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Preface 
This work provides a posteriori error analysis for mathematical idealizations 

in modeling boundary value problems, especially those arising in mechanical 
applications, and for numerical approximations of numerous nonlinear varia- 
tional problems. An error estimate is called a posteriori if the computed solution 
is used in assessing its accuracy. A posteriori error estimation is central to mea- 
suring, controlling and minimizing errors in modeling and numerical approx- 
imations. In this book, the main mathematical tool for the developments of a 
posteriori error estimates is the duality theory of convex analysis, documented 
in the well-known book by Ekeland and Temam ([49]). The duality theory 
has been found useful in mathematical programming, mechanics, numerical 
analysis, etc. 

The book is divided into six chapters. The first chapter reviews some basic 
notions and results from functional analysis, boundary value problems, elliptic 
variational inequalities, and finite element approximations. The most relevant 
part of the duality theory and convex analysis is briefly reviewed in Chapter 2. 
This brief review is sufficient for the applications of the duality theory in all the 
following chapters. In mathematical modeling of differential equation prob- 
lems, usually assumptions are made on various data. Qualitatively, for many 
problems, it is known that the solution depends continuously on the problem 
data. Frequently though, it is desirable also to estimate or bound quantitatively 
the effect on the solutions of the problems caused by the adoption of the as- 
sumptions on the data. In Chapter 3, a posteriori error estimates are derived for 
the effect on the solutions of mathematical idealizations on the data of ellip- 
tic linear boundary value problems. In Chapter 4, a posteriori error estimates 
are given for linearization in a number of nonlinear boundary value problems. 
The last two chapters are devoted to a posteriori error analysis of numerical 
solutions. In Chapter 5, the regularization method and the KaEanov method 
are considered, both being useful in handling certain types of nonlinearity. In 
Chapter 6, a posteriori error estimates are derived and studied for finite element 
solutions of some elliptic variational inequalities. 

This book is intended for researchers and graduate students in Applied and 
Computational Mathematics, and Engineering. Mathematical prerequisites in- 
clude calculus, linear algebra, some exposures of differential equations, and 
concepts of normed spaces, Banach spaces and Hilbert spaces. In the theoreti- 
cal development, some basic notions and results in functional analysis, duality 
thoery, weak formulations of boundary value problems, variational inequali- 
ties, and the finite element method are used. Brief reviews of these notions and 
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results in the first two chapters provide background materials for a reader who 
lacks knowledge in these areas. 

This work avoids giving the results in the most general, abstract form so 
that it is easier for the reader to understand more clearly the essential ideas 
involved. Many examples are included to show the usefulness of the derived 
error estimates. 

In preparing this book, I have benefited from many individuals. I am grateful 
to Professor Ivo BabuSka for introducing me the research topic and for providing 
valuable advice. Several of my collaborators (teachers, friends, and students) 
made contributions to various parts of the book, and I especially thank Dr. Viorel 
Bostan, Dr. Jiuhua Chen, Professor Hongci Huang, late Professor Sgren Jensen, 
Professor B.D. Reddy. I express my gratitude to Professor Kendall Atkinson 
and Professor Mircea Sofonea for their constant support. I thank Professor D.Y. 
Gao and Professor R.W. Ogden for inviting me to make the contribution in their 
Kluwer book series on Advances in Mechanics and Mathematics (AMMA). 

The supports of NSF under grant DMS-0106781 and the James Van Allen 
Fellowship of the University of Iowa are greatly appreciated. 



Chapter 1 

PRELIMINARIES 

1.1. INTRODUCTION 
Numerical simulation/scientific computation is now playing a more and more 

important role, and has become one of the three basic tools in science and 
technology, in addition to experimentation and theory. Numerical simulation 
provides a relatively inexpensive and efficient way to help understanding the 
physical world and advancing the technology. 

A complete numerical analysis simulation session for a physical or engineer- 
ing problem typically consists of several steps, described below. See Figure 1.1 
for a description of the related flow chart, following [7 ] .  

First, the physical or engineering problem is brought to our attention. We 
want to predict and determine the response of the physical system to the external 
actions. To do this we need to establish a mathematical model for the problem. 
This is achieved by applying physical laws, material constitutive relations, and 
various experimental data such as the geometry of the system, densities of 
external forces. Most often, we obtain an initial-boundary or boundary value 
problem of differential equations or differential inequalities to describe the 
physical or engineering problem. We call this mathematical model the basic 
mathematical model, and identify it with the physical reality. 

It is a highly idealized assumption that we can have a mathematical problem 
which exactly describes the physical problem. The available data, which usually 
come from experiments, for the basic mathematical formulation can not be 
obtained as accurate as one wishes. As a consequence, we solve a simplified, 
or idealized mathematical problem instead. The idealized or simplified problem 
is the mathematical model we use to study the physical problem. 

The idealized mathematical model is usually still rather complicated and can 
be solved only by numerical methods. Popular methods to discretize initial- 
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Physical Problem 
1 

Basic Mathematical Model 

Mathematical Idealization f- 

1 

Error ~ n a m  
4 

Output 

Figure 1.1. Numerical analysis of a physical problem 

boundary or boundary value problems include the finite difference method and 
the finite element method. As a result of the discretization, we obtain a discrete 
system. The discrete system is then solved by some numerical method. 

Once we have solved a discrete system, a natural question is: Can we use 
this solution? In other words, is this discrete solution sufficiently accurate for 
practical use? The reliability of a numerical solution of a physical or engineer- 
ing problem depends on mathematical idealization of the physical problem and 
numerical treatment of the idealized mathematical problem. Various possibil- 
ities may arise and they demand our closer investigation. It is desirable to be 
able to estimate the errors associated with the steps described above. Standard 
topics in error analysis deal with the errors caused by discretization and solution 
of the discrete system. Fewer results are available for the estimation of errors 
in mathematical modelling. The error in mathematical modelling may be the 
most critical, however. 

If both the mathematical idealization and the numerical solution of the ide- 
alized problem are reliable, various information for the real problem is drawn 
based on the numerical solution of the idealized problem. If a discrete solu- 
tion is found to be not accurate enough, we need to trace the sources of the 
inaccuracy, and decide whether we need to compute a more accurate numeri- 
cal solution of the mathematical model, or refine and numerically solve a new 
mathematical model. 

There is a large amount of literature on numerical methods and their error 
analysis. Relatively few results are available in the literature for reliability anal- 
ysis of mathematical idealizations, especially most desirably, certain good, prac- 
tically useful quantitative assessments of the quality of solutions of idealized 
problems. Such quantitative assessments should be (hopefully) available once 
we have computed the solutions of idealized problems. One should not assume 
the quantitative knowledge of the solutions of basic mathematical problems for 
either exact descriptions of basic mathematical problems are usually not avail- 
able in practice or, it is often too expensive to solve the basic mathematical prob- 
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lems. Some papers devoted to modeling error analysis or error analysis of math- 
ematical idealizations include [30, 71, 72, 116, 118, 119, 120, 121, 128, 1421. 

An error estimate is called a posteriori if the computed solution is used in 
assessing its accuracy. A posteriori error estimation is central to measuring, 
controlling and minimizing errors in modeling and numerical approximations. 

We now briefly describe the main features of the a posteriori error estimates to 
be derived and studied in this work. We let (P) stand for the basic mathematical 
model problem and use u for its solution, and let (Po) be an idealized mathe- 
matical problem with the solution uo, and ( ~ t )  a numerical approximation of 
the idealized model with the solution u!. Here, h represents a discretization 
parameter. The basic mathematical model ( P )  is usually difficult to solve, even 
numerically, and the simpler problem (Po) is expected to be close to ( P ) .  We 
want to use the solution uo to bound the error l u  - uo 1 1 :  

where B(uo)  is a quantity completely computable once uo and some informa- 
tion on the data of ( P )  are known. We also allow the case where the data for 
( P )  are not completely given, and only some ranges of the data are available. 
In such a case, the data for (Po)  can be obtained through certain averaging 
process on the data for (P). Of course, to be able to derive a posteriori er- 
ror estimates, we need to make assumptions on the structure of the problem 
( P ) .  In this work, ( P )  is assumed to be a convex minimization problem; this 
allows the employment of the duality theory in convex analysis for deriving a 
posteriori error estimates. We will also use the numerical solution u! of the 
problem (P:) to bound the error 1 1  uo - u! 1 1 .  A posteriori estimation of the dis- 
cretization error (uo - uk) has been a popular research topic since late 1970's 
(see the description in Chapter 6). Many of the a posteriori error estimates for 
the numerical solutions of differential equation problems can be derived via the 
duality theory. In Chapter 6, we focus on the a posteriori error analysis for finite 
element solutions of elliptic variational inequalities of the second kind. We will 
see there that the duality approach provides a general framework, leading to 
various a posteriori error estimators. 

In this work, errors are measured in terms of energy norms or energy-like 
norms. The salient features of the a posteriori error estimates presented in this 
work are: 

1 The error estimates are rigorous in the sense that the error bounds are always 
satisfied. In this sense, when we say error estimates, most often we mean 
error bounds. We use the phrases "error estimates" and "error bounds" 
interchangeably. 
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2 The error bounds are determined by the solutions of the idealized mathe- 
matical models or the numerical solutions of the given problems. There is 
no need to solve related dual problems. 

3 All the error bounds, except those presented in Chapter 6 on the finite ele- 
ment approximations of variational inequalities, are completely computable 
in the sense that there are no unknown constants. In the literature, most a 
posteriori error estimates on numerical solutions of partial differential equa- 
tions problems involve such theoretical unknown constants and their values 
are selected based on a few numerical examples (e.g., 1501). 

4 Efficiency of the error estimates is demonstrated through numerous exam- 
ples and theoretical analysis. 

Recently, goal-oriented or object-oriented error estimates have been devel- 
oped to calculate error bounds of global or local quantities of interest, such as 
the error of stress or strain in a critical region, using a dual-weighted residual 
technique. The procedure of the technique can be described as follows. Con- 
sider a boundary value problem and suppose the purpose of the computation is 
the value of a functional of the solution. The boundary value problem is solved 
numerically, typically by the finite element method. The functional of the nu- 
merical solution is then computed. To bound the error involved in the functional 
value, a dual problem is introduced related to the functional and the boundary 
value problem, and is numerically solved. Then the error in the computed func- 
tional value is expressed in terms of the numerical solution of the dual problem 
together with some residual quantities, which is then localized and split into 
contributions related to the modeling error and discretization error. The survey 
papers [19, 621 provide detailed accounts of this technique. Note that the use 
of solutions of the dual problems may imply a possibly dramatic increase in the 
computational effort. In this work, dual problems will play a central role in the 
derivation of error estimators, but the error bounds do not involve solutions of 
the dual problems. 

The organization of the book is the following. In the remaining part of this 
first chapter, we will briefly review some basic notions and results from func- 
tional analysis, function spaces, weak formulation of boundary value problems, 
and the finite element method. In Chapter 2, we review some basic material 
from convex analysis and the duality theory, that plays the central role in this 
book for a posteriori error analysis. In Chapter 3, we employ the duality the- 
ory to derive a posteriori error estimates for mathematical idealizations in linear 
boundary value problems, paying particular attention to the situation with nons- 
mooth domains. The idealizations can occur in the coefficients of the differential 
equations, the right-hand sides, boundary value conditions, and the domain. In 
Chapter 4, we perform a posteriori error analysis for the effect of linearization 
in several nonlinear problems. In Chapter 5, we apply the duality theory to 
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derive a posteriori error estimates for some numerical procedures in solving 
nonlinear boundary value problems, including the regularization method for 
problems involving non-differentiable terms, KaCanov iteration methods and 
linearizations. Finally, in Chapter 6, we derive a posteriori error estimates for 
finite element solutions of elliptic variational inequalities of the second kind. 
The error estimates that can be derived via the duality theory include some of 
the well-known a posteriori error estimates found in the finite element literature 
for solving elliptic differential equations. 

1.2. SOME BASIC NOTIONS FROM FUNCTIONAL 
ANALYSIS 

We assume the reader is familiar with such basic notions as linear spaces, 
norms, inner products, Banach spaces, and Hilbert spaces. Details on these 
and the material to be reviewed in the following can be found in any standard 
textbook on functional analysis, e.g., [45, 481, or in a concise form, [6]. 

In this work, the general theory will be developed for domains in the space 
IRd of the d-dimensional vectors of the form x = (xl, . . . , x ~ ) ~ ,  xi E R. Recall 
that a domain R c Rd is an open, connected, bounded set in E X d .  For p E [I,  m] , 
we have the following norms in IRd :  

When Rd is viewed as a normed space, implicitly we understand the norm to be 
the Euclidean norm I . / = / . 12, unless otherwise stated. The Euclidean norm 
is induced by the canonical inner product in E X d :  

The summation convention over a repeated index will be adopted. As an 
example, for the canonical inner product in IRd ,  we write (x, y) = xigi. 

The symbol sd stands for the space of second order symmetric tensors on Rd 
or, equivalently, the space of symmetric matrices of order d. The inner product 
and corresponding norm on S d  are 

For a normed space V, we use V* to denote its dual space, i.e., the space 
of all the continuous linear functionals on V. The duality pairing between V* 
and V is usually denoted by e(v) or (v*, v) for e, v* E V* and v E V. We can 
then introduce different types of convergence. 
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DEFINITION 1.1 Let V be a normed space, V* its dual space. A sequence 
{u,) C V converges or converges strongly to u E V, written u, + u as 
n+m,if 

lim llu - unll = 0. 
n+cc 

The sequence {u,) converges weakly to u E V, written u, --\ u as n + m, i f  

We will use the following property of a weakly convergent sequence: 

The dual space of a normed space is always complete, i.e. always a Ba- 
nach space. Over a finite dimensional space, it is a well-known result that any 
bounded sequence contains a convergent subsequence. This property does 
not carry over to infinite dimensional spaces. For example, the sequence 
{sin j ~ x ) ~ > ~  is a bounded sequence in ~ ~ ( 0 ,  I ) ,  but none of its subsequences 
converges. In  many applications of the functional analytic approach, one needs 
the property that a bounded sequence contains a subsequence that converges in 
some sense. Reflexive Banach spaces enjoy this kind of desirable property. A 
space V is said to be rejlexive if (V*)* can be identified with V. A reflexive 
space must be complete and is hence a Banach space. We have the following 
important property of a reflexive space. 

THEOREM 1.2 If V is a rejlexive Banach space, then any bounded sequence 
in V has a weakly convergent subsequence. 

We will see examples of reflexive Banach spaces in Section 1.3. 
For an inner product, there is an important property called the Cauchy- 

Schwarz inequality: 

with the equality holding iff u and v being linearly dependent. We recall an 
important property of a Hilbert space. 

THEOREM 1.3  (Riesz representation theorem) Let V be a Hilbert space, 1 E 
V*. Then there is a unique u E V for which 

In addition, 

lltll = Il.llv. 

Thus, the dual space of a Hilbert space can be identified with itself, and any 
Hilbert space is reflexive. 
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1.3. FUNCTION SPACES 
We will use the multi-index notation for partial derivatives. An ordered 

collection of d non-negative integers, a = ( a l , .  . . , a d ) ,  is called a multi- 
index. The quantity (a (  = c:=, ai is said to be the length of a. If v is an 
m-times differentiable function, then for any a with la1 5 m, 

is the ath order partial derivative. For lower order partial derivatives, there 
are other notations in common use; e.g., the partial derivative dv/dxi is also 
written as dx,v, or div, or vjXi, or v,i. 

1.3.1 CONTINUOUS FUNCTION SPACES 
The notation ~ ( 2 )  is used for the space of functions continuous on 2. It is 

a Banach space with the norm 

More generally, for a non-negative integer m, we define 

C m ( 2 )  = {v E ~ ( 2 )  : D"v E C ( 2 )  for la1 m),  

which is a Banach space with the norm 

We also set 

~ ~ ( 2 )  = n;==,crn(2) r {v E C ( 2 )  : v E C m ( 2 )  'dm = 0,1,. . . ) 

Given a function v on R, its support is defined to be 

suppv = {x E R : v(x)  # 0). 

Here a bar over a set stands for the closure of the set. We say that v has a 
compact support if supp v is a proper subset of R: supp v CC R. Thus, if v 
has a compact support, then there is a strip about the boundary dR such that v 
is zero on the intersection of the strip and the domain. Later on, we will use the 
space 

C,CO(R) = {v E CCO(R) : supp v c c 0). 

Holder spaces. A function v defined on R is said to be Lipschitz continuous if 
for some constant c, 
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The smallest possible constant in the above inequality is called the Lipschitz 
constant of v ,  and is denoted by Lip(v). More generally, the function v is said 
to be Holder continuous with exponent /I E ( O , l ]  if for some constant c, 

The Holder space CO)P (32) is defined to be the subspace of C (a) which consists 
of functions Holder continuous with the exponent P. With the norm 

the space C O ) P ( ~ )  becomes a Banach space. 
For a nonnegative integer m  and /I E (O,l] ,  we similarly define the Holder 

space 

C ~ ) ~ ( E )  = { V  E crn(a) : Df fv  E C O . ~ ( ~ )  for all u with la. = m }  ; 

this is a Banach space with the norm 

1.3.2 LEBESGUE SPACES 
In the study of Lebesgue spaces, we identify functions which are equal a.e. 

on R. For p E [ I ,  oo), LP(R) is the linear space of measurable functions 
v : R -+ R such that 

The space Lm(R)  consists of all essentially bounded measurable functions 
v : R + R such that 

l l ~ l l l ~ r n ( ~ )  = inf SUP I v ( x ) I  < 00. 
meas(nl)=O 2~n\n f  

For a measurable function v defined on R, if v E Lp(Rf)  for any R' CC R, 
then we say v is locally in LP(R) and write v E Lro,(R). We use meas(R) for 
the Lebesgue measure of R. For d = 3, meas(R) is the volume of R, and for 
d = 2, meas(R) is the area of R. 

Some basic properties of the LP spaces are summarized in the following 
theorem. 
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THEOREM 1.4 Let R be an open bounded set in IRd. 
(a) For p E 11, oo], LP(R) is a ~ a n a c h  space with the norm dejined in (1.2) or 
(1.3). 
(b) For p E [ I ,  m ] ,  every Cauchy sequence in LP(R) has a subsequence which 
converges pointwise a. e. on R. 
(c) If1 5 p 5 q < oo, then L Q ( f l )  c LP(R), 

(d) I f  1 5 p 5 r 5 q < oo and we choose O E [O,1] such that l / r  = 
O/p + (1 - Q)/q ,  then 

(e) For 1 5 p < m ,  (LP(R))* = LP* ( f l ) .  Hence for p E (1,  m ) ,  the space 
Lp(R) is rejlexive. 

1.3.3 SOBOLEV SPACES 
Sobolev spaces are defined based on the concept of weak derivatives. 

DEFINITION 1.5 Let R be a nonempty open set in IRd, v ,  w E L;,,(R). Then 
w is called an ath weak derivative of v i f  

It follows from the definition that a weak derivative, if it exists, is unique up 
to a set of measure zero. Another direct consequence of Definition 1.5 is that 
if a function v has a continuous ath derivative Dav in the classical sense, then 
Dav is also the ath weak derivative of v .  Thus we see that the notion of a weak 
derivative is indeed an extension of the classical derivative. For this reason, we 
will use the symbol Dav for the ath weak derivative of v. 

Let Ic be a nonnegative integer, p E [ I ,  oo]. 

DEFINITION 1.6 The Sobolev space wkJ'(R) is the set of all the functions 
v E L:,,(R) such that for each multi-index a with la1 5 Ic, the ath weak 
derivative Dav exists and D f f v  E Lp(R). The norm in the space wkJ'(fl) is 
defined by the following: 
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Figure 1.2. Smoothness of the boundary 

When p = 2, we write H k ( R )  = w ~ ) ~ ( R ) .  

We will mainly use Sobolev spaces wk1p(fl) when f l  is a domain in EXd. 
Usually we use simpler notation / (  . 1 1  k ,p ,R  to denote the norm ) I  . 1 1  W h p ( R ) ,  

and I . I k ,n  for the norm I . I H k ( n ) .  The Sobolev space WkJ'(R) is a Banach 
space, and Hk ((R is a Hilbert space with the inner product 

Next we list several important properties of Sobolev spaces. Some properties 
require a certain degree of smoothness of the boundary J? of the domain R. 

DEFINITION 1.7 Let R  be open bounded in iRd, and let V denote afunction 
space on JRdV1. We say dR is of class V iffor each point xo E X l ,  there exist 
an r  > 0 and afunction g E V such that upon relabelling the coordinate axes 
ifnecessary, we have 

Here, B ( x o ,  r )  denotes the ball centered at xo with radius r. See Figure 1.2. 
In particular; when V consists of Lipschitz continuous functions, we say R  

is a Lipschitz domain. When V consists of Ck functions, we say R  is a ck 
domain. 

Since dR is a compact set in IKd, we can actually find a finite number of 
points {xi):=, on the boundary so that for some positive numbers {ri):==, and 
functions {gi)l=l C V ,  

upon relabelling the coordinate axes if necessary, and 
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Figure 1.3. Smooth domains 

Figure 1.4. Lipschitz domains 

Figure 1.5. A crack domain 

Throughout this work, we will assume R is Lipschitz continuous, unless 
stated explicitly otherwise. We observe that in engineering applications, most 
domains are Lipschitz continuous (Figures 1.3 and 1.4). A well-known non- 
Lipschitz domain is one with cracks (Figure 1.5). 

Approximation by smooth functions. Equalities and inequalities involving 
Sobolev functions are usually proved first for smooth functions followed by a 
density argument. A theoretical basis for this technique is results on density of 
smooth functions in Sobolev spaces. 

THEOREM 1.8 Assume R is a Lipschitz domain, 1 5 p < m. Then for any 
v E wk2p(R), there exists a sequence {v,) C P ( n )  such that 

Proof of this density theorem can be found, e.g., in [51]. 
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DEFINITION 1.9 We define w/ 'P(R)  as the closure of Cr(S1)  in wklp(0). 
When p = 2, we denote H$ (a) = ~ i > ~  ( a ) .  

From Definition 1.9, we see that we always have the denseness of the smooth 
function space Corn ( R )  in w;'P(R). We interpret w;'P(o) to be the space of 
all the functions v in w k > p ( R )  with the "property" that 

D a v ( z )  = 0 on dR,  V a  with ( a (  5 k - 1. 

The meaning of this statement will be made clear later after the trace theorems 
are presented. 

Traces. Notice that Sobolev spaces are defined through Lebesgue spaces. 
Hence Sobolev functions are uniquely defined only a.e, in R. Since the bound- 
ary dR has measure zero in Itd, it seems the boundary value of a Sobolev 
function is not well-defined. Nevertheless it is possible to define the trace of 
a Sobolev function on the boundary in such a way that for a Sobolev function 
continuous up to the boundary, its trace coincides with its boundary value. 

THEOREM 1.10 Assume R is a Lipschitz domain in IRd, 1 5 p < m. Then 
there exists a linear operator y : wlJ'(R) -+ LP(dR) such that 
(a) yv = vIan $v E wlJ'(R) n C(2) .  
(b) For some constant c > 0, I l y ~ l l ~ p ( ~ ~ )  5 c ~ w i , p ( ~ )  b'v E W ' > ~ ( R ) .  
(c) The mapping y : wlJ'(R) -+ LP(dS2) is compact; i.e., for any bounded 
sequence {v,) in wlJ'(R), there is a subsequence {v,t) c {v,) such that 
{yv,t ) is convergent in LP(dR). 

In Theorem 1.10, the Lebesgue spaces on the boundary, LP(dR), are used. 
A precise definition of these spaces can be found in [101, Section 6.31. 

The operator y is called the trace operator, and with property (a) we can 
view yv as the the generalized boundary value of v. Property (b) states that 
the mapping y is continuous from w 1 ~ P ( R )  to LP(dR), whereas property (c) 
further states that actually the mapping y is compact from W1sp(R) to Lp(dS1). 
The trace operator is neither an injection nor a surjection from w 1 > p ( R )  to 
LP(dR). The range y (wlJ'(R)) is actually a space smaller than LP(dR), that 
is denoted by ~ ~ - l l p , p ( d R ) ,  an example of a fractional order Sobolev space. 
This is a Banach space with the norm 

We will frequently use the space H1I2 ( d ~ )  = y ( ~ ' ( 0 ) ) .  In the future 
to simplify the notation, for a function v E w13P((R), we will denote its 
trace on the boundary also by v. The trace operator is also continuous from 



Preliminaries 13 

wlJ'(R) to LQ(R)  for q in certain range. One such example is: for d = 2, 
y E C ( H 1 ( R ) ,  Hq(dR))  for any q E [I, oo), andforsomeconstantc = c(R,  q) ,  
we have the inequality 

With the notion of the trace of wlJ'(R) functions, we have 

Here, the condition "v = 0 on dR" is understood as that the trace of v is a zero 
function on dR. This condition can be equivalently stated as "v = 0 a.e. on 
do". The particular case p = 2 leads to the Hilbert space 

H; (0) = {v E H1 ( R )  : v = 0 on 8 0 ) .  

Its dual space is usually denoted as H-' ( 0 ) .  
In some occasions, we will need to use the first derivatives (e.g., the normal 

derivative) on the boundary. Let v = ( v l ,  . . . , vd)T denote the outward unit 
normal to the boundary r of R. Since dR is Lipschitz continuous, v exists 
a.e. on dR. For a function v E H2 ( R ) ,  its first derivatives vxi E H1 ( R ) .  By 
Theorem 1.10, it is meaningful to write their traces vxi E L~ ( d R )  . We can then 
define the normal derivative 

and we have the integration by parts formula 

This formula is first proved for u, v E cm(R), and is then extended to u E 
H 2 ( R )  and v E H1 ( R )  by applying the density result Theorem 1.8. 

For boundary value problems of higher-order partial differential equations, 
we need to use the traces of partial derivatives on the boundary. Such results 
can be found in, e.g., [67]. 

Sobolev embedding theorems. Sobolev embedding theorems are important, 
especially in analyzing the regularity of a weak solution of a boundary value 
problem. 

D E F I N I T I O N  1.1 1 Let V and W  be two Banach spaces with V C W .  We say 
the space V is continuously embedded in W  and write V v W  ifthere exists 
a constant c > 0 such that 
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We say the space V is compactly embedded in W and write V 3- W ,  if 
(1 .5 )  holds and each bounded sequence in V has a convergent subsequence in 
W .  

If V 9 W ,  the functions in V are smoother than the rest of the functions 
in W .  Proofs of most parts of the following two theorems can be found in 
[51]. The first theorem is on embedding of Sobolev spaces, and the second on 
compact embedding. These theorems are given in a form more general than 
what is needed later in this work. For any t E R, we denote [t] the largest 
integer less than or equal to t .  

THEOREM 1 .12  Let R c IRd be a Lipschih domain. Then the following 
statements are valid. 
(a) I f  k  < d l p ,  then wk2P(R) c, Lq(R)  for any q 5 p', where l l p '  = 
l / p  - k / d .  
(b) I f k  = d / p ,  then w k > p ( R )  q Lq(R)  for any q < cm. 
(c) I f  k  > d / p ,  then 

where 
[ d / p l +  1 - d / p  if d l p  # integer, 4 = {  any positive number < 1  i f d l p  = integer. 

THEOREM 1.13 Let 0 C IRd be a Lipschih domain. Then the following 
statements are valid. 
(a) I f k  < d l p ,  then wkJ'(R) v* L4(R)  for any q < p', where llpl = 
l l p  - k l d .  
(b) I f k  = d l p ,  then wkJ'(R) qq Lq(R)  for any q < oo. 
(c) I f k  > d l p ,  then 

where 4 E [0, [ d l p ]  + 1 - d l p ) .  

Equivalent norms. Associated with any vector space, one can define infinitely 
many different norms. A well-known result in analysis states that over a finite 
dimensional space, any two norms are equivalent, i.e., if I /  . and / I  . 1 1 ( 2 )  
are two norms on a finite dimensional space V, then there exist two constants 
0 < cl 5 c2 < oo such that 

Thus, in a finite dimensional space, different norms lead to the same convergence 
property. For an infinite dimensional space, however, not any two norms are 
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equivalent. For example, over the space C[O, 11, the norm 1 1  . 1 1  c[o,ll is stronger 
than / I  . I L l  ( 0 , 1 )  : A sequence converging with respect to the norm / //c[o,ll 
converges also with respect to the norm ( 1 .  ( I L 1  (0,1), whereas it is easy to construct 
examples of function sequences converging with respect to I /  . l i L l ( o , l )  but not 
with respect to I . I C I O , I l  (cf. [6,  Example 1.2.131). In some applications, it is 
convenient to use a different norm that is equivalent to the canonical norm of a 
given space. The next result can be used to generate various equivalent norms 
on Sobolev spaces. Over the Sobolev space wk>p(fl), I ~ l ~ , p , $  is the seminorm 
defined bv 

It can be shown that if f l  is connected and IvlklPln = 0, then v is a polynomial 
of degree less than or equal to k - 1. 

THEOREM 1.14 Let R c lRd be a Lipschitz domain, k 2 1, 1 ( p < m. 
Assume f j  : wkJ'(fl) i R, 1 < j ( J,  are seminorms on wk>p(0) satisfying 
two conditions: 

( H I )  0 I f j ( v )  5 c llvllrc,p,n v v  E wk2~(n ) ,  1 I j 5 J .  

(Hz) If v is a polynomial of degree less than or equal to k - 1 and 
f j  ( v )  = 0, 1 ( j ( J ,  then v = 0. 

Then, the quantity 
J 

defines a norm on wkJ'(fl), which is equivalent to the norm I l ~ l ) ~ , ~ , $ .  

A proof of this result can be found in [79]. 
Many useful inequalities can be derived as consequences of the previous 

theorem. As an example, if rl  is an open, non-empty subset of the boundary 
d f l ,  then there is a constant c > 0, depending only on f l  such that 

This inequality can be derived by applying Theorem 1.14 with k = 1, p = 2, 
J = 1 and 

r 
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where 
H&(R) = {v E H1(R) : v  = 0a.e. o n r l ) .  

Hence, the seminonn I . jl, '  is a norm on H;~ (R),  equivalent to the usual 
H1 ( 0 )  -norm 1 )  1 1  1,'. The inequality (1 -6) is a PoincarC-type inequality. In 
what follows, both I and I - l , n  will be used as the norm in Hhl (0). 

1.4. WEAK FORMULATION OF BOUNDARY VALUE 
PROBLEMS 

Classical solutions of boundary value problems of partial differential equa- 
tions may not exist even for smooth data (cf. [67, Section 1.11). The devel- 
opment of the theory of Sobolev spaces and weak formulations eliminates this 
problem and provides a general framework to derive powerful numerical meth- 
ods. In this section, we briefly discuss weak formulations of boundary value 
problems. 

We start with the homogeneous Dirichlet boundary value problem of the 
Poisson equation 

The standard weak formulation is 

Here we assume f E ~ ~ ( 0 ) .  If f E HP1 (R),  then the right hand side of 
the equation is understood to be the duality pairing ( f ,  v )  between the spaces 
H-' (R) and HA (R). The weak formulation (1.9) is derived from (1.7)-(1.8) as 
follows: First, multiply the equation (1.7) by an arbitrary function v ,  suitably 
smooth so that the following calculations are justified, and assumed zero on 
the boundary. Next, integrate the resulting equation over R, and perform an 
integration by parts on the left hand side to obtain the integral identity 

~ V U - V v d z =  S, f v d z  

Finally, observe that both sides of the integral identity make sense even if we 
only require u ,  v  E H1 (R). Together with the zero boundary value condition, 
we thus require u ,  v  E Hi ( a ) .  

Relations between the classical formulation (1.7)-(1.8) and the weak formu- 
lation (1.9) are: 


