CMOS PLL Synthesizers: Analysis and Design
THE KLUWER INTERNATIONAL SERIES IN ENGINEERING AND COMPUTER SCIENCE

ANALOG CIRCUITS AND SIGNAL PROCESSING

Consulting Editor: Mohammed Ismail. Ohio State University

Related Titles:

OPERATIONAL AMPLIFIER SPEED AND ACCURACY IMPROVEMENT
Ivanov and Filanovsky

STATIC AND DYNAMIC PERFORMANCE LIMITATIONS FOR HIGH SPEED
D/A CONVERTERS
van den Bosch, Steyaert and Sansen
ISBN: 1-4020-7761-0

DESIGN AND ANALYSIS OF HIGH EFFICIENCY LINE DRIVERS FOR XDSL
Piepersens and Steyaert
ISBN: 1-4020-7727-0

LOW POWER ANALOG CMOS FOR CARDIAC PACEMAKERS
Silveira and Flandre

MIXED-SIGNAL LAYOUT GENERATION CONCEPTS
Lin, van Roermund, Leenaerts

HIGH-FREQUENCY OSCILLATOR DESIGN FOR INTEGRATED TRANSCIEVERS
Van der Tang, Kasperkovitz and van Roermund

CMOS INTEGRATION OF ANALOG CIRCUITS FOR HIGH DATA RATE TRANSMITTERS
DeRanter and Steyaert

SYSTEMATIC DESIGN OF ANALOG IP BLOCKS
Vandenbussche and Gieelen

SYSTEMATIC DESIGN OF ANALOG IP BLOCKS
Cheung & Luong

LOW-VOLTAGE CMOS LOG COMPANDING ANALOG DESIGN
Serra-Graells, Rueda & Huertas

CIRCUIT DESIGN FOR WIRELESS COMMUNICATIONS
Pun, Franca & Leme

DESIGN OF LOW-PHASE CMOS FRACTIONAL-N SYNTHESIZERS
DeMuer & Steyaert

MODULAR LOW-POWER, HIGH SPEED CMOS ANALOG-TO-DIGITAL CONVERTER
FOR EMBEDDED SYSTEMS
Lin, Kemna & Hosticka

DESIGN CRITERIA FOR LOW DISTORTION IN FEEDBACK OPAMP CIRCUITE
Hernes & Saether

CIRCUIT TECHNIQUES FOR LOW-VOLTAGE AND HIGH-SPEED A/D CONVERTERS
Walteri

DESIGN OF HIGH-PERFORMANCE CMOS VOLTAGE CONTROLLED OSCILLATORS
Dai and Harjani
ISBN: 1-4020-7238-4

CMOS CIRCUIT DESIGN FOR RF SENSORS
Gudnason and Bruun
Keliu Shu
Edgar Sánchez-Sinencio

CMOS PLL Synthesizers: Analysis and Design

Springer
Contents

List of Acronyms and Symbols ix

Preface xv

1 Introduction

1.1 MOTIVATION 1
1.2 SUMMARY OF BOOK 2
1.3 BOOK ORGANIZATION 4
REFERENCES 5

2 Frequency Synthesizer for Wireless Applications 7

2.1 DEFINITION AND CHARACTERISTICS 7
2.2 PHASE NOISE AND TIMING JITTER 8
 2.2.1 Phase noise and spurious tone 8
 2.2.2 Timing jitter 11
2.3 IMPLEMENTATION OF FREQUENCY SYNTHESIZER 14
 2.3.1 Direct analog frequency synthesizer 14
 2.3.2 Direct digital frequency synthesizer 15
 2.3.3 PLL-based frequency synthesizer 16
 2.3.4 DLL-based frequency synthesizer 20
 2.3.5 Hybrid frequency synthesizer 21
 2.3.6 Summary and comparison of synthesizers 21
2.4 FREQUENCY SYNTHESIZER FOR WIRELESS TRANSCEIVERS 22
2.5 OTHER APPLICATIONS OF PLL AND FREQUENCY SYNTHESIZER 24
REFERENCES 26
3 PLL Frequency Synthesizer

3.1 PLL FREQUENCY SYNTHESIZER BASICS

3.1.1 Basic building blocks of charge-pump PLL
3.1.2 Continuous-time linear phase analysis
3.1.3 Locking time
3.1.4 Tracking and acquisition

3.2 FAST-LOCKING TECHNIQUES

3.2.1 Bandwidth gear-shifting
3.2.2 VCO pre-tuning

3.3 DISCRETE-TIME ANALYSIS AND NONLINEAR MODELING

3.3.1 z-domain transfer function and stability analysis
3.3.2 Nonlinear dynamic behavior modeling

3.4 DESIGN EXAMPLE: 2.4GHz INTEGER-N PLL FOR BLUETOOTH

REFERENCES

4 ΣΔ Fractional-N PLL Synthesizer

4.1 ΣΔ FRACTIONAL-N FREQUENCY SYNTHESIZER

4.1.1 ΣΔ quantization noise to phase noise mapping
4.1.2 ΣΔ quantization noise to timing jitter mapping

4.2 A COMPARATIVE STUDY OF DIGITAL ΣΔ MODULATORS

4.2.1 Design considerations
4.2.2 Four types of digital ΣΔ modulators
4.2.3 Summary of comparative study

4.3 OTHER APPLICATIONS OF ΣΔ-PLL

4.3.1 Direct digital modulation
4.3.2 Frequency-to-digital conversion

4.4 MODELING AND SIMULATION OF ΣΔ-PLL

4.5 DESIGN EXAMPLE: 900MHz ΣΔ-PLL FOR GSM

REFERENCES

5 Enhanced Phase Switching Prescaler

5.1 PRESCALER ARCHITECTURE

5.1.1 Conventional prescaler
5.1.2 Phase switching prescaler
5.1.3 Injection-locked prescaler
5.1.4 Summary and comparison of prescalers

5.2 ENHANCED PHASE-SWITCHING PRESCALER

5.3 CIRCUIT DESIGN AND SIMULATION RESULTS

5.3.1 Eight 45°-spaced phases generation
5.3.2 8-to-1 multiplexer
5.3.3 Switching control circuit
5.3.4 Asynchronous frequency divider

5.4 DELAY BUDGET IN THE SWITCHING CONTROL LOOP
Index
List of Acronyms and Symbols

AAC Automatic Amplitude Control
BPF Band-Pass Filter
CCO Current-Controlled Oscillator
CDR Clock and Data Recovery
CMOS Complementary Metal Oxide Semiconductor
CP Charge-Pump
DAC Digital-to-Analog Converter
DAS Direct Analog Synthesizer
DDS Direct Digital Synthesizer
DFDD Digital Frequency Difference Detector
DLL Delay-Locked Loop
DPA Digital Phase Accumulator
DUT Device Under Test
FDC Frequency-to-Digital Converter
FF Flip-Flop
FHSS Frequency-Hopping Spread Spectrum
FM Frequency Modulation
FN Fractional-N
FS Frequency Synthesizer
GSM Global System for Mobile communications
IC Integrated Circuit
ILFD Injection-Locked Frequency Divider
ISF Impulse Sensitivity Factor
ISM Industrial Scientific Medicine
LF Loop Filter
LO Local Oscillator
LTI Linear Time-Invariant
LSB Least-Significant-Bit
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>MASH</td>
<td>Multi-stage noise Shaping</td>
</tr>
<tr>
<td>NAND</td>
<td>Negative AND logic</td>
</tr>
<tr>
<td>NCO</td>
<td>Numerically Controlled Oscillator</td>
</tr>
<tr>
<td>NMOS</td>
<td>N-channel Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>NOR</td>
<td>Negative OR logic</td>
</tr>
<tr>
<td>OPA</td>
<td>Operational Amplifier</td>
</tr>
<tr>
<td>OSR</td>
<td>Over Sampling Ratio</td>
</tr>
<tr>
<td>OTA</td>
<td>Operational Transconductance Amplifier</td>
</tr>
<tr>
<td>PD</td>
<td>Phase Detector</td>
</tr>
<tr>
<td>PFD</td>
<td>Phase-Frequency Detector</td>
</tr>
<tr>
<td>PGS</td>
<td>Patterned Ground Shield</td>
</tr>
<tr>
<td>PLL</td>
<td>Phase-Locked Loop</td>
</tr>
<tr>
<td>PMOS</td>
<td>P-channel Metal Oxide Semiconductor</td>
</tr>
<tr>
<td>PSD</td>
<td>Power Spectral Density</td>
</tr>
<tr>
<td>RF</td>
<td>Radio Frequency</td>
</tr>
<tr>
<td>RMS</td>
<td>Root-Mean-Square</td>
</tr>
<tr>
<td>SC</td>
<td>Switched Capacitor</td>
</tr>
<tr>
<td>SCL</td>
<td>Source-Coupled Logic</td>
</tr>
<tr>
<td>SDM</td>
<td>Sigma-Delta Modulator</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SSB</td>
<td>Single-Sideband</td>
</tr>
<tr>
<td>TSPC</td>
<td>True-Single-Phase-Clock</td>
</tr>
<tr>
<td>VCO</td>
<td>Voltage-Controlled Oscillator</td>
</tr>
<tr>
<td>XOR</td>
<td>Exclusive OR logic</td>
</tr>
</tbody>
</table>

- ω: angular frequency in rad/s
- ω_{-3dB}: PLL $-3dB$ loop bandwidth
- ω_c: PLL loop (unity-gain / crossover) bandwidth
- ω_{c1}: 1st corner frequency of capacitance multiplier impedance
- ω_{c2}: 2nd corner frequency of capacitance multiplier impedance
- ω_{c3}: 3rd corner frequency of capacitance multiplier impedance
- ω_n: natural frequency
- ω_{p1}: 1st pole-frequency of loop filter transimpedance
- ω_{p2}: 2nd pole-frequency of loop filter transimpedance
- ω_{p3}: 3rd pole-frequency of loop filter transimpedance
- ω_{ref}: PLL reference angular frequency (at PFD)
- ω_z: zero-frequency of loop filter
- $\omega_{1/f}$: corner angular frequency of $1/f$ noise
- $\Delta\omega_{1/f^3}$: corner angular frequency of oscillator $1/f^3$ phase noise
\(\Delta \omega \) angular frequency offset from carrier
\(\Delta \omega_H \) PLL hold range
\(\Delta \omega_L \) PLL lock range
\(\Delta \omega_P \) PLL pull-in range
\(\Delta \omega_{PO} \) PLL pull-out range
\(\phi \) phase
\(\phi_m \) phase margin
\(\Delta \phi \) amplitude of phase modulation
\(\Delta \phi_{rms} \) PLL output \(rms \) phase noise
\(\theta \) phase
\(\theta_e \) phase error at PFD inputs
\(\theta_{in} \) input phase (noise)
\(\theta_{out} \) output phase (noise)
\(\theta_{vco} \) VCO phase noise
\(\phi \) random phase variation
\(\zeta \) damping factor
\(\epsilon \) normalized settling frequency error of PLL
\(\mathcal{L} \) phase noise in \(dBC/Hz \)
\(\sigma_c \) \(rms \) of cycle jitter
\(\sigma_{cc} \) \(rms \) of cycle-to-cycle jitter
\(\tau \) time
\(\delta \) impulse function (Dirac delta function)
\(\delta_T \) periodic impulse function with period \(T \)
\(\Gamma \) ISF function

\(B \) current ratio
\(C_1 \) 1st capacitance of passive loop filter
\(C_2 \) 2nd capacitance of passive loop filter
\(C_3 \) 3rd capacitance of passive loop filter
\(C_{p1} \) 1st parasitic capacitance of capacitance multiplier
\(C_{p2} \) 2nd parasitic capacitance of capacitance multiplier
\(f \) frequency in \(Hz \)
\(f_0 \) carrier frequency
\(f_c \) PLL loop (unity-gain / crossover) bandwidth
\(f_{div} \) loop divider output frequency
\(f_m \) modulation frequency
f_{ref}
PLL reference frequency (at PFD)

f_{vco}
VCO frequency

f_{RF}
RF frequency (of mixer)

f_{LO}
local oscillator frequency

Δf
offset frequency from the carrier

$\Delta f_{1/f^3}$
corner frequency of oscillator $1/f^3$ phase noise

F
active device noise factor

g
conductance, transconductance

G
conductance, transconductance

h
transfer function

H
transfer function

H_{cl}
PLL closed-loop input-to-output phase (noise) transfer function

H_e
PLL input phase (noise) to PFD phase error transfer function

H_{ol}
PLL open-loop input-to-output phase (noise) transfer function

H_{Vc}
PLL input phase to LF output voltage transfer function

i
current

i_{cp}
charge-pump current noise

I
current

I_c
in-phase signal

I_{c}
control current of CCO

I_{cp}
charge-pump current

I_{cpi}
charge-pump current of integration path

I_{cpp}
charge-pump current of proportional path

I_{dn}
charge-pump current for discharging the load capacitor

I_p
output current of LF’s proportional path

I_{up}
charge-pump current for charging the load capacitor

I_z
output current of LF’s integration path

j
integer number

k
binary integer input of DPA or digital SDM

Boltzmann constant

K
PLL loop gain

K_{pd}
PFD and charge-pump gain in A/rad

K_{vco}
VCO conversion gain in $rad/s/V$

K_{cco}
CCO conversion gain in $rad/s/A$
L integer number (order of SDM)
inductance
m integer number
M modulus of DPA or digital SDM
n integer number
n_Q output integer of digital SDM
N number
(nominal) frequency divide ratio of loop divider
N_B integer part of fractional-N divide ratio
P prescaler divide ratio
power
P_r PLL reference spur level in dBc
q charge
Q quadrature signal
quality factor
quantization noise
Q_L loaded quality factor
R resistance
auto-correlation function
R_1 1^{st} resistance of passive loop filter
R_2 2^{nd} resistance of passive loop filter
R_φ auto-correlation function of random phase φ
S power spectrum
S_φ power spectral density of random phase variation
S_V power spectral density of signal $V(t)$
t time
t_{on} charge-pump turn-on time in locked state
T time
temperature
T_L PLL lock-in time (rough estimation)
T_P PLL pull-in time
T_{ref} period of PLL reference signal
ΔT_{abs} absolute jitter
ΔT_{cn} cycle-to-average jitter
ΔT_{ccn} cycle-to-cycle jitter
u unit step function
v voltage
V voltage
\[
\begin{align*}
V_c & \quad \text{VCO control voltage, LF output voltage} \\
V_p & \quad \text{output voltage of LF's proportional path} \\
V_z & \quad \text{output voltage of LF's integration path} \\
\nu_{lf} & \quad \text{loop filter output voltage noise} \\
y & \quad \text{admittance} \\
z & \quad \text{impedance} \\
Z & \quad \text{impedance, transimpedance} \\
Z_{lf} & \quad \text{loop filter transimpedance}
\end{align*}
\]
Preface

Thanks to the advance of semiconductor and communication technology, the wireless communication market has been booming in the last two decades. It evolved from simple pagers to emerging third-generation (3G) cellular phones. In the meanwhile, broadband communication market has also gained a rapid growth. As the market always demands high-performance and low-cost products, circuit designers are seeking high-integration communication devices in cheap CMOS technology.

The phase-locked loop frequency synthesizer is a critical component in communication devices. It works as a local oscillator for frequency translation and channel selection in wireless transceivers and broadband cable tuners. It also plays an important role as the clock synthesizer for data converters in the analog-and-digital signal interface.

This book covers the design and analysis of PLL synthesizers. It includes both fundamentals and a review of the state-of-the-art techniques. The transient analysis of the third-order charge-pump PLL reveals its locking behavior accurately. The behavioral-level simulation of PLL further clarifies its stability limit. Design examples are given to clearly illustrate the design procedure of PLL synthesizers. A complete derivation of reference spurs in the charge-pump PLL is also presented in this book.

The in-depth investigation of the digital $\Sigma\Delta$ modulator for fractional-N synthesizers provides insightful design guidelines for this important block. As the prescaler is often the speed bottleneck of high-frequency PLL synthesizers, it is covered in a single chapter in this book. An inherently glitch-free low-power phase-switching prescaler was developed. The timing analysis of the switching control loop gives good understanding for a sound design. As spurs generated from the delay mismatch in the phase-switching
prescaler might be a concern, it is mathematically examined. Another single chapter in this book is devoted to the loop filter, which is an integration bottleneck in narrow-band PLL because its big capacitor takes a large chip area. A simple area-efficient on-chip loop filter solution was proposed. It is based on a capacitance multiplier, which is of very low complexity and power consumption. Detailed analysis and design of this novel loop filter was addressed.

As this book features a complete coverage of PLL synthesizer design and analysis techniques, the authors hope it will be a good manual for both academia researchers and industry designers in the PLL area.
Chapter 1

INTRODUCTION

1.1 Motivation

In the last decade, the rapid growth of wireless applications has led to an increasing demand of fully integrated, low-cost, low-power, and high-performance transceivers. The applications of wireless communication devices include pagers, cordless phones, cellular phones, global positioning systems (GPS), and wireless local area networks (WLAN), transmitting either voice or data. A standard specifies how devices talk to each other.
design the radio frequency integrated circuits (RFIC) in CMOS technology. A single-chip transceiver with a minimum number of off-chip components is preferred to reduce the cost and size of wireless devices, like cellular phones [3]-[7].

![Figure 1-1. Frequency band of wireless communication standards](image)

There are still many difficulties, however, in the process of integration of RF front-end due to the lack of high-quality components on chip. This book focuses on the design of the frequency synthesizer, one of the key building blocks of the RF front-end in CMOS technology. The frequency synthesizer is used as a local oscillator for frequency translation and channel selection in the RF front-end of wireless transceivers. It is a critical component in terms of the performance and cost of a wireless transceiver [8].

1.2 Summary of book

This book focuses on both fundamentals and advanced design techniques of PLL-based frequency synthesizers. A 2.4GHz fully integrated ΣΔ fractional-N frequency synthesizer prototype is implemented in 0.35µm CMOS technology. Efforts have been put on the prescaler and loop filter, which are the speed and integration bottlenecks, respectively.

A low-power and robust prescaler using an enhanced phase-switching architecture was proposed [9]-[12]. The new architecture is based on generating eight 45°-spaced phases and judiciously arranging the phase-switching sequence to yield an inherently glitch-free phase-switching operation.

In the existing phase-switching architecture [13], the switching is made between four 90°-spaced phases generated by cascading two stages of ÷2 dividers. The prescaler’s input frequency is divided by a factor of 4 before switching occurs. Since the frequency of the four signals to be switched by the multiplexer (MUX) is still high, the MUX is usually implemented with current-steering logic and voltage-level amplification is needed. In the proposed enhanced phase-switching architecture, one additional ÷2 divider is used to generate eight 45°-spaced signals. Since the input-signal frequency is
I. INTRODUCTION

Reduced by half, from 1/4 to 1/8 of the prescaler's input frequency, the MUX can be implemented with standard digital cells to save power consumption and the robustness of phase-switching operation is improved.

Furthermore, the main problem associated with the existing phase-switching architecture is the potential glitches if the switching occurs in the incorrect timing window. Thus, various significant efforts have been made in the literature to yield a glitch-free phase-switching prescaler [13]-[16]. However, all these glitch-removing schemes are not robust and often cost considerable power and area, or even sacrifice the prescaler's maximum operating speed. But in the proposed enhanced phase-switching architecture, an inherently glitch-free phase-switching operation is obtained by means of reversing the switching sequence. Thus, no retiming or synchronization circuit is needed for the switching control and the robustness of the switching operation is guaranteed.

To provide a further insight into the switching operation in the proposed phase-switching architecture, a detailed delay timing analysis of the switching control loop is given. By calculating the delay budget in the loop, we conclude that usually the first \(\div 2 \) divider is the only speed constraint of this enhanced phase-switching architecture.

The loop filter is a barrier in fully integrating a narrow-band PLL because of its large integrating capacitor. To make the loop capacitance of a narrow-band PLL as small as possible while keeping the same loop bandwidth, designers increase the loop resistance and reduce the charge-pump current. However, there are practical limitations for both the loop resistance and the charge-pump current. Thermal noise in the large resistor modulates the control voltage and generates phase noise in the VCO, and the charge-pump noise increases while the current decreases.

The dual-path topology has been a popular solution to this problem [17]-[22]. It equivalently scales down the largest integrating and zero-generating capacitance by the scaling factor of the dual charge-pump currents. Besides the increased noise and power due to active devices, the charge-pump of the integration path is still working with a very small current and contributes significant noise. Also, the delay mismatch of the dual charge-pumps may change the loop parameters. Furthermore, at least for the implementations in [18]-[20] and [22], the voltage decay of the low-pass path causes undesirable ripples on the VCO control voltage.

To overcome the constraints of the dual-path topology, a novel loop filter solution is proposed [10]-[12]. A capacitance multiplier [23] is used to reduce the capacitance by a large factor and make it easily integratable within a small chip area.

Besides contributions on the prescaler and loop filter, a comparative study of digital \(\Sigma \Delta \) modulator for fractional-N PLL synthesizers is made [24] to investigate the optimal design of the digital \(\Sigma \Delta \) modulator. A third-order
three-level digital $\Sigma\Delta$ modulator is employed to reduce the instantaneous phase error at the PFD. The folding of the $\Sigma\Delta$-shaped phase noise is minimized by reducing nonlinearities of the PFD and charge pump [10]-[12], [24].

Furthermore, the derivation of the settling time of the third-order PLL, the derivation of spurs due to delay/phase mismatches in the phase-switching prescaler, a complete analysis of the reference spur in the charge-pump PLL, and the behavioral-level verification of the PLL stability limit are all presented in this book.

A prototype chip of the $\Sigma\Delta$ PLL synthesizer was fabricated in TSMC 0.35μm, 4-metal 2-poly (4M2P) CMOS process through MOSIS. The die size is $2mm \times 2mm$. It includes a fully integrated $\Sigma\Delta$ fractional-N frequency synthesizer and some standalone building blocks for testing. The PLL takes an active area of $0.85mm^2$, of which the digital $\Sigma\Delta$ modulator occupies $0.5mm^2$. With a power supply of 1.5-V for VCO and prescaler, and 2.0-V for other blocks, the whole PLL system consumes 16mW, of which the VCO consumes 9mW. With the reference frequency of $50MHz$, the measured phase noise is $-128dBc/Hz$ at $10MHz$ offset and the reference spur is $-57dBc$.

The proposed prescaler only takes an area of $0.04mm^2$. With a 1.5-V power supply, it works well within the PLL’s tuning range of 2.23–2.45GHz and consumes 3mW. The proposed loop filter occupies $0.05mm^2$ and its power consumption (0.2mW) and noise are negligible compared with the whole PLL.

1.3 Book organization

In Chapter 2, the fundamentals of the frequency synthesizer including its features, applications, implementations, and key parameters (jitter and phase noise) are reviewed. Various synthesizer architectures and their pros and cons are discussed.

In Chapter 3, the analysis of the PLL-based frequency synthesizer is covered. It includes the continuous-time linear analysis, discrete-time analysis, stability concerns, operation modes, and fast-locking techniques, etc. An integer-N PLL frequency synthesizer design example is given to illustrate the design procedure.

Chapter 4 concentrates on analysis and design of the $\Sigma\Delta$ fractional-N PLL frequency synthesizer. $\Sigma\Delta$ noise mapping methods are reviewed. A comparative study of digital $\Sigma\Delta$ modulators for fractional-N synthesis is conducted to provide detailed design considerations and guidelines for this block. Other applications of $\Sigma\Delta$-PLL are surveyed and a design example of the $\Sigma\Delta$-PLL is also included.
Chapter 5 is devoted to the design of the prescaler. The existing design techniques are overviewed. An enhanced, inherently glitch-free phase-switching prescaler is presented. Its architecture and circuit implementation are addressed in great detail. The delay budget of the switching control loop is analyzed to demonstrate its robustness. Furthermore, spurs generated from delay/phase mismatches are derived.

Chapter 6 covers the design of the on-chip loop filter. Current design approaches are addressed. An area- and power-efficient implementation of the on-chip loop filter based on a simple capacitance multiplier is proposed. The detailed design, analysis, and simulation results are provided.

In Chapter 7, the implementation of other building blocks of a \(\Sigma \Delta \) PLL prototype is elaborated. It includes the phase-frequency detector (PFD), the charge-pump (CP), the \(LC \)-tuned voltage-controlled oscillator (VCO), the digital \(\Sigma \Delta \) modulator (SDM), and the programmable pulse-swallowing frequency divider. A complete reference spur analysis is also made.

Chapter 8 gives the experimental results of the prototype frequency synthesizer and some standalone building blocks, such as the novel prescaler and loop filter. Measurement results verified the feasibility and robustness of the phase-switching prescaler and the practicality of the loop capacitance multiplier.

Conclusions of this book are drawn in Chapter 9.

Finally, the Matlab simulation of the charge-pump PLL is given in the Appendix. The PLL stability limit is verified through behavioral-level simulations.

REFERENCES

Chapter 1

Chapter 2

FREQUENCY SYNTHESIZER FOR WIRELESS APPLICATIONS

This chapter describes some fundamentals of frequency synthesizers. It covers the definition, specification, implementation and application of frequency synthesizers. The timing jitter and phase noise, the architecture of frequency synthesizers, and the frequency synthesizer's specification for wireless applications are overviewed.

2.1 Definition and characteristics

A frequency synthesizer (FS) is a device that generates one or many frequencies from one or a few frequency sources. Fig. 2-1 illustrates the input and outputs of an FS.

The output of an FS is characterized by its frequency tuning range, frequency resolution, and frequency purity. Ideally, the synthesized signal is a pure sinusoidal waveform. But in reality, its power spectrum features a peak at the desired frequency and tails on both sides. The uncertainty of a synthesizer's output is characterized by its phase noise (or spur level) at a certain frequency offset from the desired carrier frequency in unit of dBC/Hz (or dBc). The unit of dBc/Hz measures the ratio (in dB) of the phase noise power in 1Hz bandwidth at a certain frequency offset to the carrier power. Similarly, the unit of dBc measures the ratio (in dB) of the spur (also known as tone) power at a certain frequency offset to the carrier power. More discussions on the phase noise are covered in the next section. The phase noise requirement of a frequency synthesizer depends on applications. For