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Preface 

This book is about prediction algorithms that learn. The predictions these 
algorithms make are often imperfect, but they improve over time, and they 
are hedged: they incorporate a valid indication of their own accuracy and reli- 
ability. In most of the book we make the standard assumption of randomness: 
the examples the algorithm sees are drawn from some probability distribu- 
tion, independently of one another. The main novelty of the book is that 
our algorithms learn and predict simultaneously, continually improving their 
performance as they make each new prediction and find out how accurate 
it is. It might seem surprising that this should be novel, but most existing 
algorithms for hedged prediction first learn from a training data set and then 
predict without ever learning again. The few algorithms that do learn and 
predict simultaneously do not produce hedged predictions. In later chapters 
we relax the assumption of randomness to the assumption that the data come 
from an on-line compression model. We have written the book for researchers 
in and users of the theory of prediction under randomness, but it may also 
be useful to those in other disciplines who are interested in prediction under 
uncertainty. 

This book has its roots in a series of discussions at Royal Holloway, Univer- 
sity of London, in the summer of 1996, involving AG, Vladimir N. Vapnik and 
VV. Vapnik, who was then based at AT&T Laboratories in New Jersey, was 
visiting the Department of Computer Science at Royal Holloway for a couple 
of months as a part-time professor. VV had just joined the department, after 
a year at the Center for Advanced Study in Behavioral Sciences at Stanford. 
AG had become the head of department in 1995 and invited both Vapnik and 
VV to join the department as part of his program (enthusiastically supported 
by Norman Gowar, the college principal) of creating a machine learning cen- 
ter at Royal Holloway. The discussions were mainly concerned with Vapnik's 
work on support vector machines, and it was then that it was realized that 
the number of support vectors used by such a machine could serve as a basis 
for hedged prediction. 
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Our subsequent work on this idea involved several doctoral students at
Royal Holloway. Ilia Nouretdinov has made several valuable theoretical con-
tributions. Our other students working on this topic included Craig Saunders,
Tom Melluish, Kostas Proedrou, Harris Papadopoulos, David Surkov, Leo
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Introduction 

In this introductory chapter, we sketch the existing work in machine learning 
on which we build and then outline the contents of the book. 

1.1 Machine learning 

The rapid development of computer technology during the last several decades 
has made it possible to solve ever more difficult problems in a wide variety of 
fields. The development of software has been essential to this progress. The 
painstaking programming in machine code or assembly language that was once 
required to solve even simple problems has been replaced by programming in 
high-level object-oriented languages. We are concerned with the next natural 
step is this progression - the development of programs that can learn, i.e., 
automatically improve their performance with experience. 

The need for programs that can learn was already recognized by Alan 
Turing (1950), who argued that it may be too ambitious to write from scratch 
programs for tasks that even humans must learn to perform. Consider, for 
example, the problem of recognizing hand-written digits. We are not born 
able to perform this task, but we learn to do it quite robustly. Even when 
the hand-written digit is represented as a gray-scale matrix, as in Fig. 1.1, 
we can recognize it easily, and our ability to do so scarcely diminishes when 
it is slightly rotated or otherwise perturbed. We do not know how to write 
instructions for a computer that will produce equally robust performance. 

The essential difference between a program that implements instructions 
for a particular task and a program that learns is adaptability. A single learn- 

Fig. 1.1. A hand-written digit 
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ing program may be able to learn a wide variety of tasks: recognizing hand- 
written digits and faces, diagnosing patients in a hospital, estimating house 
prices, etc. 

Recognition, diagnosis, and estimation can all be thought of as special 
cases of prediction. A person or a computer is given certain information and 
asked to predict the answer to a question. A broad discussion of learning would 
go beyond prediction to consider the problems faced by a robot, who needs 
to act as well as predict. The literature on machine learning, has emphasized 
prediction, however, and the research reported in this book is in that tradition. 
We are interested in algorithms that learn to predict well. 

Learning under randomness 

One learns from experience. This is as true for a computer as it is for a 
human being. In order for there to be something to learn there must be some 
stability in the environment; it must be governed by constant, or evolving 
only slowly, laws. And when we learn to predict well, we may claim to have 
learned something about that environment. 

The traditional way of making the idea of a stable environment precise is 
to assume that it generates a sequence of examples randomly from some fixed 
probability distribution, say Q, on a fixed space of possible examples, say Z. 
These mathematical objects, Z and Q, describe the environment. 

The environment can be very complex; Z can be large and structured in a 
complex way. This is illustrated by the USPS data set from which Fig. 1.1 is 
drawn (see Appendix B). Here an example is any 16 x 16 image with 31 shades 
of gray, together with the digit the image represents (an integer between 0 to 
9). So there are 3 1 ' ~ ~ ' ~  x 10 (this is approximately possible examples 
in the space Z. 

In most of this book, we assume that each example consists of an object 
and its label. In the USPS dataset, for example, an object is a gray-scale 
matrix like the one in Fig. 1.1, and its label is the integer between 0 and 9 
represented by the gray-scale matrix. 

In the problem of recognizing hand-written digits and other typical 
machine-learning problems, it is the space of objects, the space of possible 
gray-scale images, that is large. The space of labels is either a small finite 
set (in what is called classification problems) or the set of real numbers 
(regression problems). 

When we say that the examples are chosen randomly from Q, we mean 
that they are independent in the sense of probability theory and all have the 
distribution Q. They are independent and identically distributed. We call this 
the randomness assumption. 

Of course, not all work in machine learning is concerned with learning 
under randomness. In learning with expert advice, for example, randomness 
is replaced by a game-theoretic set-up (Vovk 2001a); here a typical result is 
that the learner can predict almost as well as the best strategy in a pool of 
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possible strategies. In reinforcement learning, which is concerned with ratio- 
nal decision-making in a dynamic environment (Sutton and Barto 1998), the 
standard assumption is Markovian. In this book, we will consider extensions 
of learning under randomness in Chaps. 7-9. 

Learning under unconstrained randomness 

Sometimes we make the randomness assumption without assuming anything 
more about the environment: we know the space of examples Z, we know that 
examples are drawn independently from the same distribution, and this is all 
we know. We know nothing at the outset about the probability distribution Q 
from which each example is drawn. In this case, we say we are learning under 
unconstrained randomness. Most of the work in this book, like much other 
work in machine learning, is concerned with learning under unconstrained 
randomness. 

The strength of modern machine-learning methods often lies in their abil- 
ity to make hedged predictions under unconstrained randomness in a high- 
dimensional environment, where examples have a very large (or infinite) num- 
ber of components. We already mentioned the USPS data set, where each 
example consists of 257 components (16 x 16 pixels and the label). In machine 
learning, this number is now considered small, and the problem of learning 
from the USPS dataset is sometimes regarded as a toy problem. 

1.2 A shortcoming of the existing theory 

Machine learning has made significant strides in its study of learning under 
unconstrained randomness. We now have a wide range of algorithms that often 
work very well in practice: decision trees, neural networks, nearest neighbors 
algorithms, and naive Bayes methods have been used for decades; newer al- 
gorithms include support vector machines and boosting, an algorithm that is 
used to improve the quality of other algorithms. 

Erom a theoretical point of view, machine learning's most significant con- 
tributions to learning under unconstrained randomness are comprised by sta- 
tistical learning theory. This theory, which began with the discovery of VC 
dimension by Vapnik and Chervonenkis in the late 1960s and was partially 
rediscovered independently by Valiant (1984), has produced both deep math- 
ematical results and learning algorithms that work very well in practice (see 
Vapnik 1998 for a recent review). 

Given a "training" set of examples, statistical learning theory produces 
what we call a prediction rule - a function mapping the objects into the labels. 
Formally, the value taken by a prediction rule on a new object is a simple 
prediction - a guess that is not accompanied by any statement concerning 
how accurate it is likely to be. The theory does guarantee, however, that as 
the training set becomes bigger and bigger these predictions will become more 
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Fig. 1.2. In the problem of digit recognition, we would like to  attach lower confi- 
dence to  the prediction for the image in the middle than to the predictions for the 
images on the left and the right 

and more accurate with greater and greater probability: they are probably 
approximately correct. 

How probably and how approximately? This question has not been an- 
swered as well as we might like. This is because the theoretical results that 
might be thought to answer it, the bounds that demonstrate arbitrarily good 
accuracy with sufficiently large sizes of the training set, are usually too loose 
to tell us anything interesting for training sets that we actually have. This hap- 
pens in spite of the empirical fact that the predictions often perform very well 
in practice. Consider, for example, the problem of recognizing hand-written 
digits, which we have already discussed. Here we are interested in giving an 
upper bound on the probability that our learning algorithm fails to choose the 
right digit; we might like this probability to be less than 0.05, for example, so 
that we can be 95% confident that the prediction is correct. Unfortunately, 
typical upper bounds on the probability of error provided by the theory, even 
for relatively clean data sets such as the USPS data set we have discussed, 
are greater than 1; bounds less than 1 can usually be achieved only for very 
straightforward problems or with very large data sets. This is true even for 
newer results in which the bound on the accuracy depends on the training 
set (as in, e.g., Littlestone and Warmuth 1986, Floyd and Warmuth 1995; cf. 
$10.1). 

The hold-out estimate of confidence 

Fortunately, there are less theoretical and more effective ways of estimating 
the confidence we should have in predictions output by machine-learning al- 
gorithms, including those output by the algorithms proposed by statistical 
learning theory. One of the most effective is the oldest and most naive: the 
"hold-out" estimate. In order to compute this estimate, we split the available 
examples into two parts, a training set and a "test" set. We apply the algo- 
rithm to the training set in order to find a prediction rule, and then we apply 
this prediction rule to the test set. The observed rate of errors on the test set 
tells us how confident we should be in the prediction rule when we apply it to 
new examples (for details, see $10.1). 
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The contribution of this book 

When we use a hold-out sample to obtain a meaningful bound on the proba- 
bility of error, or when we use an error bound from statistical learning theory, 
we are hedging the prediction - we are adding to it a statement about how 
strongly we believe it. In this book, we develop a different way of producing 
hedged predictions. Aside from the elegance of our new methods, at least in 
comparison with the procedure that relies on a hold-out sample, the methods 
we develop have several important advantages. 

As already mentioned in the preface, we do not have the rigid separation 
between learning and prediction, which is the feature of the traditional ap- 
proaches that makes hedged prediction feasible. In our basic learning protocol 
learning and prediction are blended, yet our predictions are hedged. 

Second, the hedged predictions produced by our new algorithms are much 
more confident and accurate. We have, of course, a different notion of a hedged 
prediction, so the comparison can be only informal; but the difference is so 
big that there is little doubt that the improvement is real from the practical 
point of view. 

A third advantage of our methods is that the confidence with which the 
label of a new object is predicted is always tailored not only to the previously 
seen examples but also to that object. 

1.3 The on-line transductive framework 

The new methods presented in this book are quite general; they can be tried 
out, at least, in almost any problem of learning under randomness. The frame- 
work in which we introduce and study these methods is somewhat unusual, 
however. Most previous theoretical work in machine learning has been in an 
inductive and off-line framework: one uses a batch of old examples to pro- 
duce a prediction rule, which is then applied to new examples. We begin 
instead with a framework that is transductive, in the sense advocated by Vap- 
nik (1995, 1998), and on-line: one makes predictions sequentially, basing each 
new prediction on all the previous examples instead of repeatedly using a rule 
constructed from a fixed batch of examples. 

On-line learning 

Our framework is on-line because we assume that the examples are presented 
one by one. Each time, we observe the object and predict the label. Then 
we observe the label and go on to the next example. We start by observing 
the first object x l  and predicting its label yl. Then we observe yl and the 
second object 2 2 ,  and predict its label yz. And so on. At the nth step, we have 
observed the previous examples 



6 1 Introduction 

general rule L = J  
v" inductzon \ €  . deductzon 

training set transduction prediction 

Fig. 1.3. Inductive and transductive prediction 

and the new object x,, and our task is to predict y,. The quality of our 
predictions should improve as we accumulate more and more old examples. 
This is the sense in which we are learning. 

Transduction 

Vapnik's distinction between induction and transduction, as applied to the 
problem of prediction, is depicted in Fig. 1.3. In inductive prediction we first 
move from examples in hand to some more or less general rule, which we might 
call a prediction or decision rule, a model, or a theory; this is the inductive 
step. When presented with a new object, we derive a prediction from the 
general rule; this is the deductive step. In transductive prediction, we take a 
shortcut, moving from the old examples directly to the prediction about the 
new object. 

Typical examples of the inductive step are estimating parameters in statis- 
tics and finding a "concept" (to use Valiant's 1984 terminology) in statistical 
learning theory. Examples of transductive prediction are estimation of future 
observations in statistics (see, e.g., Cox and Hinkley 1974, 57.5) and nearest 
neighbors algorithms in machine learning. 

In the case of simple predictions the distinction between induction and 
transduction is less than crisp. A method for doing transduction, in our on- 
line setting, is a method for predicting yn from XI ,  yl, . . . , x,-I, y,-1, x,. Such 
a method gives a prediction for any object that might be presented as x,, 
and so it defines, at least implicitly, a rule, which might be extracted from 
XI, y1,. . . , ~ ~ - 1 ,  yn-1 (induction), stored, and then subsequently applied to 
x, to predict y, (deduction). So any real distinction is really at a practical 
and computational level: do we extract and store the general rule or not? 

For hedged predictions the difference between transduction and induction 
goes deeper. We will typically want different notions of hedged prediction in 
the two frameworks. Mathematical results about induction typically involve 
two parameters, often denoted E (the desired accuracy of the prediction rule) 
and S (the probability of achieving the accuracy of E ) ,  whereas results about 
transduction involve only one parameter, which we will denote 6 (in this book, 
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the probability of error we are willing to tolerate); see Fig. 1.3. A detailed dis- 
cussion can be found in Chap. 10, which also contains a historical perspective 
on the three main approaches to hedged prediction (inductive, Bayesian, and 
transductive). 

On-line/off-line and transduction/induction compromises 

When we work on-line, we would want to use a general rule extracted from 
XI ,  y1,. . . , xn-l, y,-1 only once, to predict y, from x,. After observing x, 
and then y,, we have a larger dataset, XI ,  yl, . . . , x,, y,, and we can use it 
to extract a new, possibly improved, general rule before trying to predict 
y,+l from x,+l. So from a purely conceptual point of view, induction seems 
silly in the on-line framework; it is more natural to say that we are doing 
transduction, even in cases where the general rule is easy to extract. As a 
practical matter, however, the computational cost of a transductive method 
may be high, and in this case, it may be sensible to compromise with the off- 
line or inductive approach. After accumulating a certain number of examples, 
we might extract a general rule and use it for a while, only updating it as 
frequently as is practical. 

The methods we present in this book are most naturally described and 
are most amenable to mathematical analysis in the on-line framework. So we 
work out our basic theory in that framework, and this theory can be consid- 
ered transductive. The theory extends, however, to the transductive/inductive 
compromise just described, where a general rule is extracted and used for a 
period of time before it is updated (see $4.1). 

The theory also extends to relaxations of the on-line protocol that make 
it close to the off-line setting, and this is important, because most practical 
problems have at  least some off-line aspects. If we are concerned with recog- 
nizing hand-written zip codes, for example, we cannot always rely on a human 
teacher to tell us the correct interpretation of each hand-written zip code; why 
not use such an ideal teacher directly for prediction? The relaxation of the 
on-line protocol considered in $4.3 includes "slow teachers", who provide the 
feedback with a delay, and "lazy teachers", who provide feedback only oc- 
casionally. In the example of zip codes recognition, this relaxation allows us 
to replace constant supervision by using returned letters for teaching or by 
occasional lessons. 

1.4 Conformal prediction 

Most of this book is devoted to a particular method that we call "conformal 
prediction". When we use this method, we predict that a new object will 
have a label that makes it similar to the old examples in some specified way, 
and we use the degree to which the specified type of similarity holds within 
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Fig. 1.4. An example of a nested family of prediction sets (casual prediction in 
black, confident prediction in dark gray, and highly confident prediction in light 
gray) 

the old examples to estimate our confidence in the prediction. Our conformal 
predictors are, in other words, "confidence predictors". 

We need not explain here exactly how conformal prediction works. This is 
the topic of the next chapter. But we will explain informally what a confidence 
predictor aims to do and what it means for it to be valid and efficient. 

Nested prediction sets 

Suppose we want to pinpoint a target that lies somewhere within a rectangular 
field. This could be an on-line prediction problem; for each example, we predict 
the coordinates y, E [al,  a2] x [bl, bz] of the target from a set of measurements 
X n .  

We can hardly hope to predict the coordinates yn exactly. But we can hope 
to have a method that gives a subset T, of [al, a2] x [bl, b2] where we can be 
confident y, lies. Intuitively, the size of the prediction se t  r, should depend on 
how great a probability of error we want to allow, and in order to get a clear 
picture, we should specify several such probabilities. We might, for example, 
specify the probabilities 1%, 5%, and 20%, corresponding to confidence levels 
99%, 95%, and 80%. When the probability of the prediction set failing to 
include y, is only 1%, we declare 99% confidence in the set (highly confident 
prediction). When it is 5%, we declare 95% confidence (confident prediction). 
When it is 20%, we declare 80% confidence (casual prediction). We might 
also want a 100% confidence set, but in practice this might be the whole field 
assumed a t  the outset to contain the target. 

Figure 1.4 shows how such a family of prediction sets might look. The 
casual prediction pinpoints the target quite well, but we know that this kind 
of prediction can be wrong 20% of the time. The confident prediction is much 
bigger. If we want to be highly confident (make a mistake only for each 100th 
example, on average), we must accept an even lower accuracy; there is even a 
completely different location that we cannot rule out a t  this level of confidence. 



1.4 Conformal prediction 9 

In principle, a confidence predictor outputs prediction sets for all confidence 
levels, and these sets are nested, as in Fig. 1.4. 

There are two important desiderata for a confidence predictor: 

0 They should be valid, in the sense that in the long run the frequency1 of 
error does not exceed E at  each chosen confidence level 1 - E. 

They should be eficient, in the sense that the prediction sets they output 
are as small as possible. 

We would also like the predictor to be as conditional as possible - we want it 
to take full account of how difficult the particular example is. 

Validity 

Our conformal predictors are always valid. Fig. 1.5 shows the empirical confir- 
mation of the validity for one particular conformal predictor that we study in 
Chap. 3. The solid, dash-dot and dotted lines show the cumulative number of 
errors for the confidence levels 99%, 95%, and 80%, respectively. As expected, 
the number of errors made grows linearly, and the slope is approximately 20% 
for the confidence level 80%, 5% for the confidence level 95%, and 1% for the 
confidence level 99%. 

As we will see in Chap. 2, a precise discussion of the validity of conformal 
predictors actually requires that we distinguish two kinds of validity: conser- 
vative and exact. In general, a conformal predictor is conservatively valid: the 
probability it makes an error when it outputs a 1 - t- set (i.e., a prediction set 
at  a confidence level 1 - E) is no greater than E, and there is little dependence 
between errors it makes when predicting successive examples (at successive 
trials, as we will say). This implies, by the law of large numbers, that the long- 
run frequency of errors at  confidence level 1 - E is about E or less. In practice, 
the conservativeness is often not very great, especially when n is large, and so 
we get empirical results like those in Fig. 1.5, where the long-run frequency of 
errors is very close to E. From a theoretical point of view, however, we must 
introduce a small element of deliberate randomization into the prediction pro- 
cess in order to get exact validity, where the probability of a 1 - t- set being 
in error is exactly E, errors are made independently at different trials, and the 
long-run frequency of errors converges to t-. 

Efficiency 

Machine learning has been mainly concerned with two types of problems: 

0 Classification, where the label space Y is a small finite set (often binary). 
0 Regression, where the label space is the real line. 

*By "frequency" we usually mean "relative frequency" 
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Fig. 1.5. On-line performance of a conformal predictor ("the 1-nearest neighbor 
conformal predictor", described in Chap. 3) on the USPS data set (9298 hand- 
written digits, randomly permuted) for the confidence levels 80%, 95%, and 99%. 
The figures in this book are not too much affected by statistical variation (due to 
the random choice of the permutation of the data set) 
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Conditionality 

The goal of conditionality can be explained with a simple example discussed by 
David Cox (1958b). Suppose there are two categories of objects, "easy" (easy 
to predict) and "hard" (hard to predict). We can tell which objects belong 
to which category, and the two categories occur with equal probability; about 
50% of the objects we encounter are easy, and 50% hard. We have a prediction 
method that applies to all objects, hard and easy, and has error rate 5%. We 
do not know what the error rate is for hard objects, but perhaps it is 8%, and 
we get an overall error rate of 5% only because the rate for easy objects is 
2%. In this situation, we may feel uncomfortable, when we encounter a hard 
object, about appealing to the average error rate of 5% and saying that we 
are 95% confident of our prediction. 

Whenever there are features of objects that we know make the prediction 
easier or harder, we would like to take these features into account - to con- 
dition on them. This is done by conformal predictors almost automatically: 
they are designed for specific applications so that their predictions take fullest 
possible account of the individual object to be predicted. What is not achieved 
automatically is the validity separately for hard and easy objects. It is pos- 
sible, for example, that if a figure such as Fig. 1.5 were constructed for easy 
objects only, or for hard objects only, the slopes of the cumulative error lines 
would be different. We would get the correct slope if we average the slope 
for easy objects and the slope for hard objects, but we would ideally like to 
have the "conditional validity": validity for both categories of objects. As we 
show in $4.5, this can be achieved by modifying the definition of conformal 
predictors. In fact, the conditional validity is handled by a general theory that 
also applies when we segregate examples not by their difficulty but by their 
time of arrival, as when we are using an inductive rule that we update only 
at specified intervals. 

Flexibility of conformal predictors 

A useful feature of our method is that a conformal predictor can be built on 
top of almost any machine-learning algorithm. The latter, which we call the 
underlying algorithm, may produce hedged predictions, simple predictions, or 
simple predictions complemented by ad hoc measures of confidence; our expe- 
rience is that it is always possible to transform it into a conformal predictor 
that inherits its predictive performance but is, of course, valid, just like any 
other conformal predictor. In this book we explain how to build conformal 
predictors using such methods as nearest neighbors, support vector machines, 
bootstrap, boosting, neural networks, decision trees, ridge regression, logistic 
regression, and any Bayesian algorithm (see ss2.3, 3.1, 4.2). 
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1.5 Probabilistic predict ion under unconstrained 
randomness 

There are many ways to do classification and regression under unconstrained 
randomness and for high-dimensional examples. Conformal predictors, for ex- 
ample, combine good theoretical properties with high accuracy in practical 
problems. It is true that the environment has to be benign, in some sense, for 
any learning method to be successful, but there are no obvious insurmountable 
barriers for classification and regression. The situation changes if we move to 
the harder problem of probabilistic prediction: that of guessing the probability 
distribution for the new object's label. Features of data that can reasonably 
be expected in typical machine-learning applications become such barriers. 

For simplicity, we will assume in this section that the label is binary, 0 or 
1. In this case the probabilistic prediction for the label of the new object boils 
down to one number, the predicted probability that the label is 1. 

The problem of probabilistic prediction is discussed in Chaps. 5 ,  6, and 9 .  
Probabilistic prediction is impossible in an important sense, but there are also 
senses in which it is possible. So this book gives more than one answer to the 
question "Is probabilistic prediction possible?" We start with a "yes" answer. 

Universally consistent probabilistic predictor 

Stone (1977) showed that a nearest neighbors probabilistic predictor (whose 
probabilistic prediction is the fraction of objects classified as 1 among the k 
nearest neighbors of the new object, with a suitably chosen k )  is universally 
consistent, in the sense that the difference between the probabilistic prediction 
and the true conditional probability given the object that the label is 1 con- 
verges to zero in probability. The only essential assumption is randomness2; 
there are no restrictive regularity conditions. 

Stone's actual result was more general, and it has been further extended in 
different directions. One of these extension is used in Chap. 3 for constructing 
a universal randomized conformal predictor. 

Probabilistic prediction using a finite data set 

The main obstacle in applying Stone's theorem is that the convergence it 
asserts is not uniform. The situation that we typically encounter in practice 
is that we are given a set of examples and a new object and we would like 
to estimate the probability that the label of the new object is 1. It is well 
understood that in this situation the applicability of Stone's theorem is very 

2 ~ h e  other assumption made by Stone was that the objects were coming from 
a Euclidean space; since "Euclidean" is equivalent to "Borel" in the context of 
existence of a universally consistent probabilistic predictor, this assumption is very 
weak. 
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limited (see, e.g., Devroye et al. 1996, s7.1). In Chap. 5 we give a new, more 
direct, formalization of this observation. 

We say that a data set consisting of old examples and one new object is 
diverse if no object in it is repeated (in particular, the new object is different 
from all old objects). The main result of 85.2 asserts that any nontrivial (not 
empty and not containing 0 and 1) prediction interval for the conditional 
probability given the new object that the new label is 1 is inadmissible if the 
data set is diverse and randomness is the only assumption. 

The assumption that the data set is diverse is related to the assumption 
of a high-dimensional environment. If the objects are, for example, complex 
images, we will not expect precise repetitions among them. 

Venn prediction 

The results of Chap. 5 show that it is impossible to estimate the true condi- 
tional probabilities under the conditions stated; that chapter also contains a 
result that it is impossible to find conditional probabilities that are as good (in 
the sense of the algorithmic theory of randomness) as the true probabilities. 
If, however, we are prepared to settle for less and only want probabilities that 
are "well calibrated" (in other words, have a frequentist justification), a modi- 
fication of conformal predictors which we call Venn predictors will achieve this 
goal, in a very strong non-asymptotic sense. This is the subject of Chap. 6, 
which is one of the longest in this book, The main problem that we have to 
deal with in this chapter is that one cannot guarantee that miscalibration 
will not happen: everything can happen (perhaps with a small probability) 
for finite sequences and typical probability distributions. But in the case of 
Venn predictors, any evidence against calibration translates into evidence, at 
least as strong, against the assumption of randomness; therefore, we expect 
Venn predictors to be well calibrated as long as we accept the hypothesis of 
randomness. A significant part of the chapter is devoted to the ways of testing 
calibration and randomness. 

1.6 Beyond randomness 

In this book we also consider testing the assumption of randomness and al- 
ternatives to this assumption. The most radical alternative is introduced in 
Chaps. 8 and 9 under the name of "on-line compression modeling". 

Testing randomness 

This is the topic of Chap. 7. We start it by adapting the mathematical 
apparatus developed in the previous chapters to testing the assumption 
of randomness. The usual statistical approach to testing (sometimes called 
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the "Neyman-Pearson-Wald" theory) is essentially off-line: in the original 
Neyman-Pearson approach (see, e.g., Lehmann 1986), the sample size is cho- 
sen a przori, and in Wald's (1947) sequential analysis, the sample size is data- 
dependent but still at some point a categorical decision on whether the null 
hypothesis is rejected or not is taken (with probability one). The approach 
of $7.1 is on-line: we constantly update the strength of evidence against the 
null hypothesis of randomness. Finding evidence against the null hypothesis 
involves gambling against it, and the strength of evidence equals the gam- 
bler's current capital. For further details and the history of this approach to 
testing, see Shafer and Vovk 2001. The main mathematical finding of $7.1 is 
that there exists a wide family of "exchangeability martingales", which can 
be successfully applied to detecting lack of randomness. 

Low-dimensional dynamic models 

The ability to test the assumption of randomness immediately provides op- 
portunities for extending the range of stochastic environments to which one 
can apply the idea of conformal prediction. In 87.2 we consider the simple 
case where we are given a parametric family of transformations one of which 
is believed to transform the observed data sequence into a random sequence. 
If the parameter is a vector in a low-dimensional linear space, we can often 
hope to be able to detect lack of randomness of the transformed data sequence 
for most values of the parameter as the number of observed examples grows. 
When the range of possible values of the parameter becomes very narrow, 
conformal prediction can be used. 

Islands of randomness 

When we are willing to make the assumption of randomness, or some version 
of this assumption as described in the previous subsection, about a data se- 
quence, it usually means that this data sequence was obtained from a much 
bigger sequence by careful filtering. When observing the real world around us, 
we cannot hope that a simple model such as randomness will explain much, 
but the situation changes if we, e.g., discard all observations except the results 
of fair coin tosses. 

In $7.3, we briefly discuss the case where randomness can appear as a 
property of only relatively small subsequences of the full data sequence. Such 
a "big picture" is of great interest to philosophers (see, e.g., Venn 1866). Once 
we know that some subsequence is random (this knowledge can be based on an 
initial guess and then using as severe tests as we can think of to try and falsify 
this guess; $7.1 provides the means for the second stage), we can apply the 
theory developed under the assumption of randomness to make predictions. 
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On-line compression models 

As we will see in Chap. 8, the idea of conformal prediction generalizes from 
learning under randomness, where examples are independent and identi- 
cally distributed, to "on-line compression models". In an on-line compression 
model, it is assumed that the data can be summarized in way that can be 
updated as new examples come in, and the only probabilities given are back- 
ward probabilities - probabilities for how the updated summary might have 
been obtained. 

On-line compression models derive from the work of Andrei Kolmogorov. 
They open a new direction for broadening the applicability of machine- 
learning methods, giving a new meaning to the familiar idea that learning 
can be understood as information compression. 

In Chap. 8 we consider in detail three important on-line compression mod- 
els (Gaussian, Markov, exchangeability) and their variants. In Chap. 9 we ex- 
tend the idea of Venn prediction to on-line compression modeling and apply 
it to a new model, which we call the "hypergraphical model". 

1.7 Bibliographical remarks 

Each chapter of this book ends with a section entitled "Bibliographical remarks", or 
similarly. These sections are set in a small font and may use mathematical notions 
and results not introduced elsewhere in the book. 

Turing suggested the idea of machine learning in his paper published in Mind 
as an approach to  solving his famous "imitation game" (Turing 1950, $1). 

A recent empirical study of various bounds on prediction accuracy is reported 
in Langford 2004. It found the hold-out estimate to be a top performer. 

Mitchell (1997, $8.6) discusses advantages and disadvantages of inductive and 
transductive approaches to  making simple predictions. The near-synonyms for 
"transductive learning" used in that book are "lazy learning" and "instance-based 
learning". 



Conformal prediction 

In this chapter we formally introduce conformal predictors. After giving the 
necessary definitions, we will prove that when a conformal predictor is used 
in the on-line mode, its output is valid, not only in the asymptotic sense that 
the sets it predicts for any fixed confidence level 1 - E will be wrong with 
frequency at most E (approaching E in the case of smoothed conformal pre- 
dictors) in the long run, but also in a much more precise sense: the error 
probability of a smoothed conformal predictor is E at  every trial and errors 
happen independently at  different trials. In 52.4 we will see that conformal 
prediction is indispensable for achieving this kind of validity. The basic proce- 
dure of conformal prediction might look computationally inefficient when the 
label set is large, but in 52.3 we show that in the case of, e.g., least squares 
regression (where the label space JR is uncountable) there are ways of making 
conformal predictors much more efficient. 

2.1 Confidence predictors 

The conformal predictors we define in this chapter are confidence predictors 
- they make a range of successively more specific predictions with succes- 
sively less confidence. In this section we define precisely what we mean by a 
confidence predictor and its validity. 

Assumptions 

We assume that Reality outputs successive pairs 

called examples. Each example (xi, yi) consists of an object xi and its label 
yi. The objects are elements of a measurable space X called the object space 
and the labels are elements of a measurable space Y called the label space. 
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We assume that X is non-empty and that Y contains at  least two essentially 
different elements1. When we need a more compact notation, we write zi for 
(xi, yi). We set 

Z : = X x Y  

and call Z the example space. Thus the infinite data sequence (2.1) is an 
element of the measurable space Zw. 

When we say that the objects are absent, we mean that 1x1 = 1. In this 
case xi do not carry any information and do not need to be mentioned; we 
will then identify Y and Z. 

Our standard assumption is that Reality chooses the examples indepen- 
dently from some probability distribution Q on Z - i.e., that the infinite se- 
quence zl, 22,.  . . is drawn from the power probability distribution QbO in Zw. 
Most of the results of this book hold under this randomness assumption, but 
usually we need only the slightly weaker assumption that the infinite data 
sequence (2.1) is drawn from a distribution P on ZbO that is exchangeable. 
The statement that P is exchangeable means that for every positive integer 
n, every permutation 7r of (1,. . . , n), and every measurable set E C Zn, 

Every power distribution is exchangeable, and under a natural regularity con- 
dition (Z is a Bore1 space), any exchangeable distribution on Zw is a mixture 
of power distributions; for details, see 5A.5. In our mathematical results, we 
usually use the randomness assumption or the exchangeability assumption 
depending on which one leads to a stronger statement. 

Simple predictors and confidence predictors 

We assume that at the nth trial Reality first announces the object x, and 
only later announces the label y,. If we simply want to predict y,, then we 
need a function 

D : Z * x X - + Y .  (2-2) 

We call such a function a simple predictor, always assuming it is measurable. 
For any sequence of old examples, say XI, yl, . . . , xn-1, yn-1 E Z*, and any 
new object, say x, E X, it gives D(x1, yl,.  . . , x,-1, yn-1, xn) E Y as its 
prediction for the new label y,. 

As we explained in 51.4, however, we have a more complicated notion of 
prediction. Instead of merely choosing a single element of Y as our prediction 

'Formally, the a-algebra on Y is assumed to be different from (0, Y). It is con- 
venient to assume that for each pair of distinct elements of Y there is a measurable 
set containing only one of them; we will do this without loss of generality, and then 
our assumption about Y is that IYI > 1. 


