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Preface 

This book covers the analysis and development of online algorithms 
involving exact optimization and heuristic techniques, and their applica- 
tion to solve two real life problems. 

The first problem is concerned with a complex technical system: a 
special carousel based high-speed storage system - Rotastore. It is shown 
that this logistic problem leads to an NP-hard Batch Presorting Prob- 
lem ( B P S P )  which is not easy to solve optimally in offline situations. We 
consider a polynomial case and develope an exact algorithm for offline 
situations. Competitive analysis showed that the proposed online al- 
gorithm is 312-competitive. Online algorithms with lookahead improve 
the online solutions in particular cases. If the capacity constraint on 
additional storage is neglected the problem has a totally unimodular 
polyhedron. 

The second problem originates in the health sector and leads to a 
vehicle routing problem. We demonstrate that reasonable solutions for 
the offline case covering a whole day with a few hundred orders can be 
constructed with a heuristic approach, as well as by simulated annealing. 
Optimal solutions for typical online instances are computed by an effi- 
cient column enumeration approach leading to a set partitioning problem 
and a set of routing-scheduling subproblems. The latter are solved ex- 
actly with a branch-and-bound method which prunes nodes if they are 
value-dominated by previous found solutions or if they are infeasible with 
respect to the capacity or temporal constraints. Our branch-and-bound 
method is suitable to solve any kind of sequencing-scheduling problem 
involving accumulative objective functions and constraints, which can 
be evaluated sequentially. The column enumeration approach developed 
to solve this hospital problem is of general nature and thus can be em- 
bedded into any decision-support system involving assigning, sequencing 
and scheduling. 
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The book is aimed at practioners and scientists in operation research 
especially those interested in online optimization. The target audience 
are readers interested in fast solutions of batch presorting and vehicle 
routing problems or software companies producing decision support sys- 
tems. Students and graduates in mathematics, physics, operations re- 
search, and businesses with interest in modeling and solving real opti- 
mization problems will also benefit from this book and can experience 
how online optimization enters into real world problems. 

Structure of this Book 

This book is organized as follows. Chapter 2 addresses the BPSP, where 
a formal definition of the BPSP is introduced (Section 2.1) and several 
modeling approaches are proposed (see Section 2.2). Complexity issues 
of some formulations are investigated in Section 2.3 and Section 2.4. For 
one polynomial case of the BPSP several algorithms are presented and 
compared in Section 2.5. In Chapter 3 we consider a concrete application 
of the BPSP - carousel based storage system Rotastore. In Section 3.1 
we describe the system performance, and in Section 3.2 the numerical 
results of the experiments are presented. 

Chapter 4 focuses on the Vehicle Routing problem with Pickup and 
Delivery and Time Windows (VRPPDTW), adapted for hospital trans- 
portation problems. After introducing some notations (Subsection 4.2.1), 
we suggest several approaches we have developed to solve this problem, 
including a MILP formulation (Subsection 4.3.1), a branch-and-bound 
approach (Subsection 4.3.2), a column enumeration approach (Subsec- 
tion 4.3.3), and heuristic methods (Section 4.4). In Chapter 5 we describe 
a problem related to a hospital project with the University Hospital in 
Homburg. Detailed numerical results for our solution approaches related 
to the VRPPDTW are collected in Section 5.2. 
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Conventions and Abbreviations 

The following table contains in alphabetic order the abbreviations used 
in this book. 

Abbreviation 
B&B 
B&C 
BPSP 
CEA 
IP  
LP 
MCP 
MILP 
MINLP 
RH 
S A 
SAT 
SH 
s. t. 
TS 
VNS 
VRP 
VRPPDTW 
w.r. t. 

Meaning 
Branch-and-Bound 
Branch-and-Cut 
Batch Presorting Problem 
column enumeration approach 
Integer Programming 
Linear Programming 
Mixed Complementarity Problem 
Mixed Integer Linear Programming 
Mixed Integer Nonlinear Programming 
reassignment heuristic 
simulated annealing 
satisfiability problem 
sequencing heuristic 
subject to 
tabu search 
variable neighborhood search 
Vehicle Routing Problem 
VRP with Pickup and Delivery and Time Windows 
with respect to 
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Chapter 1 

INTRODUCTION 

What do a logistics manager responsible for an inventory storage sys- 
tem and a vehicle fleet dispatcher in a hospital campus have in common? 
They both have to consider new objects arriving at short notice and to 
decide on what to do with them, how to assign them to given resources or 
how to modify previously made decisions. This means they both need to 
make decisions based on data suffering from incomplete knowledge about 
near future events. Online optimization is a discipline in mathematical 
optimization and operations research which provides the mathematical 
framework and algorithms for dealing appropriately with such situations. 

1.1. Optimization Everywhere 
The need for applying optimization arises in many areas: finance, 

space industry, biosystems, textile industry, mineral oil, process and 
metal industry, and airlines to name a few. Mathematical program- 
ming is a very natural and powerful way to solve problems appearing in 
these areas. In particular, see [12], [18], [23], [37] and [83] for application 
examples. One might argue that low structure systems can probably 
be handled well without optimization. However, for the analysis and 
development of real life complex systems (that have many degrees of 
freedom, underlying numerous restrictions etc.) the application of op- 
timization techniques is unavoidable. It would not be an exaggeration 
even to say that any decision problem is an optimization problem. De- 
spite their diversity real world optimization problems often share many 
common features, e.g., they have similar mathematical kernels such as 
flow, assignment or knapsack structures. 

One further common feature of many real life decision problems is the 
online nature aspect, i. e., decision making is based on partial, insufficient 
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information or without any knowledge of the future. One approach (not 
treated in this book) to solve problems with only partial or insufficient 
information is optimization under uncertainty (cf. [45], [50], or [88]), 
and especially, stochastic programming (cf. [14], [53], [77], or [78]). In 
that case, the problem is still solved as an offline problem. 

However, it is not always appropriate to solve a problem offline. If we 
cannot make any assumptions on future data, only the currently available 
data can be used. In such situations online optimization is recommended. 
We can list a number of problems that were originally formulated as 
offline problems but which in many practical applications are used in 
their online versions: the bin packing problem, the list update problem, 
the k-server problem, the vehicle routing problem, and the pickup and 
delivery problem to name a few. 

Special optimization techniques for online applications exploit the on- 
line nature of the decision process. Usually, a sequence of online opti- 
mization problems is solved when advancing in time and more data be- 
come available. Therefore, online optimization can be much faster than 
offline optimization (which uses the complete input data). To estimate 
the quality of a sequence of solutions obtained by online optimization 
one can only compare it with the overall solution produced by an offline 
algorithm afterwards. A powerful technique to estimate the performance 
of online algorithms is the competitive analysis (cf. [Il l) .  A good survey 
on online optimization and competitive analysis can be found in [4], [ll], 
[30]. Online optimization and competitive analysis are based on generic 
principles and can be beneficial in completely different areas such as the 
storage system and transportation problem considered in this book. 

At first we consider an example of a complex technical system, namely 
a special carousel based high-speed storage system - Rotastore [73], which 
not only allows storing ([56], [57]) but also performs sorting ([49], [70]). 
Sorting actions and assignment to storing locations are fulfilled in real 
time, but the information horizon may be rather narrow. The quality of 
the corresponding decisions strongly influences the performance of the 
system in general; thus the need to improve the quality of the decisions. 
Due to the limited information horizon online optimization is a promising 
approach to solve these problems. 

In our second case study, the conditions for the decision making pro- 
cess in hospital transportation are similar: the orders often are not known 
in advance, the transportation network may be changed dynamically. 
The efficiency of order assignment and scheduling of the transport sys- 
tem can influence the operation of the whole hospital. That assumes, in 
this case, not only economical aspects, but, at first of all, human health 
and life issues. 
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As will be shown in this book, the mathematical base for the first 
problem is the Batch Presorting Problem (BPSP), for the second one we 
naturally can use an online variant of the Vehicle Routing problem with 
Pickup and Delivery and Time Windows (VRPPDTW). The efficient 
application of the corresponding solution methods allows to improve the 
performance of both systems compared to the current real life situation. 



Chapter 2 

BATCH PRESORTING PROBLEMS. I 
MODELS AND SOLUTION APPROACHES 

This chapter is organized as follows: at first, we describe the problem 
and give a short classification. In Section 2.2 different formulations of 
the BPSP are presented. In Subsection 2.2.2 we consider an optimization 
version of BPSP1. In Subsection 2.2.3 we formulate BPSP2 and BPSP3 
as decision problems and additionally introduce optimization models. 
The complexity status of BPSP2 is investigated in Section 2.3, and in 
Section 2.4 we show that there is a polynomial version of the BPSP. 
Also we consider a special subcase of a BPSP with N~ = 2 in offline and 
online situations and present corresponding algorithms in Section 2.5. 
Finally, in Section 2.6, some results derived for BPSPs with N~ = 2 are 
adapted to general BPSP. 

2.1. Problem Description and Classification 
We consider the problem of finding a finite sequence of objects of 

different types, that guarantees an optimal assignment of objects to given 
physical storage layers with a pre-sorting facility of limited capacity. This 
problem will be called the Batch Presorting Problem (BPSP), because 
the objects have to be sorted within one batch before they are assigned 
to the layers. After sorting, the object with number i will be assigned to 
layer i .  For a more transparent presentation we speak of colors instead of 
types and thus consider all objects of type k as having the same color k. 
We present three types of BPSP with different objective functions. The 
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objective function, z ,  of BPSPl  minimizes the total number of layers 
not yet occupied by objects of a certain color k; such objects can be 
considered as occupying an empty layer (empty w.r.t. to k) at zero 
cost. Once each layer has an object of a given color, the cost does not 
change with further additions of that color. If the forgoing is true for all 
colors, z gives the number of all objects to be distributed minus those 
already assigned to the layers. In BPSP2  the objective is to minimize 
the maximum number of objects of the same color on the same layer. 
Finally, BPSP3 aims to minimize the sum of the maximum number of 
objects of the same color over all layers. 

We use the following example to illustrate the problem: 

EXAMPLE 2.1 Suppose, there are six objects of two diferent colors i n  
the input sequence (see Fig. 2.1.1) and three layers. 

Objects can be sorted within one batch, i.e., the objects I ,  2, 3 can 
be sorted, then they are assigned to the layers. Af ter  this the objects 
4,5 and 6 can be sorted and assigned to  the layers. Fig. 2.1.1 displays 
the content of the layers without pre-sorting. For this assignment the 
objective function value of BPSPl  i s  2, because the objects of the first 
batch occupy the layers at zero cost (layers were empty); the objects 4 
and 5 occupy the layers 1 and 2, respectively, each with cost one, and 
object 6 occupies layer 3 at zero cost. The objective function value of 
BPSP2 is 2, because the maximal number of objects of any color o n  all 
layers is 2 .  Finally, the objective function value of BPSP3 is  4 ,  because 
the maximal number of objects of the colors 1 and 2 over all layers is  
2 for both colors. Clearly, this assignment is not  optimal w.r.t. none 
of the three objective functions. The  optimal objective function values 
for BPSPl ,  BPSP2,  and BPSP3 are 0 ,  1, and 2,  respectively (see Fig. 
2.1.2). 

2.2. Formulation of the Batch Presorting Problem 
At first we introduce some notations used in this chapter: 

w No is the number of objects of different colors in a given sequence. 
These objects are indexed by i or j (for simplicity the positions of the 
objects are identified by their index values). Sk is the set of objects of 
color k, and i E Sk means that the object at position i in the sequence 
(also called "ith object" or "object in for short) has color k; 

w N K  is the number of colors; 

w N~ is the number of layers; 

N S  is the capacity of the pre-sorting facility. 
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ma layer 1 
batch 2 batch 1 

Figure 2.1.1. The input sequence and the content of the storage layers without pre- 
sorting. On the left part of the figure, the numbers 1, 2, ..., 6 refer to the objects 
while the numbers 1 and 2 in the squares denote the colors. 

batch 2 + batch 1 
layer 1 

layer 2 

layer 3 

Figure 2.1.2. Optimal permutation and content of the storage layers after the assign- 
ment 

2.2.1 Feasible Permutations 
Before we talk about feasible permutations, recall the definition of 

permutation: 

DEFINITION 2.2 A permutation S o n  a set of No objects i s  a one-to- 
one mapping of set  ( 1 , .  . . , N O )  onto itself, i.e., S : {I, .  . . , N o )  - 
(1, . . . , No}. T h u s  S ( i )  = j if the  object originally positioned at  i ,  i s  
placed onto position j .  

In other words, if S is a permutation, S ( i )  denotes the position of object 
i in the output sequence. In our case, only a subset of all possible 
permutations can be performed using the pre-sorting facility.' 

lFor the concrete technical functionality see Chapter 3. 
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trays: 

layers: 

Figure 2.2.3. The set of all possible permutations for N' = 1 

THEOREM 2.3 Let N' be the capacity of the pre-sorting facility. A per- 
mutation S is  realizable, if and only if for each object i ,  S ( i )  > i - N S .  If 
N o  5 N S  then there exist N o !  realizable permutations, otherwise there 
will be N S ! ( N S  + l)"O-"'. 
Proof. (see, for instance, [39]) 

Fig. 2.2.3 illustrates the result of Theorem 2.3. Notice, that if N o  5 N' 
then there exist N o !  realizable permutations and N S ! ( N S  + l )NO-NS 
otherwise. In this work the terms realizable and feasible permutations 
are equivalent. Now we formally introduce the notion of a feasible per- 
mutation. 

DEFINITION 2.4 A permutation 6 is  feasible if for any i = 1,  ..., N o  

is fulfilled. 

2.2.2 Mat hemat ical Formulation of BPSPl 
As was defined above, only the permutations with S ( i )  > i - N' are 

feasible. Note that only the objects at the permuted positions S( i )  = j 
will be placed onto layer I ,  where 1 = j mod N L ,  i.e., 1 is a function of j .  
For example, if N o  = 5 ,  N L  = 2, then objects with positions j = 1,3,5 
will be placed onto layer 1 = 1,  those with positions j = 2,4 onto layer 
1 = 2. 

In addition we introduce the following notations: 

1, i f S ( i )  = j 
0 ,  otherwise ' 
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and 

if layer 1, 1 F j modIVL, has already an object of the same 
color as object i 

0, otherwise 

(2.2.2) 
The optimal permutation can be constructed from the solution of the 
following linear program [39] : 

We can interpret the coefficient Cij as the cost of placing object i onto 
position j (which uniquely identifies layer 1). As (2.2.3) minimizes the 
total placing cost, it minimizes hence the total number of layers not yet 
occupied by objects of a certain color k .  Such objects can populate an 
empty layer (empty w.r.t. to k) at zero cost. Infeasible permutations 
are excluded (depending on NS), a priori by (2.2.6). Obviously, (2.2.6) 
corresponds to (2.2.1). 

It is well known that this kind of integer program is totally unimodular 
(cf. [61]) and, thus, may be solved efficiently by some versions of the 
Simplex algorithm. Many special matching algorithms solve the problem 
in polynomial time (cf., [72]). In practical applications (see Chapter 3), 
the performance very often depends on the number of attempts needed to 
output completely a set of orders (an order is a set of objects of different 
types). An attempt is considered successful if there exists at least one 
object of a given color on each layer (ie., belonging to the requested 
order). Therefore, for a given set of orders, the number of attempts 
needed for complete output is the maximum number of objects in these 
orders found on a single layer. 

Consider, for instance, the following example: No = 8, N K  = 2 (e.g., 
blue and yellow), NL = 2, C& = 1 for all i, j (lie., one blue and one 
yellow object already exist on each layer). Let the first four objects be 



10 Online Storage Systems and Transportation Problems 

blue and the others yellow. Suppose, BPSPl has two optimal solutions 
with objective function value 8: 

1 Three blue objects are assigned to the first layer and one to the sec- 
ond; one yellow object to the first layer and three to the second. 

2 Two objects of each color are assigned to both layers. 

The numbers of attempts for complete output are 4 + 4 = 8 in the first 
case and 3 + 3 = 6 in the second (see Fig. 2.2.4). In terms of suffi- 

Figure 2.2.4. The example of two different assignments of objects to the storage 
layers. 

ciency the second solution is preferable, because it needs fewer attempts 
for complete output. For practical applications we want to produce a 
solution with minimal number of attempts. Since BPSPl does not nec- 
essarily do so, we developed the following problem formulations. 

Note that the formulation above does not contain the index k, because 
the information about the color of objects is hidden in the coefficients Clj. 
More precise, Clj = Clj(k). Example 2.5 illustrates how the coefficients 
C'. are constructed. 

23 

2.2.3 Mat hematical Formulation of BPSP2 and 
BPSP3 

In this section we formulate BPSP2 and BPSP3 as decision problems. 
Most of the notations used in the previous section will be kept. Analo- 
gous to the notation Cij from Section 2.2.2 we use the notation Ckl - the 
number of objects of color k already present on layer 1. Additionally we 
define: 

an integer bound B; 
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constants 

0, otherwise ' (2.2.8) 

1, i f j ~ l   mod^^ 
0, otherwise. 

This allows us to define 

Now we can formulate the following decision problems: 

D-BPSP2: Is there a feasible permutation S such that the maximal cost 

does not exceed B? 

D-BPSP3: Is there a feasible permutation S such that the total cost 

does not exceed B? 
Remark: The term DikjlSij takes the value 1 if an additional ob- 

ject i of color k is placed onto layer 1 by permutation 6. As Ckl denotes 
the number of objects of color k already present on that layer, the cost 

C ~ L  +EL: N_I;:~ Dikjl 6ij yields the number of objects after the permuted 
objects have all been placed in the layers. In other words, D-BPSP2 is 
the problem of finding a permutation of objects such that the maximal 
number of objects of the same color on any layer is less than or equal 
to B for all colors. Thus, for practical applications, the total cost term 
of D-BPSP2 can be interpreted as a worst-case estimation of the per- 
formance and the total cost of D-BPSP3, analogously, represents the 
average performance over all colors. 

2.2.3.1 An Optimization Version of BPSP2 
Since the objective is to minimize the maximal cost (2.2.11), we now 

formulate the decision problem as an optimization problem: 


