the electrostatic and magnetic potentials of
a local area of interest. Although a few nm resolution can be routinely achieved, separating
magnetostatic potentials from electrostatic ones at the nanoscale can be challenging. To date,
the most promising technique for attaining atomic resolution of local magnetic structure is
spin-polarized scanning tunneling microscopy (SP-STM) that can reveal the magnetic lattice

arrangement on an antiferromagnetic sample surface. This new breed of scanning tunneling '
microscopy measures the spin-polarized tunneling electrons between the tip and the sample.

Of course, the techniques for magnetic imaging exemplified here are not meant to be inclusive,
as several others are available, notably the recently developed technique of synchrotron-based
X-ray magnetic microscopy, i.e., the x-ray magnetic circular dichroism (XMCD). This method
probes the transfer of the angular momentum of the x-ray photon to the photoelectron excited
from a spin-orbit split core level with a spatial resolution of about 5 nm. The main advantage
of the technique is its elemental specificity that derives from the process being tied to an
absorption event at the core level, thus providing information on the spin orbital moments,
site symmetry, and chemical state of the sample under study, which is not available from
the desktop- or laboratory-instruments mentioned earlier. It is important to realize that these
techniques are complementary; they all have their own advantages and drawbacks. Some are
highly penetrating and non-destructive probes, while others require a high-quality surface or
tedious sample preparation. If you are interested in these technologies and would like to know
more about them, you will find this book, Modern Techniques for Characterizing Magnetic
Materials, an invaluable tool for expanding your research capabilities.

This book is organized in the following way. The first three chapters deal with neutron scattering
methods, including triple-axis spectrometry, small-angle scattering, and reflectometry. Chapter
4-6 focus on synchrotron-radiation based techniques, ranging from magnetic soft and hard x-
ray scattering to photon-emission spectroscopy. Chapter 7-9 discuss electron scattering, with
transmission electron microscopy focusing on Lorentz microscopy, electron holography and
other phase-retrieval methods, and scanning electron microscopy with spin polarized analysis
and spin polarized low energy electron microscopy. Chapter 10 and 11 describe proximal probes,
covering spin-polarized scanning tunneling microscopy and magnetic force microscopy. The
last three chapters deal with light scattering including the use of monochromatic laser light in
magnetic imaging, such as scanning near-field optical microscopy, time-resolved scanning Kerr
microscopy, and Brillouin light-scattering spectroscopy.

This book does not attempt to cover all aspects of magnetic structural characterization, but
focuses on major modern techniques. Owing to the complexity of magnetic behavior, to
tackle one single material problem often necessitates bringing to bear various characterization
tools within our arsenal of techniques. Usually, this is not a trivial task. Different research
communities employ different research techniques and, often, there is little communication
between them. It is my hope that this book will bridge this gap, and make the combined use of
various techniques in materials research a reality.



Although this book leans more toward the research laboratory than the classroom, it can serve as a
methodological reference book for graduate students, university faculties, scientists and engineers
who are interested in magnetic materials and their characterization. Expositions within individual
chapters are largely self-contained without having been sequenced with any specific pedagogical
thread in mind. Each chapter, therefore, has its own introduction, principle, instrumentation
and applications, and references for further study. The level of presentation is intended to be
intermediate between a cursory overview and detailed instruction. The extent of coverage is very
much dictated by the character of the technique described. Many are based on quite complex
concepts and instrumentation. Others are less so, and can be based on commercial products.
Researchers working on non-magnetic materials may also find this book useful since many
techniques and principles described in the book can be used for characterizing other materials.

Finally, I would like to express my appreciation to the many expert authors who have contributed
to this book. On the production side, special thanks go to Lisa Jansson, the type-setting editor at
Brookhaven, for her significant role in finalizing the book format, and to my colleague Marco
Beleggia, who spent significant amounts of time in helping Lisa on the technical aspects of
type-setting, such as the conversion of equations and symbols, and to my student June Lau
for checking the Appendices. I am also grateful to the staff at Kluwer Academic Publisher,
especially senior editor Greg Franklin, for their help and advice.

Yimei Zhu

Brookhaven National Laboratory
Long Island, New York
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Neutron Scattering



CHAPTER 1

Magnetic neutron scattering

I.1. INTRODUCTION

Much of our understanding of the atomic-scale magnetic structure and the dynamical properties
of solids and liquids was gained from neutron-scattering studies. Elastic and inelastic neutron
spectroscopy provided physicists with an unprecedented, detailed access to spin structures,
magnetic-excitation spectra, soft-modes and critical dynamics at magnetic phase transitions,
which is unrivaled by other experimental techniques. Because the neutron has no electric charge,
it is an ideal weakly interacting and highly penetrating probe of matter’s inner structure and
dynamics. Unlike techniques using photon electric fields or charged particles (e.g., electrons,
muons) that significantly modify the local electronic environment, neutron spectroscopy allows
determination of a material’s intrinsic, unperturbed physical properties. The method is not
sensitive to extraneous charges, electric fields, and the imperfection of surface layers. Because
the neutron is a highly penetrating and non-destructive probe, neutron spectroscopy can probe
the microscopic properties of bulk materials (not just their surface layers) and study samples
embedded in complex environments, such as cryostats, magnets, and pressure cells, which are
essential for understanding the physical origins of magnetic phenomena.

Neutron scattering is arguably the most powerful and versatile experimental tool for studying
the microscopic properties of the magnetic materials. The magnitude of the cross-section of
the neutron magnetic scattering is similar to the cross-section of nuclear scattering by short-
range nuclear forces, and is large enough to provide measurable scattering by the ordered
magnetic structures and electron spin fluctuations. In the half-a-century or so that has passed
since neutron beams with sufficient intensity for scattering applications became available with
the advent of the nuclear reactors, they have became indispensable tools for studying a variety
of important areas of modern science, ranging from large-scale structures and dynamics of
polymers and biological systems, to electronic properties of today’s technological materials.
Neutron scattering developed into a vast field, encompassing many different experimental
techniques aimed at exploring different aspects of matter’s atomic structure and dynamics.



4 Modern techniques for characterizing magnetic materials

Modern magnetic neutron scattering includes several specialized techniques designed for
specific studies and/or particular classes of materials. Among these are magnetic reflectometry
aimed at investigating surfaces, interfaces, and multilayers, small-angle scattering for the large-
scale structures, such as a vortex lattice in a superconductor, and neutron spin-echo spectroscopy
for glasses and polymers. Each of these techniques and many others offer exciting opportunities
for examining magnetism and warrant extensive reviews, but the aim of this chapter is not
to survey how different neutron-scattering methods are used to examine magnetic properties
of different materials. Here, we concentrate on reviewing the basics of the magnetic neutron
scattering, and on the recent developments in applying one of the oldest methods, the triple axis
spectroscopy, that still is among the most extensively used ones. The developments discussed
here are new and have not been coherently reviewed. Chapter 2 of this book reviews magnetic
small-angle scattering, and modern techniques of neutron magnetic reflectometry are discussed
in Chapter 3.

In the first part of this chapter, we give an extensive, coherent introduction to magnetic
neutron scattering. It includes an overview of the scattering problem with the derivation of the
differential cross-section and its application to the neutron’s magnetic interaction with an atom,
the evaluation and properties of the magnetic form factors, and, finally, the general properties
of the magnetic elastic and inelastic neutron scattering for the spin system of localized atomic
electrons in the crystal. We describe magnetic neutron scattering at the “top level”, concentrating
on the highest-level formulae, but not giving particulars, which can be found in several books
[1-5]. Further, rather than being exhaustive, we attempt to summarize those results that are
general yet simple, and which, therefore, are most commonly used in everyday research.

The important issue of the magnetic form factors deserves special mention. A very complete
theory was developed, accounting quite generally for the spin and the orbital magnetization
density of atomic electrons, [3]. However, the general expressions in Ref. [3] are cumbersome so
that they are rarely used in practice, and are replaced by the simple, but often highly inaccurate,
“dipole approximation”. Here, we derive simple formulae for the atomic spin magnetic form
factors that accurately account for their angular anisotropy, a tremendous improvement over the
dipole approximation. Although these expressions are not as completely general as those of Ref.
[3], they accurately describe most situations encountered in magnetic neutron scattering. An
example of where using the correct, anisotropic magnetic form factor is crucial for interpreting
the experimental results is that of Cu®* spins in topical cuprate materials. This issue gains more
importance as magnetic neutron scattering conquers new heights in accessible energy transfers
with the development of pulsed spallation neutron sources, such as ISIS in the UK and SNS in
the United States. With energy transfers of 0.5 eV and above (see Fig. 1-1 for an example) the
measured intensity is collected at very large wave vectors, where the magnetic form factor is
small and often pronouncedly anisotropic.

In the second part, we describe the modern uses of the triple-axis spectrometer based on
employing a large, multicrystal analyzer and/or the position-sensitive detector (PSD) to analyze
the neutrons scattered by the sample. In many instances, the volume of the sample’s phase space
probed at each spectrometer setting can be increased by about an order-of-magnitude by using
the PSD, thereby raising the rate of data collection. These advanced techniques, as known to
the authors, were conceived and implemented on SPINS triple axis neutron spectrometer at
the NIST Center for Neutron Research (NCNR) in Gaithersburg, MD, United States. Collin
Broholm pioneered the PSD setup at the NCNR, with our active participation. It is a natural
extension of SPINS capabilities based on employing a large multicrystal analyzer, originally
designed for horizontal monochromatic (Rowland) focusing. Reportedly, a similar PSD setup
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was implemented on RITA spectrometer at the Risoe National Laboratory, Denmark. However,
because the Risoe research reactor was permanently shutdown, the possibilities of RITA were
not adequately explored. Subsequently, the spectrometer was moved to SINQ’s continuous
spallation neutron source at the Paul Sherrer Institute in Switzerland, where it now operates.

While an extensive literature addresses various aspects of neutron-scattering techniques,
including several excellent books and monographs on magnetic neutron scattering [1-5], the
advances outlined above are recent enough not to be described elsewhere. The general outline
of this chapter is as follows. First, we review the fundamentals of neutron scattering: neutron
interactions with matter, and magnetic scattering cross-section. We give a detailed exposition
on magnetic form factors, deriving some simple and general formulae for the anisotropic form
factors of the atomic orbitals that are not readily available elsewhere. Then, we summarize the
properties of the two-point magnetization correlation functions in different classes of magnetic
materials, paying special attention to pure spin scattering, where we derive the sum rules for
the spin correlation function and review the single-mode approximation. Finally, we describe
recent advances in triple axis spectroscopy, probably the most powerful technique for studying
the dynamical properties of magnetic materials.

MAPS, ISIS

Energy (mev)
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Figure 1-1: Color contour maps of the raw neutron-scattering intensity from a sample of the high-T -
relative, chain cuprate SrCuQ,. The data was collected on MAPS time-of-flight neutron spectrometer at
the ISIS pulsed spallation neutron source. Four measurements with the incident neutron energy E, = 100,
250, 500 and 850 meV are shown stacked in the figure. They probe the energy transfers up to = 80, 220,
400, and 650 meV, respectively. Also see the color plate.

1.2. Neutron interaction with matter and scattering cross-section

In this section, we review some important facts about the neutron, its properties, interaction
with matter, and scattering cross-section.

The neutron is one of the basic constituents of matter. Together with its charged relative, the
proton, it is a building block of the atomic nuclei (neutrons and protons are fermionic hadrons
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that, according to the “standard model”, are the baryons, respectively composed of one “up”
and two “down” quarks, and two “up” and one “down” quarks). Table 1-1 summarizes the basic
properties of a neutron. Although the neutron is electrically neutral, it has a non-zero magnetic
moment, similar in magnitude to that of a proton (p = 0.685pp), but directed opposite to the
angular momentum, so that the neutron’s gyromagnetic ratio is negative.

Table 1-1: Basic properties of a neutron (mainly in Gauss CGS units). ¢, denotes the neutron’s angular
momentum, y,, = eh/(2mpc) = 5.0508+10* erg/Gs is the nuclear magneton.

Electric | Spin Mass m cle Magnetic | Gyromag- | g-factor Life- | Decay
charge (S=0c/f{m (g) V) moment p_ | netic ratio [ g, time | reaction
(erg/Gs) |V, 4,=7,0,|#=8M1S, |06
(s/Gs)
0 12 1.675+10% | 0.94¢10° | 9.662¢10** | -1.832-10* }3.826 887 |n—opey,

Outside the nucleus, a free neutron’s lifetime is only about 15 minutes, after which it undergoes
a P—decay into a proton, an electron, and an antineutrino. Nevertheless, this lifetime is long
enough for neutron-scattering experiments. A neutron extracted through the beam-tube in a
nuclear reactor typically has reached thermal equilibrium with the water that cools the reactor
in a number of collisions on its way out (such neutrons usually are called thermal neutrons).
Assuming the water has “standard” temperature of 293 K, the neutron’s most probable velocity
would be about 2200 m/s. It would spend only a fraction of a second while it travels in the
spectrometer, is scattered by the sample, and arrives in the detector.

Generally, as widely accepted in the neutron-scattering literature, particle-physics notation is
followed, and the energies both of a neutron and that of an excitation created in the scattering
process are measured in millielectronvolts (meV). To ease comparison with the notations used
in other techniques and in theoretical calculations, we list several different ways of representing
the neutron’s energy, £, = 1 meV, in Table 1-2. The different energy notations shown in the
Table can be used interchangeably, as a matter of convenience.

Table 1-2: Different notations used to represent the neutron’s energy. e is the electron charge, 4 is the
Plank’s constant, ¢ is the velocity of light, y, = efi/(2m ¢) = 0.927+10" erg/Gs is the Bohr’s magneton, &, is
the Boltzman constant. Also shown are the corresponding neutron wave vector and deBroglie wavelength.

E, El |Em |EAn |EN2m)  |EA, A, k
(erg) (meV) | (THz) (cm™) (Gauss) X) (A) (AYH
1.602:10% |1 0.2418 8.0655 8.638¢10* 11.604 9.0437 0.69476

Neutrons used in scattering experiments are non-relativistic. Therefore, the neutron’s energy,
E , is related to its velocity, v, wave vector, k =(m v )/h, and the (de Broglie) wavelength,
A =(2m)/k , through

hZ

T2m

2 21.2
mvnzhkn_

E, =—2
2

2m

H

In a typical experiment, neutrons with energies well in sub-eV range are used, although in
some recent ones, the incident neutron energies were as high as 1 eV and more, Fig. 1-1. The
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neutron’s wavelength and its wave vector are usually measured in A (1 A = 0.1 nm = 10% cm)
and A", respectively. A useful relation connecting these quantities with the energy in meV
follows from Table 2-2,

81.79

2
"

E, =20717k =

1.2.1. Basic scattering theory and differential cross-section

The general idea of a (direct geometry) scattering experiment is to place a sample in the beam of
incident particles of mass m, with a well-defined wave vector k, and known incident flux @ (k),
and to measure the partial current, 6/ /(kf), scattered into a small (= infinitesimal) volume of the
phase space, d°k, = k;dk dQ, = (mk//hz)dEfde, at a wave vector k (Fig.1-2).

a) b)

Eil kr < | Er: k:

sample

Figure 1-2: Typical geometry of a scattering experiment, (a) elastic, (b) inelastic.

The phase space density of the scattered current, normalized to the incident flux, defines the
differential scattering cross-section with respect to the corresponding phase variables. The one
most commonly measured and calculated is the double differential scattering cross-section,

d’o(@,E)__1 &]f(kf)___mkf 1V k) (1.1)
dEdQ @,k )dE.dQ, W ®(k) 'k,

Here, the laws of conservation determine the energy, E, and the wave vector, Q, transferred to
the sample,

po k) k)

=k —k,. (1.2)
2m 2m =k —k

Lippmann and Schwinger [5,6] most elegantly formulated the general solution of the scattering
problem. Let # denote the complete set of variables that describe the state of the scatterer,
and let the state of the scattered particle be described by its momentum, %k, and its spin
quantum number, $*. The state of the composite system, target sample (scatterer) + scattered
particle that satisfies the boundary conditions of the scattering problem and has the energy
EW = E® = E (y,)+(nk, [(2m), is called the scattering state, |k_f,S},77_,>. It is obtained
from the initial state, Ik,, S7,#,}, by applying the evolution operator (1+GT),

[k 75875m,) =0+ GT ks 7). (13)
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Here, T is the so-called ransition operator, or T-matrix, and G is the retarded Green’s
function,

G = (E" —H,+i-0). (1.4)

Here, H = H_+ (%k)*/(2m) is the part of the total Hamiltonian, H= H +V, which describes
the sample and the scattered particle in the absence of their interaction, V. The rate of transition,
I, , from the initial to the final state (i—f ), |k;»S7,n,) —|k,sSj.n,), is given by the
appropriate matrix element of the transition operator,

s = 2505, 1570 8 ) ey e 09

It determines the scattered current, SJ/(kf), and, therefore, the scattering cross-section.
EY =E, (;7 , )+ (hk . )2 /(2m) is the energy of the system in the scattered state, so that the energy
transfer to the sample is

¥ (k)
£-5,,)-5p)- LB (1.6)

as required by the laws of energy conservation, Eq.(1.2). For the initial state of the incident
particle in the form of a plane wave normalized to unity probability density, (r|ki) =e™* | the
incident flux is &, (k, )= #k, /m. Substituting this in Egs.(1.1) and (1.5), the following general
expression is straightforwardly obtained for the partial differential scattering cross-section
corresponding to the transition i—f,

L0 L) r)sion, o @lston ) 85 1) £, o ) .

Here, the numerical pre-factor in front of T was conveniently absorbed into the definition of the
scattering length operator b,

m

b=-orrT. (1.8)

By definition, b(-Q) = b(-Q,S,1) in Eq.(1.7) is the Fourier transform of the matrix element of
the scattering length with respect to the coordinate of the scattered particle,

b(g)= J.e'iqu<r'|b(r,s,r]Xr'>d3 = <kf |b(r,S,;7)|k,.> , (1.9)
for the wave vector ¢ = k,— k = -Q that is transferred to that particle.
Finally, the T-matrix operator satisfies the Lippmann-Schwinger equation, T =V + TGV. Its
iterative solution can be found in the form of the Born perturbation series (more generally, the

von Neumann series) [5],

T=V+VGV+VGVGV+..= V(l + Z(GV)"], (1.10)

that completes the general solution of the scattering problem (provided the perturbation series
converge). In many important cases, it appears sufficient to retain only the first-order term in
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this expansion, and use

m

T=V, b=-—23V, (1.11)

that is known as the Born approximation. An expression for the transition rate in this
approximation, obtained by substituting T=V into Eq.(1.8) is one of the cornerstone results of
Quantum Mechanics [7,8], and is universally used to describe scattering processes. Following
Fermi, this expression often is called the “golden rule” [1,4].

1.2.2. Neutron interactions and scattering lengths

Two fundamental interactions govern the scattering of neutrons by an atomic system and define
the neutron scattering cross-section measured in an experiment. The residual strong interaction,
also known as the nuclear force, gives rise to scattering by the atomic nuclei (nuclear scattering).
The electromagnetic interaction of the neutron’s magnetic moment with the sample’s internal
magnetic fields gives rise to magnetic scattering. The sample’s internal magnetic fields mainly
originate from unpaired electrons in the atomic shells.

1.2.2.1. Nuclear scattering length

While magnetic interaction is relativistic and extremely weak, the nuclear force is not (as
it is responsible for holding together protons and neutrons in the nucleus). However, it has
extremely short range, 10" cm to 102 cm, comparable with the size of the nuclei, and much
smaller than the typical neutron’s wavelength. Consequently, away from the conditions of
the resonance neutron capture, the probability of a neutron being scattered by an individual
nucleus is very small, and can be treated in the scattering theory on par with the probability
of magnetic scattering. In fact, it appears that nuclear scattering length, b,, for the majority
of natural elements is close in magnitude to the characteristic magnetic scattering length,
r,=-(g 22)r,=-5.391 fm (1 fm = 10" cm,  =e’/(m ¢?) is the classical electron radius).

To describe the neutron’s interaction with the atomic system in which the typical distances are
about 1 4, the nuclear scattering length operator can be effectively treated as a delta-function in
the coordinate representation,

b, =b,5(r, - R), (1.12)

where 7, is a coordinate of a neutron and R is that of a nucleus. Alternatively, in the momentum
representation it is just a number (for the nucleus fixed at the origin), b (¢) = b,, independent
of the incident neutron’s wave-vector and of the wave-vector transfer, ¢. This again indicates
that the applicability of such treatment is limited to neutrons whose wavelength is large enough
compared to the size of the nuclei. In the Born approximation, Eq.(1.12) for the scattering
length would correspond to the neutron-nucleus interaction,

2h?
m

n

vV, (r,, R)=—""—b,58(r, - R), (1.13)

generally known as the Fermi pseudopotential [1,9]. In Eqgs.(1.12) and (1.13), the scattering
length refers to the fixed nucleus and is called the bound scattering length. Usually, it is treated



10 Modern techniques for characterizing magnetic materials

as a phenomenological parameter that is determined experimentally [10]. In general, the
bound scattering length is considered to be a complex quantity, b, = b~ ib", defining the total
scattering cross-section, ¢, and the absorption cross-section far from the nuclear resonance
capture, ¢, through

4n
=—b".

X (1.14)

1

o, =4[, o,

Ref. [11] tabulates the bound scattering lengths and cross sections of the different elements and
their isotopes.

1.2.2.2. Magnetic scattering length

Because the magnetic interaction of a neutron with a single atom is very weak, the Born
approximation, Eq.(1.11), very accurately describes the magnetic scattering length. The main
contribution to magnetic scattering arises from the neutron’s interaction with the total dipole
magnetic moment of the atomic electrons; all other electromagnetic interactions are at least two
orders-of-magnitude smaller and can be safely neglected [5]. The fundamental starting point
for evaluating the neutron magnetic scattering length is the Hamiltonian of the electrons in the
atom in the presence of the neutron’s magnetic field [2,4]. The interaction Hamiltonian is

Valror)= S (4,6) 2 2 BN -EMAVY )

where the sum extends over all electrons in the atom, indexed by e. r_ and r, are the position of
the neutron and that of the electron, respectively, p, is the momentum, and %s, is the spin angular
momentum of the electron. A (r) is the vector-potential, so that

H,0)=[,x4,¢) (1.16)

is the magnetic field of the neutron at the position of the ® electron, r,. The first term in
Eq.(1.15), V,, describes the interaction of the neutron magnetic field, H (r ), with the electric
current produced by the electron’s orbital motion. The second term, V_, accounts for the
neutron’s magnetic interaction with the spin magnetic moment of the electrons.

The characteristic size of the inner structure of a neutron is extremely small, so that in describing
the magnetic interaction with an electron in an atom it can be treated as a point dipole with the
magnetic moment g, = v,6,, v, is the neutron’s gyromagnetic ratio, and ¢, = #s, is its spin
angular momentum (see Table 1-1). The corresponding expression for the neutron’s magnetic
field vector potential at the position of the electron is

A4,0.)=| xS =[V,>< L2 J:[VXM], (1.17)

lre_rn

r=r, ~r is the spacing between the neutron and the electron [2,3-5,12].

On account of Eq.(1.17), the orbital part of the interaction Hamiltonian Eq.(1.15) can be recast
in the following form,
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[ 1 e o w,)
Ve = [ﬂn [VX(r mecp"]D—zﬂy_f ; (1.18)

which also could be semirigorously derived from the Biot-Savart law [1,12]. Here p,_ is the
momentum of the electron, and 4, = [r x p ] is its orbital angular momentum in the neutron’s
rest frame. Eq.(1.18) is just the energy of the neutron’s dipole magnetic moment, # , in the

magnetic field,
H,e(rn)zli(r—"—r—"?x—l-le]=[V, (lelIeJ={Vx(—lle):|, (1.19)
lre_,-” c "\r ] ¢ cr

of the electron’s orbital electric current I, [12]. The latter is formally defined by
1, =~(¢fm,)p, note, that V, f(r)=V/(r)=-V, f(r)].

The second term in Eq.(1.15), describing the neutron’s interaction with the spin magnetic
moment of the electron, g, = —2,§,, can be rewritten symmetrically as the interaction of
the two magnetic point dipoles at a distance » = |r, —r,| from each other,

V()—(y[v[vﬁ‘_ﬂ][”[v[vf—ﬂ) 120

This expression contains essential singularity at r = 0 and needs to be treated carefully when
evaluating the derivatives. By using V*(1/ r) = —4n3(r), Eq.(1.20) can readily be transformed to
the form perhaps most commonly used for the interaction between two point dipoles [13-15],

v, (r)= _{%Z_t (u, u, )5(,.)_ (’un’:;use )+ 3y, - rr)s(/‘xe : r)} ) (1.21)

The first, singular term here is called the Fermi contact interaction. The rest is the potential part
that describes the interaction between the dipoles at large distances. Because the neutron’s wave
function overlaps with those of the electrons, it is essential to account for the contact term in
the magnetic scattering length. Although less conventional, Eq.(1.20) is more convenient for
evaluating the scattering cross-section. Not only does it correctly contain the singular part of
the dipole-dipole interaction, but it also can be readily Fourier-transformed to obtain the spin
contribution to the neutron’s magnetic scattering length in the momentum representation

b, (@)= [e™™ b, (.1, )d’r, = - 2;;2 %(m Joxlgxeu,]]). (1.22)

This expression is an important, fundamental result that governs the essential properties of the
magnetic neutron scattering cross-section.

In many important cases, the contribution of the orbital currents to the magnetic scattering cross-
section Eq.(1.7) is zero, or small, and can be neglected. This happens when the corresponding
matrix elements of the orbital contribution Eq.(1.18) to the magnetic interaction are small,
or vanish, as is the case, for example, for scattering by the s-electrons that are in the /= 0
state and, consequently, <r] I |V,e ;7,) =0. For atoms of the transition elements in the crystal, the

local crystal electric field typically quenches orbital angular momentum [14]. Hence, the orbital
contribution to the magnetic scattering cross-section also is very small. On the other hand,
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accurately accounting for the orbital scattering is rather cumbersome, much more so than for
spin-only scattering. This is because the matrix elements of the orbital part of the magnetic
interaction, Eq.(1.18), depend significantly on the electron’s wave functions and, in general,
require specific calculations for each particular case of electronic configuration in the atom [17-
22]. On these grounds, the orbital contribution is often discarded in the textbook treatments of
the magnetic neutron scattering cross-section, [2,5,15].

Accounting for the orbital magnetic moment is important for the scattering by the 4/ and 5/~

electrons in the rare earths. In this case, the crystal field is usually well screened by the filled

outer atomic shells, and the total angular momentum, J = L + §, is a good quantum number.

Fortunately, the useful general expressions for the magnetic neutron scattering length and for

the corresponding cross-section can be derived without first evaluating the matrix elements

of the orbital part of the neutron’s magnetic interaction with the electrons. This task can be

postponed till the end, where it becomes a part of the general problem of evaluating the atom’s
magnetic form factor.

One proceeds as follows. Under very general assumptions, the orbital contribution to the
magnetic neutron-scattering length can be transformed to a form similar to the spin part, Egs.
(1.20) and (1.22). Consequently, they can be combined and treated together. The simplest way
to do this is to assume that the main contribution to the matrix elements of the interaction of
the neutron in the plane-wave state with the orbital electron current, Eq.(1.18), comes from the
region r >>7 . This approximation clearly holds if the neutron’s wavelength is much greater
than the characteristic size of the atomic wave functions, i.e., for slow neutrons. Then, 1/|r -r |
can be expanded in the power series and, to the leading order, the matrix element of the orbital
magnetic field at the neutron’s position becomes [12]

n)=-2 <nf|[V,,, x(-.v, ))r‘—pe]ln.). (123)

H, (r
<’7 f I Ie( n ) h
The first term in the inner brackets here does not contribute to the result because, for an electron
that remains localized on an atomic orbital, the average momentum is zero, {7, Pe|'7,~> =0,
[12,13]. The second term can be transformed by separating the full time derivative, whose
matrix element for an electron in a stationary state is also zero, and using m_#, = p,, [13],

09 )p = (. )9, 9, Do (129
It then follows that,
<'7f (re 'Vr,, )pe|'7i) :_<’7f|[vr" X[re Xpe]h”i)’
and, as a result, Eq.(1.23) becomes
<’7/ 'Hle(rn) ’7i) = —/43<’7/' ,l:vr,, X|:Vr,, X';l'le:”’”;)' (1.25)

This brings the matrix element of the orbital part of the magnetic interaction to the same form
as that for the spin part, Eq.(1.20), but with 7, in place of r and with the orbital magnetic
moment,

H
——hi[re xp,|=—u,l,, (1.26)

replacing the spin magnetic moment, g = -2u,s..

lule =
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Both contributions can be combined into a simple final expression for the matrix element of the
atom’s magnetic neutron scattering length,

kon)y =22, gy (n, M@, ] D (1.27)

b 0
2zh* ¢’

<kf9’7f

where ¢ = k,— k is the neutron’s wave vector change, as in Eq.(1.9). The approximation adopted
above in deriving the Eq.(1.25) gives only the lowest-order, g-independent orbital contribution
to the operator M(g). In this approximation M(g)~ M(0)=—u, > {I, +2s,}=—u,(L+28)
[16]. Trammel [17] developed a more accurate accounting for the orbital part of the magnetic
interaction. His treatment is essentially similar to the above, but the terms of all orders are
consistently retained in the series expansion. Consequently, M(q) in the right-hand side of
Eq.(1.27) becomes

M@= 2 -, 00 ) 1), (1.28)
where €
v lg-n)
/Gq-r.) 22 a2y (1.29)

Eq.(1.25) retains only the first, zero-order, ~O(q®), term in this expression.

Clearly, the first term in Eq.(1.28) is simply the Fourier-transform of the density of the spin
magnetic moment of the atomic electrons

M(g)==-2u, Y, [ 5,80 —r)d’r = [ (201, 8(") )", (1.30)

It also can be shown, [18,19], that the second (orbital) term in Eq.(1.28) is the Fourier-transform
of the atom’s orbital magnetization density

M @)=Y [e " u,b)dr . (131)

Here, the density of the orbital magnetization for an electron in the atom, 4, (r). is defined by
the relation J, (r) =c [V XU, (r)], so that it determines the density of the orbital electric current

J0)=~=—1{p.3 1)+ 8 ~r.)p, }=c [V, ()l (1.32)

2m,

and accounts for the magnetic field arising from the electron’s orbital motion. Consequently, the
contribution of the orbital electric currents to the magnetic interaction in Eq.(1.15) can be recast
in the form of the double cross product, as in Eq.(1.27), using

1

e i~
c

I = fe""’" lj(,(r')d"’r' = Je‘iq"[Vr, xp, (F)a*r . (1.33)
C
Therefore, the matrix element of the neutron magnetic scattering length is expressed by

the Eq.(1.27), where M(q) is the Fourier-transform of the total, spin and orbital, electronic
magnetization density in the atom,

Mg)=M(q)+ M, (@)= [ Y {20,880  — 1, )+ pu, (¢ )}d’r . (1.34)



14 Modern techniques for characterizing magnetic materials

1.2.3. Factorization of the magnetic scattering length and the magnetic
form factors

By applying the Wigner-Eckart theorem, a matrix element of the atom’s magnetization density
operator Eq.(1.34) can be factorized into the product of the reduced matrix element that does
not depend on the direction of the atom’s angular momentum, and the Wigner 3j-symbol, which
entirely accounts for such dependence [8,13]. The first factor contains the g-dependence of the
matrix element, while the second describes its symmetry with respect to rotations and relates
them to the magnetic neutron scattering cross-section. Such factorization is extremely useful
in understanding magnetic neutron scattering by macroscopic samples. It splits the task of
calculating the scattering cross-section for a system of many atoms in two separate major parts
that address different aspects of the problem. One is that of evaluating the neutron magnetic form
factor, which describes the g-dependence of the scattering by a single atom and is determined
by the reduced matrix element(s). The other one is that of properly adding the contributions
from the correlated (and/or the uncorrelated) rotations of the magnetic moments of different
atoms in the sample to obtain the total scattering cross-section.

Because M(q) in Eq.(1.27) contains both spin and orbital contributions [¢f Eq.(1.34)], its
matrix elements must be expressed through those of the atom’s fotal angular momentum,
J=L+S8=Y_{l +s,}.Consequently, the Wigner-Eckart theorem applies directly to (;7 ’ | M(q)|n,)
only if |11,.) and 11f> are approximately the eigenstates of J and.F, i.e., if J is an integral of motion
for the scattering atom. In practice, this is the case if the spin-orbit interaction (LS-coupling) is
much larger than any other interaction that depends on the atom’s orbital and/or spin angular
momentum, such as the interaction with the crystal field. We consider such a situation first.

From Eq.(1.28) we see that the matrix elements of the operators M (g) and M,(q) between
the eigenstates of the atom’s total angular momentum, J, satisfy the “dipole” selection rules,
[7,8]. Hence, for each of the two operators only the matrix elements between the states with
AJ=J(n)—J(n)=0,=I can differ from zero. Therefore, only such transitions are allowed in the
magnetic neutron scattering. This also is evident from the conservation of the total, neutron’s
and atom’s angular momentum, since AJF has to be offset by the change in the neutron’s spin,
which can only be AS?=0+1.

While the Wigner-Eckart decomposition of the matrix element is quite tedious for a general
tensor and for an arbitrary states lni) and |17 f> , it is greatly simplified for a vector operator such
as M(q) that is a tensor of rank one [3,13]. As discussed above, the matrix elements of a vector
satisfy the “dipole” selection rules, i.e., they can only be non-zero between the states whose an-
gular momentum quantum numbers differ by no more than 1 [13]. Therefore, no more than three
different reduced matrix elements appear in the decomposition of (;, |M (q)|n,) in Eq.(1.27)
and, consequently, in the magnetic neutron scattering cross-section. These reduced matrix ele-
ments completely account for the g-dependence of magnetic neutron scattering from a single
atom. Normalized to 1 at ¢ =0, they define the atom’s neutron magnetic form factors for the cor-
responding scattering channels, in complete analogy with the usual x-ray atomic form factors.

In most cases of practical importance for magnetic neutron scattering, both the initial and
the final states of the atom, |77,.) and |71 f> , belong to the same angular momentum multiplet,
|;7,., />:lry',./ ,J,.zJ). There are no transitions between atomic states with different angular
momenta, i.e., J(n) - J(17) = 0. Hence, the cross-section involves only a single reduced matrix
element, that for the ground-state multiplet. Normalized appropriately, it defines what is



