Survivable Optical WDM Networks
OPTICAL NETWORKS SERIES

Series Editor
Biswanath Mukherjee, University of California, Davis

Other books in the series:

OPTICAL BURST SWITCHED NETWORKS
SURVIVABLE OPTICAL WDM NETWORKS

CANHUI (SAM) OU
SBC Services, Inc.

BISWANATH MUKHERJEE
University of California, Davis
Survivable Optical WDM Networks

Library of Congress Cataloging-in-Publication Data

A C.I.P. Catalogue record for this book is available from the Library of Congress.

© 2005 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11320876

springeronline.com
DISCLAIMER
The opinions and views expressed in this book are solely those of the authors and do not necessarily reflect the opinions or views, either expressed or implied, of the employers or the research sponsors.
To our families and friends
Contents

Dedication vii
List of Figures xv
Preface xxi
Acknowledgments xxv

1. INTRODUCTION 1
 1.1 Optical Networking 1
 1.1.1 Telecommunication Networks 1
 1.1.2 Wavelength-Routed WDM Mesh Networks 2
 1.1.3 Survivable WDM Mesh Networks 3
 1.2 An Overview of the Book 5
 1.2.1 Shared-Path Protection 5
 1.2.2 Sub-Path Protection for Scalability and Fast Recovery 5
 1.2.3 Segment Protection 5
 1.2.4 Survivable Traffic Grooming–Dedicated Protection 6
 1.2.5 Survivable Traffic Grooming–Shared Protection 6
 1.2.6 Survivable Data over SONET/SDH 7

2. SHARED-PATH PROTECTION 9
 2.1 Introduction 9
 2.2 Problem Statement and Complexity Analysis 11
 2.2.1 Problem Statement 11
 2.2.2 Complexity Analysis 13
 2.3 Compute A FEasible Solution (CAFES) 14
 2.3.1 Trap Topology 15
 2.3.2 Backup-Sharing-Caused Trap 15
 2.4 Optimization (OPT) 16
2.5 Illustrative Numerical Results 20
 2.5.1 Blocking Probability 21
 2.5.2 Percentage of Unreachable Blocking 22
 2.5.3 Resource Overbuild 23
 2.5.4 Average Hop Distance 23

2.6 Conclusion 24

Appendix 2.A NP-Completeness of DSPLP Problem 25

3. SUB-PATH PROTECTION 29
 3.1 Introduction 29
 3.1.1 Related Work 29
 3.1.2 Multi-Domain Optical Networks and Our Proposal 31
 3.1.3 Organization 32
 3.2 Sub-Path Protection 32
 3.2.1 An Illustrative Example 32
 3.2.2 Different Cases 33
 3.2.3 Domain-Border-Node (DBN) Failures 34
 3.2.4 Problem Statement 35
 3.2.5 Proof of NP-Completeness 36
 3.3 ILP Formulation for RWA with Sub-Path Protection 37
 3.3.1 Notations 38
 3.3.2 Sub-Path Protection: Split ILP Formulation 38
 3.3.3 Equivalence of the Split ILP and the Original Problem 43
 3.4 Heuristic 43
 3.4.1 Phase 1: Find Shortest Path Pair for Each Lightpath with Respect to Domain Constraints 44
 3.4.2 Phase 2: Wavelength Assignment 46
 3.4.3 Phase 3: Optimization 46
 3.4.4 Complexity 49
 3.5 Results and Discussions 49
 3.5.1 Recovery Time 50
 3.5.2 Survivability 52
 3.5.3 Scalability 53
 3.5.4 Resource Utilization 54
 3.6 Conclusion 57

Appendix 3.A NP-Completeness of RWA for Shared-Path Protection 57
Appendix 3.B NP-Completeness of Optimal Backup Routing (OBR) 59
4. SEGMENT PROTECTION

4.1 Introduction

4.2 Generalized Segment Protection
 4.2.1 Generalized Segment Protection
 4.2.2 The GSP Heuristic
 4.2.3 Illustrative Numerical Results

4.3 Providing Differentiated Quality of Protection (QoP) Based on Generalized Segment Protection
 4.3.1 Motivation
 4.3.2 GSP_QoP Heuristic
 4.3.3 Illustrative Numerical Results

4.4 Conclusion

5. SURVIVABLE TRAFFIC GROOMING—DEDICATED PROTECTION

5.1 Introduction
 5.1.1 Traffic Grooming
 5.1.2 Lightpath Protection
 5.1.3 Survivable Traffic Grooming
 5.1.4 Our Proposal

5.2 Grooming-Node Architecture

5.3 Problem Statement

5.4 Proposed Approaches
 5.4.1 Protection-at-Lightpath (PAL) Level
 5.4.2 Protection-at-Connection (PAC) Level
 5.4.3 PAL vs. PAC: A Qualitative Comparison

5.5 PAL Heuristic
 5.5.1 Problem Complexity
 5.5.2 PAL Heuristic
 5.5.3 Explanation
 5.5.4 Optimality
 5.5.5 Variations
 5.5.6 Computational Complexity

5.6 PAC Heuristic
 5.6.1 Node Modeling and Network-State Representation
 5.6.2 Route Computation
 5.6.3 Lightpath-Setup Strategy
 5.6.4 Computational Complexity
List of Figures

1.1 Overview of telecommunication networks. 2
1.2 Logical view of a backbone network. 3
2.1 Trap situations. Solid gray lines represent links; solid black lines denote working paths; dashed black lines denote backup paths; and the number besides a link represents the cost of that link. 14
2.2 Illustration of OPT (dashed line is the fixed backup). 18
2.3 An example network used in this study. 20
2.4 Blocking probability. 21
2.5 Percentage of unreachable blocking. 22
2.6 Resource overbuild. 23
2.7 Average hop distance. 24
2.A.1 An illustrative construction for a 3SAT instance $F = \{D_1, D_2\}$, $D_1 = v_1 \lor \bar{v}_2 \lor \bar{v}_3$, $D_2 = \bar{v}_1 \lor v_2 \lor v_3$, and $Q = \{v_1, v_2, v_3\}$ (the part corresponding to clause D_2 is not shown). A dotted line corresponds to a link whose only wavelength has been used by an existing backup path. A thin solid line corresponds to a link whose only wavelength has been used by an existing working path. A thick solid line corresponds to a link whose only wavelength is available. 26
3.1 An example nationwide network where each cloud denotes a domain. Domain 1 includes nodes 1–7 and the links in between (if there is a link between two DBNs of two domains, the link belongs to one domain only); Domain 2 includes nodes 6–14 and the links in between; Domain 3 includes nodes 12–18 and the links in between. Nodes 6, 7, 12, 13, and 14 are DBNs. The number besides each link is the length of the link in kilometer. The solid (dashed) arrows form the primary (backup) path between node pair (3, 16).

3.2 A possible DBN implementation to combat single-node failures. Primary (backup) paths are in solid (dashed) arrows.

3.3 Auxiliary graphs for the network shown in Fig. 3.1. The number on a link is the cost of that link, assuming the cost of each link in Fig. 3.1 is unity. A link with arrow is a unidirectional link; a link without an arrow is a bidirectional link.

3.4 Recovery-time comparison between sub-path and shared-path protection schemes.

3.5 Resource-utilization comparison: (a) number of wavelength-links; (b) number of wavelengths.

3.6 Resource-utilization comparison: number of wavelength-links used (a) for all the lightpaths and (b) per lightpath.

3.7 Sub-path protection outperforms shared-path protection in terms of resource utilization (note the difference along path (0, 3, 4).) Node 4 is wavelength convertible.

3.8 Construction of NP-complete proof.

3.9 Reduce DSMT to OBR.

4.1 Various forms of segment protection. The solid lines from node s to node d represent the working path, and the dashed lines represent the backup segments. While only two segments are shown in these illustrations, in general, a path may employ many segments. Also, each backup segment may have several additional intermediate nodes, which are not shown here to avoid cluttering.

4.2 Illustration of the GSP heuristic. The number besides a link represents the cost of that link.

4.3 A representative topology whose average hop distance is about 2.99 and average nodal degree is about 3.58.
4.4 Blocking probability. The average link utilization for 40 Erlangs is about 17% and for 200 Erlangs is about 65%. 69
4.5 Performance gain of GSP over shared-path protection. 69
4.6 Working/backup hop count ($K = 2$). The plots for $K = 1$ and $K = 3$ are similar to the one for $K = 2$ here. 71
4.7 Number of segments per lightpath. 71
4.8 Resource overbuild. 72
4.9 Shared-path protection ($K = 2$ and $H_b = 6$). 73
4.10 Shared-path protection ($K = 2$ and $\epsilon = 0.99$). 73
4.11 Two backup segments, $\langle s, x, p, q, u \rangle$ and $\langle j, p, q, y, d \rangle$, of the same lightpath share the same wavelength link on link $\langle p, q \rangle$, assuming $H_b = 4$. 77
4.12 Blocking probability for $H_b = 6$. 78
4.13 Performance gain of GSP_QoP over shared-path protection for $H_b = 6$. 78
4.14 Blocking probability for $\epsilon = 0.99$. 79
4.15 Performance gain for $\epsilon = 0.99$. 79
4.16 Number of segments per lightpath for $\epsilon = 0.99$. 80
4.17 Blocking probability ($\epsilon = 0.99$). In Type 1, H_b follows $5 : 6 : 7 : \infty = 30 : 20 : 10 : 40$; In Type 2, H_b follows $5 : 6 : 7 : \infty = 10 : 20 : 20 : 50$. 81
4.18 Performance gain ($\epsilon = 0.99$). In Type 1, H_b follows $5 : 6 : 7 : \infty = 30 : 20 : 10 : 40$; In Type 2, H_b follows $5 : 6 : 7 : \infty = 10 : 20 : 20 : 50$. 82
4.19 Blocking probability ($\epsilon = 0.99$). 83
4.20 Performance gain ($\epsilon = 0.99$). 83
5.1 A simplified grooming-node architecture. 88
5.2 Example: initial network configuration (T and R represent the number of free grooming-add and grooming-drop ports at a node, respectively, each with initial value of 3). 90
5.3 PAL: provisioning connections $c_1 (\langle 4, 1, \text{STS-48c}, t_h \rangle)$ and $c_2 (\langle 4, 2, \text{STS-12c}, t_h' \rangle)$. 91
5.4 PAC: provisioning connections $c_1 (\langle 4, 1, \text{STS-48c}, t_h \rangle)$ and $c_2 (\langle 4, 2, \text{STS-12c}, t_h' \rangle)$. 91
5.5 A solution of PAL does not form a solution of PAC. 93
5.6 PAL: (a) physical reachability graph G_p, (b) virtual reachability graph G_p' for the network state in Fig. 5.3(a). 95
5.7 Modelling of node 4 in Fig. 5.4(a).

5.8 Overcoming a “trap” topology.

5.9 A 24-node example network topology.

5.10 BBR for $\Delta = 1.0, 0.7$, and 0.45 (the two curves for “PAL, 1.0” and “PAL, 0.7” overlap each other).

5.11 Grooming-port utilization for $\Delta = 1.0, 0.7$, and 0.45.

5.12 Wavelength utilization for $\Delta = 1.0, 0.7$, and 0.45.

5.13 Lightpath utilization for $\Delta = 1.0, 0.7$, and 0.45.

5.14 Normalized RER $E(1, 0)$ for $\Delta = 1.0, 0.7$, and 0.45.

5.15 Normalized RER $E(0, 1)$ for $\Delta = 1.0, 0.7$, and 0.45.

5.16 Normalized RER $E(2, 1)$ for $\Delta = 1.0, 0.7$, and 0.45.

5.17 Normalized RER $E(1, 4)$ for $\Delta = 1.0, 0.7$, and 0.45.

5.18 BBR of PAL for $\delta = 3, 2$, and 1 ($\Delta = 1.0$).

5.19 BBR of PAC for $\tau = 1.0, 0.8$, and 0 ($\Delta = 1.0$).

6.1 Example: initial network configuration.

6.2 PAL: provisioning connections $c_1((0, 2, STS-12c, t_1))$, $c_2((0, 3, STS-3c, t_2))$, and $c_3((4, 3, STS-48c, t_3))$.

6.3 MPAC: provisioning connections $c_1((0, 2, STS-12c, t_1))$, $c_2((0, 3, STS-3c, t_2))$, and $c_3((4, 3, STS-48c, t_3))$.

6.4 SPAC: provisioning connections $c_1((0, 2, STS-12c, t_1))$, $c_2((0, 3, STS-3c, t_2))$, and $c_3((4, 3, STS-48c, t_3))$.

6.5 Graph representation of node 2 in Fig. 6.3(c).

6.6 A 24-node example network topology.

6.7 Bandwidth-blocking ratio versus network offered load.

6.8 Grooming-port utilization versus network offered load.

6.9 Wavelength utilization versus network offered load.

6.10 Resource-efficiency ratio, $E(1, 0)$, versus network offered load.

6.11 Resource-efficiency ratio, $E(0, 1)$, versus network offered load.

6.12 Resource-efficiency ratio, $E(\frac{1}{3}, \frac{2}{3})$, versus network offered load.

6.13 Resource-efficiency ratio, $E(\frac{12}{13}, \frac{1}{13})$, versus network offered load.

6.14 BBR versus network offered load with $K = 1, 2$, and 3.

7.1 Provisioning a GbE connection in a SONET/SDH-enabled optical transport network.

7.2 Survivable DoS approach: PIVM.
List of Figures

7.3 Survivable DoS approach: PREY. 154
7.4 Inappropriate backup path \((s, i, j, d)\). 154
7.5 Sample US nationwide topology used in this study. 162
7.6 Bandwidth-blocking ratio. 162
7.7 Resource overbuild. 162
7.8 Illustration of fault-recovery time based on LCAS. 163
7.9 Maximum VCG size \((M = +\infty\) for both working and backup VCGs). 165
7.10 Impact of VCG size on bandwidth-blocking ratio. 166
7.11 Another sample topology. 166
7.12 Impact of VCG size on bandwidth-blocking ratio for the topology shown in Fig. 7.11. 167
7.A.1 An illustrative construction for a 3SAT instance \(F = \{D_1, D_2\}\), \(D_1 = v_1 \lor \bar{v}_2 \lor \bar{v}_3\), \(D_2 = \bar{v}_1 \lor v_2 \lor v_3\), and \(Q = \{v_1, v_2, v_3\}\) (the part corresponding to clause \(D_2\) is not shown). The number on every link is the cost. The dashed lines have one unit of available capacity, and the solid lines have \(u - 1\) units of available capacity. 169
Preface

The Topic

Optical-fiber technologies using wavelength-division multiplexing (WDM) are currently being researched and commercially deployed to satisfy our increasing bandwidth requirements because, by using WDM technologies, an optical fiber can support multiple non-overlapping wavelength channels, each of which typically operates at the data rate of 10 Gbps or 40 Gbps. In such a network, the failure of a network element, e.g., a fiber, can cause the failure of several wavelength channels, thereby leading to large data and revenue loss. The development of fault-management software, projected to grow significantly in the years ahead, is a top priority for both carriers and vendors. This book investigates the performance and design issues of survivable optical networks against failures.

The book first explores the problem of dynamic shared-path protection, which is desirably resource efficient because of backup sharing. It proves the NP-completeness of the problem, develops a heuristic to compute a feasible solution with high probability, and designs another heuristic to optimize resource consumption for a given solution.

As protection-switching time, resource efficiency, and scalability are primary concerns of a protection scheme, the book investigates from the network point of view sub-path protection, which achieves high scalability and fast recovery time for a modest sacrifice in resource utilization. The book then proceeds to explore from the connection point of view segment protection, which achieves fast recovery time and high resource efficiency.

While the transmission rate of a wavelength channel is high (typically STS-192 or STS-768), the bandwidth requirement of a typical connection request can vary from the full wavelength capacity down to STS-1 or lower. Different low-speed connections may request different bandwidth granularities as well as different protection schemes (dedicated, shared, or no protection). How
to efficiently groom such low-speed connections while satisfying their protection requirements is investigated next. Both protection-at-lightpath level and protection-at-connection level are examined and evaluated.

Next-generation SONET/SDH technologies enable network operators to provide integrated data and voice services over their legacy SONET/SDH infrastructure to generate new revenue. An important open research problem on data over SONET/SDH (DoS) is survivability: SONET automatic protection switching is too resource inefficient for data services, and the protection mechanisms of data networks are too slow for mission-critical applications. The book proposes two approaches for provisioning survivable DoS connections. The approaches exploit the tradeoff between resource overbuild and fault-recovery time while utilizing the inverse-multiplexing capability of virtual concatenation to increase backup sharing.

Intended Audience

This book is intended to be a reference book on survivability of optical networks for industrial practitioners, researchers, and graduate students who work on and/or want to learn more about survivable optical networks and data-over-SONET/SDH networks.

The focus of the book is on the various alternative approaches for combatting failures, such as fiber cuts and switch failures, in mesh optical networks. Industrial practitioners and researchers should find the book to be a useful reference because it contains state-of-the-art techniques to address various design and operating issues on managing failures in mesh optical networks and data-over-SONET/SDH networks.

Organization of the Book

This book is divided into seven chapters. Chapter 1 presents an overview of optical communication networks and an overview of the book.

Chapters 2-4 focus on provisioning connections of full wavelength capacity, or lightpaths, in an optical WDM mesh network. These three chapters propose and investigate different approaches to explore the tradeoffs among resource efficiency (backup sharing), fault-recovery time, scalability, and implementation complexity.

Chapters 5-7 focus on provisioning connections of sub-wavelength granularity in an optical WDM mesh network. Chapter 5 presents survivable traffic grooming with dedicated protection. Chapter 6 discusses survivable traffic grooming with shared protection. Chapter 7 presents an overview of next-generation SONET/SDH technologies and investigates the survivability of data-over-SONET/SDH networks.
Feedback

We welcome emails from readers who wish to provide any sort of feedback: errors, comments, criticisms, and suggestions for improvements. Our contacts are as follows:

Canhui (Sam) Ou
sam.ou@sbc.com

Biswanath Mukherjee
mukherje@cs.ucdavis.edu
Much of the book’s material is based on research that we have conducted over the past couple of years with members of the Networks Research Laboratory at University of California, Davis, and we would like to acknowledge them as follows: Dr. Hui Zang, now at Sprint Advanced Technology Laboratories, for her collaboration on Chapters 2, 3, 5, and 6; Dr. Laxman H. Sahasrabuddhe, now at Park, Vaughan & Fleming LLP, for his collaboration on Chapters 2, 3, 5, 6, and 7; Dr. Keyao Zhu, now at Brion Technologies, for his collaboration on Chapters 3, 5, 6, and 7; Dr. Narendra Singhal, now at Microsoft Corp., for his collaboration on Chapters 3 and 7; Jing Zhang for her collaboration on Chapters 2 and 5; Hongyue Zhu for his collaboration on Chapter 5; Professor Charles Martel of the Computer Science Department at UC Davis for his collaboration on Chapter 7; and other members—Professor Dipak Ghosal, Professor Prasant Mohapatra, Dr. Glen Kramer (now at Teknovus), Smita Rai, Dr. Jian Wang (now at Florida International University), Dr. Wushao Wen (now at McAfee), Dr. Fred Xue, and Dr. Shun Yao (now at Park, Vaughan & Fleming LLP)—for their technical expertise and insightful discussion which have enabled us to better understand the subject matter.

A number of additional individuals whom we have the pleasure to collaborate with and whom we would like to acknowledge are the following: Dr. James Pan at Sprint Advanced Technology Laboratories, Robert MacDonald (retired from Sprint Advanced Technology Laboratories), Dr. Mike O’Brien (formerly with Sprint Advanced Technology Laboratories), and Dr. Ching-Fong Su at Fujitsu Laboratories of America.

This book wouldn’t have been possible without the support of our research on survivable optical networks from several funding agencies as follows: US National Science Foundation (NSF) Grant Nos. ANI-9805285 and ANI-0207864; University of California Micro program; Alcatel Research & Innovation; and Sprint Advanced Technology Laboratories.