ORTHOPOXVIRUSES
PATHOGENIC FOR HUMANS
Orthopoxviruses
Pathogenic for Humans

With 112 Figures
Preface

The viruses belonging to the genus *Orthopoxvirus* of the family Poxviridae are among the pathogens heading the list of microorganisms that have had an important role in the interactions between the humankind and infectious agents. Until recently, smallpox, caused by variola virus, was the most dangerous epidemic disease of humans, spreading as a conflagration. The toll of this infection was a tremendous number of human lives. Only in the previous century, smallpox killed about 300 million people. The variola virus is unique in that the only sensitive host of this pathogen is the man; moreover, the case-fatality rate of smallpox may exceed 30%. Variola virus is a strict anthroponosis unable to be retained in wild nature in animal organisms.

Another orthopoxvirus—cowpox virus—occupies one of the most honorable places in the history of medicine. In 1796, already one hundred years before the kingdom of viruses was discovered by Dmitri Ivanovsky in 1892, the famous experiments of Edward Jenner commenced use of cowpox virus for infecting people in order to protect them from smallpox, thereby opening the era of vaccine prevention of communicable diseases.

The origin of vaccinia virus, which substituted cowpox virus during massive vaccinations of humans against smallpox about one hundred years ago under vague circumstances, is a great mystery for the modern science. It is yet unclear whether vaccinia virus is a result of long-term artificial selection of a highly immunogenic against smallpox and lowly reactogenic virus. This virus so far has not been discovered in nature. Nonetheless, the availability of effective live vaccine against smallpox involving vaccinia virus as the major constituent, the lack of natural reservoir of variola virus, and joint efforts of the world medical community under the auspice of the World Health Organization (WHO) allowed the most hazardous infectious
disease, smallpox, to be defeated by 1977 for the first time in the history of humankind. Hitherto, this is a unique example of successful campaign that eventuated in eradication of epidemically dangerous human disease.

As the massive immunization against smallpox was accompanied by side effects and complications, WHO in 1980 recommended to stop the routine vaccination. This resulted in an ever vanishing protection of the majority of the world population against not only smallpox, but also other infections caused by cowpox and monkeypox viruses. Smallpox is beaten; however, the circulation of monkeypox virus, a pathogen capable of infecting a wide range of animals and humans, in the zone of tropical rainforests in Africa arouses the concern of the scientific and medical communities. Moreover, monkeypox virus causes a human disease similar to smallpox in its clinical manifestation and course. Monkeypox virus is less efficient in person-to-person transmission compared with variola virus. Nevertheless, if this virus acquires the capability of highly efficient transmission in the human population as a result of evolutionary changes, the humankind will face the problem more complex than that when it encountered variola virus, as monkeypox virus is zoonotic, making it virtually impossible to eradicate the pathogen and the corresponding disease. Potential penetration of monkeypox virus to other continents also presents a considerable menace. The human monkeypox outbreak in the USA in 2003 was the first recorded outside the African continent. This disease was imported into the USA with Western African animals intended as pets. This was the first alarm for the public health services worldwide.

Thus, the orthopoxviruses pathogenic for humans are still attracting a rapt attention of scientists as well as medical researchers and practitioners. A large amount of information about these viruses has been accumulated recently. This made us consider it timely and necessary to summarize the data, obtained in many laboratories of the world as well as in our laboratories, on biological, ecological, and molecular genetic features of these unique viruses, which have played and continue to play an important role in the history of humankind.
Acknowledgments

It is a pleasant duty for us to express a sincere gratitude to Galina B. Chirikova for her tremendous work on technical aspects of preparation of the monograph and translation of its major part as well as to Natalie S. Krylova and Viktor V. Gulevich for assistance in translation.

We are very grateful to Richard C. Condit for his fruitful participation in preparing Section 3.4.
Contents

Preface v
List of Figures xv
List of Tables xxii

1 SMALLPOX IN HUMAN HISTORY (R.W. Moyer) 1
 1.1 INTRODUCTION 1
 1.2 THE ORIGINS OF SMALLPOX 2
 1.3 THE SPREAD AND EFFECT OF SMALLPOX ON NAÎVE POPULATIONS 5
 1.4 SMALLPOX AS A HISTORICAL BIoweAPON 7
 1.5 MONKEYPOX VIRUS AND ENGINEERED VIRUSES: THE FUTURE OF SMALLPOX AND SMALLPOX-LIKE INFECTIONS 8

2 CLASSIFICATION OF POXVIRUSES AND BRIEF CHARACTERIZATION OF THE GENUS ORTHOPOXVIRUS (S.S. Marennikova and R.W. Moyer) 11

3 VACCINIA VIRUS (S.S. Marennikova, R.C. Condit and R.W. Moyer) 19
 3.1 ORIGIN OF VIRUS 19
 3.2 SUBSPECIES OF VACCINIA VIRUS 22
 3.2.1 Buffalo pox 22
 3.2.2 Rabbit pox 24
 3.3 BIOLOGICAL FEATURES 24
 3.3.1 Pathogenicity for Animals 24
 3.3.2 Behavior in Chick Embryos 29
3.3.3 Growth in Cell Cultures
3.3.4 Hemagglutinin
3.3.5 Virus Stability
3.3.6 Variability and Intraspecies Variation
3.4 VACCINIA VIRUS MOLECULAR BIOLOGY
3.4.1 Overview
3.4.2 Vaccinia Gene Nomenclature
3.4.3 Virion Structure
3.4.4 Genome Organization
3.4.5 Vaccinia Transcription and Regulation of Viral Gene Expression
3.4.6 DNA Replication
3.4.7 Vaccinia Morphogenesis
3.4.8 Vaccinia Genetics
3.4.9 Vaccinia Virus Genes Responsible for Immune Evasion, Host Range, and Control of Apoptosis
3.5 SMALLPOX VACCINES AND PRODUCTION STRAINS OF THE VIRUS
3.5.1 Dermal Smallpox Vaccine
3.5.2 Virus Strains Used for Production of Smallpox Vaccines
3.5.3 Ovovaccine and Culture Smallpox Vaccine
3.5.4 Inactivated Smallpox Vaccine and Vaccines from Attenuated Strains
3.6 VACCINATION RESPONSE AND VACCINATION IMMUNITY
3.6.1 Vaccination Methods
3.6.2 Vaccination Response
3.6.3 Vaccination Immunity
3.7 POSTVACCINATION COMPLICATIONS AND OTHER VACCINIA VIRUS-RELATED PATHOLOGIES
4 VARIOLA (SMALLPOX) VIRUS (S.S. Marennikova and S.N. Shchelkunov)
4.1 SMALLPOX
4.1.1 Classification of Clinical Forms of Variola Major and Their Courses
4.1.2 Smallpox Complications
4.1.3 Smallpox Pathogenesis
4.1.4 Immunity
4.2 MORPHOLOGY OF VIRIONS
4.3 BIOLOGICAL PROPERTIES
4.3.1 Pathogenicity for Animals
4.3.2 Behavior in Chick Embryos
4.3.3 Cultivation in Cell Cultures
4.3.4 Stability of Variola Virus 119
4.3.5 Intraspecies Variation 120
4.4 Ecology of Variola Virus 128
4.5 Genetic Organization of Variola Virus 129
 4.5.1 Organization of Variola Major Virus Genome 130
 4.5.2 Organization of Variola Minor Alastrim Virus Genome 134
 4.5.3 Comparison of VARV and VACV Genomes 139
4.6 Smallpox Epidemiology 149
4.7 The Fate of Variola Virus Remaining in the Laboratories 152

5 Monkeypox Virus
(S.S. Marennikova and S.N. Shchelkunov) 155
5.1 History of the Virus Discovery 155
5.2 Biological Properties 156
 5.2.1 Behavior in Chick Embryos 156
 5.2.2 Growth in Cell Cultures 158
 5.2.3 Ceiling Temperatures of Lesion Development on CAM and in Cell Culture 159
 5.2.4 Pathogenicity for Laboratory Animals 159
 5.2.5 Variability 164
5.3 Clinical Pattern and Pathogenesis of the Infection in Monkeys 166
5.4 Ecology of Monkeypox Virus 168
 5.4.1 Monkeys 169
 5.4.2 Other Animals 175
5.5 Monkeypox in Humans 179
 5.5.1 Clinical Course 180
 5.5.2 Epidemiology 183
 5.5.3 Prevention 188
5.6 Genetic Organization of Monkeypox Virus 189

6 Cowpox Virus (S.S. Marennikova and S.N. Shchelkunov) 193
6.1 Morphology of Virions and General Information on DNA Structure 193
6.2 Biological Properties 193
 6.2.1 Behavior in Chick Embryos 194
 6.2.2 Pathogenicity for Laboratory Animals 196
 6.2.3 Growth in Cell Culture 199
 6.2.4 Intracellular Inclusions 202
 6.2.5 Cowpox Virus Antigens 206
 6.2.6 Intraspecies Variability 206
 6.2.7 Composition of Cowpox Virus Population 207
6.3 Ecology of Cowpox Virus

6.3.1 Cowpox Virus Infection in Cattle

6.3.2 Cowpox in Exotic Animals in Zoos and Circuses

6.3.3 Cowpox in White Rats

6.3.4 Virus Carrier State among Wild Rodents

6.3.5 Experimental Reproduction of the Infection in Wild Rodent Species wherefrom Cowpox Virus was Isolated or where Markers of Its Presence Were Detected

6.3.6 Cowpox in Domestic Cats

6.3.7 Cowpox in Other Animals

6.4 Cowpox in Humans

6.5 Genetic Organization of Cowpox Virus

7 Molecular Evolution of Orthopoxviruses

7.1 Phylogenetic Interrelations of Orthopoxviruses

7.2 Differences in DNA Nucleotide Sequences of Variola and Vaccinia Viruses

7.3 Mechanisms of Recombinational Rearrangements of Orthopoxvirus DNAs

7.4 Multigenic Families

7.4.1 Ankyrin-Like Proteins

7.4.2 Kelch-Like Proteins

7.4.3 Tumor Necrosis Factor Receptor Family

7.5. Comparison of Immunomodulatory Proteins of Orthopoxviruses

7.5.1 Inhibitors of Inflammatory Reactions

7.5.2 Interferon Inhibitors

7.5.3 Modulators of the Immune Response

8 Laboratory Diagnostics of Human Orthopoxvirus Infections

8.1 Morphological Methods

8.2 Biological Methods

8.2.1 Chick Embryo Assay

8.2.2 Cell Culture Assay

8.3 Serological Methods

8.3.1 Gel Precipitation

8.3.2 Enzyme Immunoassay (EIA)

8.3.3 Radioimmunoassay (RIA)

8.3.4 Hemagglutination Inhibition Test (HAIT)
8.3.5 Neutralization Reaction 316
8.4 BIOCHEMICAL METHODS FOR DIFFERENTIATION OF ORTHOPOXVIRUSES 316
 8.4.1 Restriction Fragment Length Polymorphism Analysis of Viral Genomic DNAs 317
 8.4.2 Virus Identification Using Polymerase Chain Reaction 317
 8.4.3 Multiplex PCR Analysis 318
 8.4.4 Real-Time PCR Assay 319
 8.4.5 Oligonucleotide Microarray Analysis 321

9 PREPAREDNESS AND RESPONSE TO POTENTIAL BIOTERRORISM (S.N. Shchelkunov and S.S. Marennikova) 325

Appendix 1 (S.N. Shchelkunov) 331
Appendix 2 (S.N. Shchelkunov) 349

List of Abbreviations 367
References 369

Index 423
List of Figures

1.1 The mummified head of Ramses V, pharaoh of Egypt who ruled from 1150–1145 B.C., showing facial pustules believed to be consistent with smallpox

1.2 A translation in 1776 of the Abu Bakr Mohammad Ibn Zakariya al-Razi (864–930 A.D.) treatise on smallpox and measles

1.3 Proposed spread of smallpox within the ancient world

1.4 The spread of smallpox by Europeans into the Americas, Australia, and South Africa

3.1 Vaccinia pocks on CAMs

3.2 Initial stage of the CPE caused by vaccinia virus in human embryo fibroblasts and continuous cell line of human amnion

3.3 A preparation of human embryo fibroblast culture 48 h after inoculation with vaccinia virus

3.4 Hemadsorption phenomenon in a preparation of cell culture infected with vaccinia virus

3.5 Transparent and reticular plaques formed by vaccinia virus in chick embryo fibroblast culture

3.6 The vaccinia replication cycle

3.7 Vaccinia virion structure

3.8 The organization of the vaccinia virus chromosome

3.9 The replication of vaccinia virus DNA

3.10 Generation of mature vaccinia virion DNA from replicative concatemers

3.11 Mechanism for expansion and contraction of TIR regions

3.12 Electron microscopy of vaccinia virus infected cells

3.13 Intermediates in vaccinia virus assembly
3.14 Time courses of the virus accumulation on scarified skin and in regional lymph nodes

3.15 Duration of virus release from regional lymph nodes

3.16 Morphology of pocks produced on CAMs by vaccinia virus EM-63 strain and attenuated MVA strain

3.17 Local reaction to the primary vaccination by scarification technique

3.18 Virus-neutralizing antibodies in children after the primary vaccination

4.1 Smallpox at the pustular stage; eruptions on hands including palms

4.2 A patient with a flat-type confluent smallpox with a fatal outcome on day 13. The time course of rash development from day 1 of rash onset to day 10

4.3 Virions of variola virus

4.4 The lesions (pocks) on chick embryo CAMs induced by variola virus

4.5 CPE caused by variola virus in Vero cell culture on day 5 post infection

4.6 Giant cells (polykaryocytes) in human embryo fibroblast culture infected with variola virus

4.7 The time courses of variola alastrim virus accumulation in various cell cultures

4.8 Type B cytoplasmic inclusion bodies (Guarnieri bodies) in the human embryo fibroblast culture 48 h post infection with variola virus

4.9 A fluorescent polykaryocyte, treated with FITC conjugate of anti-vaccinia antibodies, in the PEK cell culture 24 h post infection with variola virus

4.10 Properties of variola virus strains and geographic areas of their circulation

4.11 The layout of amplicon arrangement in the genome of VARV strain India-1967

4.12 The dendrogram constructed by neighbor joining method basing on the results of combined assay of HpaII and BstFNI hydrolysates of all the 20 amplicons of each VARV strain

4.13 HindIII and XhoI restriction enzyme maps of VARV-IND DNA

4.14 Percent of the VARV-IND open reading frames encoding the proteins that display the amino acid sequence identity with the corresponding VARV-BSH or VARV-GAR ORFs exceeding 99%

4.15 HindIII maps of variola virus genomic DNA
List of Figures

4.16 Alignment of the amino acid sequences of variola virus strains VARV-GAR, VARV-IND, and VARV-BSH and vaccinia virus strains VACV-COP and VACV-WR containing DID repeats 137
4.17 Potential Ca\(^{2+}\)-binding domains of VARV-IND 15R protein 141
4.18 Alignment of the amino acid sequences of the VARV, ECTV, VACV, and Shope fibroma virus ORFs belonging to the protein family with RING zinc finger motif 143
4.19 Alignment of the amino acid sequences of the VARV-IND, VARV-BSH, VACV-COP, and VACV-WR ORFs encoding proteins from the epidermal growth factor family and cell proteins EGF-HUMAN and TGF-HUMAN 145
4.20 Alignment of the amino acid sequences of the VACV-WR, VACV-COP, and VARV-IND ORFs encoding hemagglutinin and comparison of their HA secondary structures 148
5.1 Pocks on CAMs caused by monkeypox and variola viruses 157
5.2 CPE induced by monkeypox virus in Vero cell culture on day 5 after inoculation 158
5.3 Behavior in PEK cell culture of monkeypox and variola viruses 159
5.4 Eruptions on the skin of an adult rabbit on day 7 after intravenous infection with monkeypox virus 161
5.5 Comparison of translation maps of the investigated region for the monkeypox virus strains CDC#v79-L-005 and CDC#v97-L-004, CDC#v70-L-187, and CDC#v78-L-3945, variola virus, and cowpox virus 166
5.6 Main stages of monkeypox pathogenesis in M. cynomolgus 168
5.7 Monkeypox of M. cynomolgus: skin lesions on limbs 169
5.8 Human monkeypox 181
5.9 West and Central Africa: localizations of human monkeypox cases recorded during 1970–1991 and the zone of tropical rainforests 183
5.10 Human smallpox outbreak in Democratic Republic of the Congo in February 1996–October 1997 184
5.11 Distribution by month of human monkeypox cases during the outbreak in Katako-Kombe, Kasai Oriental Province, February 1996–February 1997 185
5.12 Structure of the terminal hairpin of the orthopoxvirus DNA 190
5.13 Schematic representation of the terminal species-specific variable genomic regions of MPXV-ZAI and VARV-IND 191
6.1 Lesions (pocks) on CAM of chick embryos caused by the cowpox virus reference strain Brighton 194
6.2 White large compact pocks caused by cowpox virus on the background of superficial pocks with hemorrhages (an isolate from an elephant) 195
6.3 Pocks on CAM produced by an isolate from a child
6.4 Reaction on scarified skin of a rabbit; day 4 post inoculation with cowpox virus
6.5 The CPE in cell culture of human embryo fibroblasts caused by cowpox virus and A-type inclusion bodies in syncytium cytoplasm of the same cell culture
6.6 Specific features of CPE foci in the PEK cell culture infected with cowpox and vaccinia viruses
6.7 Type A cytoplasmic inclusion bodies formed by various cowpox virus strains
6.8 Vesicular eruptions on the skin of giant anteater infected with cowpox virus
6.9 Eruptions of young puma, which died on day 7 of cowpox infection
6.10 Infection of white rats caused by cowpox virus: a sick white rat and eruptions on the tail and hind limbs of the animal that died from the disease
6.11 Time courses of outbreaks in the white rat breeding facility and timing of the outbreak development among zoo animals
6.12 Patient G.A., 10 years old, infected with cowpox virus from an unknown source (presumably, from small field rodents)
6.13 Patient G.E., 4.5 years old, infected with cowpox virus from an unknown source (presumably, from a mole)
6.14 Patterns of tandem repeats within the TIR region of orthopoxviruses
6.15 Layout of the assumed inversion–translocation of the terminal DNA fragment in VACV-COP genome
6.16 Comparison of amino acid sequences of the CPXV-GRI and CPXV-BRT ORFs displaying the lowest homologies
6.17 Comparison of amino acid sequences of the C-terminal regions of the orthopoxvirus ORFs encoding A-type inclusion bodies and comparison of ten tandem repeats of CPXV-GRI
6.18 Layout of orthopoxvirus ORFs encoding the proteins necessary for production of A-type inclusion bodies and direction of IMV particles into these bodies
6.19 Graphic alignment of the genomic region of cowpox virus strains EP-2 and OPV 91-1, isolated in Germany, and analogous regions of cowpox, variola major, variola minor, camelpox, monkeypox, vaccinia, ectromelia viruses
6.20 Phylogenetic tree based on alignments of amino acid sequences of CPXV B7.5R and its homologues in genomes of various chordopoxviruses
List of Figures

7.1 Phylogenetic tree based on the coding part of vCCI gene constructed by minimal evolution method
7.2 Phylogenetic tree based on the coding part of the gene of α/β-IFN-binding protein constructed by minimal evolution method
7.3 Examples of short deletions in genomes of viruses VACV-COP, VARV-IND, and VARV-BSH
7.4 Model of slipped mispairing explaining formation of deletions during DNA replication
7.5 Comparison of the nucleotide sequences of VACV-COP, VARV-IND, and VARV-BSH in the regions of the genes encoding tumor necrosis factor receptor and 11 kDa core DNA-binding phosphoprotein
7.6 Graphical alignment of left and right terminal species-specific genomic regions of CPXV-GRI, CPXV-BRT, MPXV-ZAI, VACV-COP, VACV-WR, VARV-IND, and VARV-GAR
7.7 Graphical alignment of CPXV-GRI ankyrin-like proteins localized to the left terminal genomic region
7.8 Comparison of amino acid sequences of ankyrin repeats of CPXV-GRI ORFs localized to the left terminal genomic region
7.9 Layout of the ORFs of kelch-like proteins of CPXV-GRI, CPXV-BRT, MPXV-ZAI, VACV-COP, VACV-WR, VARV-IND, and VARV-GAR in left and right terminal species-specific regions of the orthopoxvirus genome
7.10 Comparison of the amino acid sequences of the N-terminal BTB domain of Drosophila kelch protein and the kelch-like proteins of CPXV-GRI
7.11 Comparison of amino acid sequences of kelch motifs from CPXV-GRI proteins A54R, B9R, G3L, C18L, B19R, and D11L with analogous motifs of D. melanogaster kelch protein
7.12 Graphical layout of the ORFs encoding viral proteins belonging to the family of tumor necrosis factor receptor
7.13 Layout of the left and right terminal variable regions of cowpox (CPXV-GRI), monkeypox (MPXV-ZAI), variola (VARV-IND), and vaccinia (VACV-COP) viruses
7.14 Comparison of the amino acid sequences of the orthopoxvirus complement-binding proteins of VACV, MPXV, VARV, and CPXV
7.15 Comparison of amino acid sequences of the orthopoxvirus proteins CrmB, belonging to the family of TNF receptors, involving two strains of each species—CPXV, MPXV, and VARV
7.16 Comparison of amino acid sequences of CC chemokine-binding proteins of orthopoxviruses—CPXV, MPXV, VARV, and VACV 296
7.17 Comparison of amino acid sequences of the orthopoxvirus homologues of eukaryotic translation initiation factor alpha subunit of CPXV, MPXV, VACV, and VARV 297
7.18 Comparison of amino acid sequences of the orthopoxvirus dsRNA-binding proteins 298
8.1 M and C forms of orthopoxvirus virions 305
8.2 Virions of parapoxviruses and herpes viruses in the lesion contents of human cases 306
8.3 Immune electron microscopy: aggregation of vaccinia virus virions treated with hyperimmune antivaccinia serum and cluster of monkeypox virions after treatment with monkeypox-specific monoclonal antibodies 308
8.4 Pocks on CAM produced by orthopoxviruses pathogenic for humans 309
8.5 Human embryo fibroblast culture infected with orthopoxviruses and herpesviruses capable of causing human diseases with skin lesions 312
8.6 Human embryo fibroblast culture inoculated with variola virus 313
8.7 Immunoprecipitation reaction in agar gel with antivaccinia serum 314
8.8 PCR amplification of the orthopoxvirus HA gene followed by restriction fragment length polymorphism assay using TagI restriction endonuclease 317
8.9 NlaIII RFLP assay of PCR-amplified CrmB fragments of DNA of CPXV isolates from human and animals 318
8.10 Electrophoretic separation of the amplicons produced by PCR using four pairs of oligonucleotide primers 319
8.11 Melting curves generated after LightCycler amplification of 100, 10, and 1 fg of DNA prepared from variola virus infected cell culture material 321
8.12 Aligned sequences of a CrmB gene fragment of various orthopoxviruses 322
8.13 Hybridization patterns obtained on the microchip for five orthopoxvirus species 323
8.14 Patterns of detection and discrimination between the orthopoxvirus species pathogenic for humans and their differentiation from HHV 3 by microarray 324
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>Brief characterization and classification of the poxvirus family</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>(Poxviridae)</td>
<td></td>
</tr>
<tr>
<td>2.2</td>
<td>Genus Orthopoxvirus: species, natural hosts, regions of circulation,</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>and main properties</td>
<td></td>
</tr>
<tr>
<td>3.1</td>
<td>Vaccinia encoded mRNA metabolism enzymes and factors</td>
<td>40</td>
</tr>
<tr>
<td>3.2</td>
<td>Vaccinia virion enzymes</td>
<td>43</td>
</tr>
<tr>
<td>3.3</td>
<td>Vaccinia genes involved in DNA replication</td>
<td>54</td>
</tr>
<tr>
<td>3.4</td>
<td>Vaccinia virus immunomodulatory, anti-apoptotic, and host range</td>
<td>63</td>
</tr>
<tr>
<td></td>
<td>genes</td>
<td></td>
</tr>
<tr>
<td>3.5</td>
<td>Classification of vaccinia virus strains according to their</td>
<td>68</td>
</tr>
<tr>
<td></td>
<td>pathogenicity for laboratory animals</td>
<td></td>
</tr>
<tr>
<td>3.6</td>
<td>Effects of properties of production strains on reactogenicities of</td>
<td>70</td>
</tr>
<tr>
<td></td>
<td>smallpox vaccines and the rate of postvaccination complications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(data of vaccination during 1975–1979)</td>
<td></td>
</tr>
<tr>
<td>3.7</td>
<td>Biological characterization of the strains classified as</td>
<td>75</td>
</tr>
<tr>
<td></td>
<td>attenuated in comparison with the «mildest» commercial EM-63 strain</td>
<td></td>
</tr>
<tr>
<td>3.8</td>
<td>Postvaccination complications in primary vaccinees depending on the</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>age (according to the data of 1975–1979)</td>
<td></td>
</tr>
<tr>
<td>4.1</td>
<td>Classification of variola major clinical types</td>
<td>91</td>
</tr>
<tr>
<td>4.2</td>
<td>Prevalences of individual variola major clinical types and</td>
<td>91</td>
</tr>
<tr>
<td></td>
<td>mortality rates of nonvaccinees and vaccinees</td>
<td></td>
</tr>
<tr>
<td>4.3</td>
<td>Susceptibility of laboratory animals to variola alastrim virus</td>
<td>111</td>
</tr>
<tr>
<td>4.4</td>
<td>Plaque formation in chick embryo fibroblast culture</td>
<td>119</td>
</tr>
<tr>
<td>4.5</td>
<td>Intraspecies variation of variola virus by the examples of</td>
<td>124</td>
</tr>
<tr>
<td></td>
<td>individual strains</td>
<td></td>
</tr>
<tr>
<td>5.1</td>
<td>Susceptibility of rabbits to monkeypox virus</td>
<td>160</td>
</tr>
<tr>
<td>5.2</td>
<td>Susceptibility of laboratory rodents to monkeypox virus</td>
<td>162</td>
</tr>
</tbody>
</table>
5.3 Results of serological examination of the monkeys captured in foci of human monkeypox (Equatorial Province, Democratic Republic of the Congo) 173
5.4 African primate species that displayed species-specific antibodies to monkeypox virus and/or antibodies to orthopoxviruses 174
5.5 Data of serological examination of squirrels trapped in four zones of Democratic Republic of the Congo 176
5.6 Susceptibility of tropical squirrels to intranasal infection with monkeypox virus 178
5.7 Clinical types of human monkeypox 182
5.8 Morbidity rate of human monkeypox during 1981–1986: sources of infection and infection generations 187
6.1 Biological characterization of cowpox virus strains by markers detecting intraspecies distinctions 203
6.2 Results of virological and serological examinations of white rats during and after outbreaks of the disease caused by cowpox virus 215
6.3 Data of serological examination of wild-living Turkmenian rodents 218
6.4 Results of examination of Turkmenian Rodentia and Logomorpha species for the presence of orthopoxviruses 219
6.5 Examination of rodents from various regions of the European part of the former USSR and Rzeszów province of Poland for the presence of orthopoxviruses and the corresponding antibodies 220
6.6 Human cowpox cases in Russia with confirmed or suspected transmission of infection from rodents 228
6.7 Amino acid identity of the ORF B7.5R of cowpox virus strains EP-2 and 91-1 as compared to B22R isologs of other orthopoxvirus species and chordopoxviruses 246
7.1 Comparison of the genomes of variola major virus strains India-1967 and Bangladesh-1975 and vaccinia virus strain Copenhagen 254
7.2 Junction regions at the sites of nonhomologous recombination of orthopoxvirus DNAs 270
7.3 Orthopoxvirus ankyrin-like proteins 273
7.4 Orthopoxviral kelch-like proteins 280
7.5 Open reading frames of CPXV-GRI ascribed to the family of tumor necrosis factor receptor 286
7.6 Immunomodulatory proteins of orthopoxviruses 292
8.1 Differentiation of orthopoxviruses and some poxviruses from parapoxviruses and herpesviruses by electron microscopy 307
List of Tables

8.2 Species identification of orthopoxviruses and their differentiation from causative agents of clinically similar diseases according to biological and serological markers 310

9.1 Critical biological agent categories for public health preparedness 326

9.2 Criteria and weighting used to evaluate potential biological threat agents 327
Chapter 1

SMALLPOX IN HUMAN HISTORY

1.1 Introduction

The role of smallpox in human history has been discussed in detail (Fenner et al., 1988; 1989). These references, while excellent, are out of print, but they remain available at many libraries. In addition, one of these, the superb reference Smallpox and its Eradication (Fenner et al., 1988) is available from the World Health Organization on their WEB site (http://www.who.int/emc/diseases/smallpox/Smallpoxeradication.html).

There is also an excellent historical treatise, which dwells in depth on the role of smallpox in human events entitled Princess and Peasants: Smallpox in History, originally published in 1983 by Donald R. Hopkins. This book was recently reissued under the title of The Greatest Killer—Smallpox in History (Hopkins, 2002). A perusal of any of these sources will readily convince the reader that smallpox has had an enormous impact on human history for over 2000 years. We have relied heavily on these references, as the purpose of this Chapter is to provide the reader with an appreciation of the role of smallpox (variola major) in human history. It is difficult today, when the world has been freed of this dreadful disease for nearly thirty years, to appreciate the past terror and apprehension concerning smallpox, a disease ever present, prior to its eradication, throughout the world. Prior to the third quarter of the 20th century, when eradication succeeded, it was widely known and appreciated that epidemics had occurred and would again, the only variables being when and how severe. Parenthetically, thirty years after eradication, it is tragic that serious worldwide concerns have been rekindled for fear this virus might be intentionally released by terrorists as a bioweapon. The possibility that smallpox, or smallpox-like viruses, such as monkeypox or engineered recombinant poxviruses, might be deliberately released would knowingly undo what is arguably the single most significant
Orthopoxviruses Pathogenic for Humans

medical achievement of mankind, namely, the eradication of smallpox from the face of the earth. This possibility poses a potential tragedy of the first order.

1.2 The Origins of Smallpox

Smallpox, a uniquely human virus, has no known animal reservoirs and therefore must rely on human-to-human transmission to be maintained in the population. Therefore, while considered an ancient disease, it should be appreciated that a requirement for the virus to become endemic was that sufficient numbers of susceptible individuals within a large enough population must exist to allow the virus to be sustained. The true origins of the virus are murky, but it is clear that in addition to a critical population density, dissemination from a point of origin depended on the emergence of commerce between nations and groups and armed conflicts both of which facilitated contact within different populations.

The virus as we know it probably originated in either Egypt or India no later than roughly 1000 B.C. In Egypt, the mummified remains of the pharaoh Ramses V (Ruffer, 1921; Figure 1.1), which could date as early as 1157 B.C., show pustular eruptions consistent with smallpox. Examination of several other mummies dating from this period or even earlier also suggested the presence of pustular lesions again consistent with smallpox (Ruffer & Ferguson, 1910). These mummies date to roughly 3000 years ago, which precedes reliable descriptions of the virus anywhere else by approximately 1000 years and makes a strong argument that the virus originated in Egypt and was then carried to India and Asia by caravans of commerce, ocean going vessels, or traveling armies. Consistent with this notion are reports dating even earlier from the 14th century B.C. describing Hittite attacks that ultimately defeated Egypt. A “pestilence” is described as having broken out among the Hittites, contracted from the Egyptians, which persisted for some 20 years, killing large numbers of people including at least two Hittite leaders. There is some but not-conclusive evidence that this epidemic could have been due at least in part to smallpox.

In India, there are ancient Sanskrit writings “Charka Samhita” and “Susruta Samhita”, which could be as old as 1500 B.C., that also describe a disease consistent with smallpox. It is interesting to note that Hopkins describes writings of an Indian

![Figure 1-1. The mummified head of Ramses V, pharaoh of Egypt who ruled from 1150-1145 B.C., showing facial pustules believed to be consistent with smallpox.](image)
scholar, Dhanwantari, who some 2000 years ago described a preventative procedure astonishingly similar to the procedure described in the last years of the 18th century by Jenner. Dhanwantari writes, "Take the fluid of the pock on the udder of the cow or on the arm between the shoulder and elbow of a human subject on the point of a lancet and lance with it the arms between the shoulders and elbows until the blood appears. Then, mixing this fluid with the blood, the fever of the smallpox will be produced" (Hopkins, 2002). There are also descriptions by Brahmin priests, who describe rituals and prayers directed toward the "Goddess of Smallpox" from 1000 B.C. to the birth of Christ. What is abundantly clear from the writing and descriptions is that smallpox existed in India as well as Egypt well before the birth of Christ.

Therefore, the most reliable evidence would suggest that the disease originated from either Egypt or India, but anecdotal evidence suggests that the virus was present in ancient Greece as well. Hippocrates (400 B.C.) has written references to a disease that could have been smallpox. Better evidence is provided by Thucydides, a resident of Athens, who described the "plague of Athens" that occurred during the Peloponnesian war. This pestilence lasted for a number of years, killed roughly 25% of the Athenian army as well as private citizens, and ultimately resulted in the introduction of the virus into Persia. This again would be consistent with virus that originated in Egypt, but entered Greece through seafarers through the port of Piraeus roughly 30–50 years before this war. Whether this was smallpox is not known with certainty, but the end result was a serious erosion of Athenian strength, which diminished their capacity for later conflict with the Spartans and their ultimate decline (Hopkins, 2002).

China in ancient times would have had the population to allow both epidemics and the virus to become endemic. Scholars estimate that the virus was introduced into China from the North about 250 B.C. An epidemic is described about 243 B.C., which, from descriptions, could have been smallpox. However, the first clinical descriptions date from Ko Hung in 340 A.D. It was roughly 200 years later, before Chinese writings describe the disease in either Korea or Japan with introductions into Korea likely in 583 A.D. and Japan in 585 A.D.

It is clear that while the virus was well established in North Africa, India, China, and Persia, there is no evidence of smallpox in Europe until far later, or roughly the 6th century A.D. Very likely, the virus was introduced during the Islamic invasions, which originated from North Africa and entered Europe via Iberia in the 7th and 8th centuries. In the first millennium, several notable writings were produced. Al-Razi, an outstanding Persian physician and philosopher who lived from 850–925 A.D., has been credited as the first to use animal gut for sutures and plaster of paris for casts. He produced many medically related texts including his most famous A Treatise on the
Orthopoxviruses Pathogenic for Humans

Figure 1-2. A translation in 1776 of the Abu Bakr Mohammad Ibn Zakariya al-Razi (864–930 A.D.) treatise on smallpox and measles.

Smallpox and Measles (Figure 1.2). In Japan, Ishinho described smallpox hospitals and the “red treatment”, which was to completely cover rooms with red cloth, similarly outfit patients in red clothing, and then expose them to red light. By 1000 A.D., smallpox was endemic in the more densely populated regions of Europe and Asia encompassing North Africa and Spain in the west to Japan in the east. In some ancient cultures, smallpox was so devastating, that infants were not named until it was clear they had caught the disease and survived.

The establishment of an endemic infection in Europe was aided in great measure by the Crusades, which took place between European countries and those of South West Asia. At the same time, in Africa, trade caravans transversed the Sahara Desert to spread the disease into those countries of West Africa that had sufficient population to sustain the infection. The interior of Africa was largely spared, even though Arabs likely introduced the virus sporadically during these years, because these regions lacked the population necessary to sustain the infection. By the 16th century, smallpox was common throughout Europe but did not become a major problem until the 17th century (Carmichael & Silverstein, 1987). During the 17th and 18th centuries, the London Bills of Mortality provided accurate documentation of the nature and effect of smallpox on Europe. During the 18th century alone, smallpox killed five reigning European monarchs. The spread of smallpox from Egypt and India into Asia and Europe is summarized in (Figure 1.3). Well into the 20th century, epidemics had huge social, economical, and clinical impacts. In 1962, a Pakistani traveler initiated a smallpox epidemic in Rhondda, Wales, in the UK. Ultimately, 25 people contracted smallpox and 6 died. The public demanded vaccination and ultimately 900,000 people in South Wales were vaccinated. One of the last of the major European outbreaks occurred in 1972 in Yugoslavia. The Yugoslavian epidemic was apparently initiated by a Muslim pilgrim named Latin Muzza, who had return from Mecca via Iraq to his home in Kosovo. He likely contracted the disease while in Iraq where smallpox was active. Muzza, upon falling ill in Yugoslavia, visited a number of hospitals before being admitted to a Belgrade hospital. Unfortunately, the epidemic had progressed extensively before definitive diagnosis was made. Strict government measures were implemented in order to control this outbreak, yet there were 175 cases
Figure 1-3. Proposed spread of smallpox within the ancient world (from Fenner et al., 1988; reprinted with permission of the World Health Organization).

reported with 35 deaths before the epidemic ended (World Health Organization, 2004). Officials were so concerned that mass vaccination was employed as a control measure in Belgrade and Serbia with the result that 8,160,000 people were vaccinated out of a total population of 8,437,000. A similar vaccine strategy ensued in Kosovo, which also reported some cases, and 1,200,000 persons were vaccinated out of a total of 1,244,000.

1.3 The Spread and Effect of Smallpox on Naïve Populations

Extensive documentation details the effects of smallpox when introduced into naïve, previously unexposed populations. Up to the 1500s, the disease probably was not present to any significant degree in Southern Africa, the Americas, or Australia. In the Americas, it was probably the Spanish who brought the disease into the Caribbean in 1507 (Figure 1.4). The effect was to completely decimate the native island population, which encouraged the importation of African slaves to fill the population void. There is little doubt that the conquest of both Mexico and Peru by the Spanish was influenced by smallpox. An introduction of the virus in 1520 by Cortes on the mainland was a major factor in the devastation of the Aztecs by the Spanish invading armies. Similarly, Pizarro brought the disease to the Incas, which was a major factor in the downfall of that empire as well. In Brazil, missionaries carried the disease far into the interior of the continent.

In North America, smallpox was a major factor in the pattern of settlement of both the English and French and was a major factor in the political evolution of Canada and the United States (Stearn & Stearn, 1945). Initially, the effects of the disease, while devastating on individual introductions, had less overall effect because of the lesser density of native
Figure 1-4. The spread of smallpox by Europeans into the Americas, Australia, and South Africa (from Fenner et al., 1988; reprinted with permission of the World Health Organization).

populations. The virus was repeatedly introduced by seamen into North America with the result of devastation of the native population mostly at the site of introduction, which involved initially coastal tribes. As the virus spread inland, the Iroquois Nation in upstate New York suffered no less than five separate epidemics during the 17th and 18th centuries. In the 18th and 19th centuries, the Tripara and Mandan Tribes further west were similarly exposed and essentially destroyed with the result that the Sioux tribes annexed their territory as a consequence of a lessened ability to resist.

Smallpox was a major issue that factored into the British, French, and American strategies during the American Revolutionary war. For example, during the American siege of Boston from June 1775–March 1776, the length of the siege was protracted because of George Washington’s reluctance to enter Boston, which was known at the time to have smallpox, and fear that the virus would be introduced into his American Army. Indeed, when the British finally departed, the city was initially occupied by troops who had survived smallpox. In Canada, smallpox was a major factor in determining that Canada would eventually come under British rule. In the winter of 1775–1776, the Americans were attempting to liberate Quebec province from British rule. The Americans captured Montreal and moved to attack Quebec City. Although the situation for the Americans looked promising, the British commander had citizens recently recovered from smallpox fraternize with the Americans. Smallpox broke out among the American troops and about half of the 10,000 soldiers ultimately fell ill followed by a retreat because the forces were too weakened to continue the battle.
Historically, one of the greatest of American Presidents was a victim of smallpox. Lincoln, who gave his famous Gettysburg address on April 19, 1865, fell acutely ill two days later. It is likely in retrospect that he was symptomatic the day he gave the address. While Lincoln survived, his death could have altered the course of American history as the Nation was in the midst of a civil war.

Introduction of the disease into Southern Africa was into Angola by the Portuguese. The virus was introduced into South Africa in 1713 via contaminated bedding and resulted in the decimation of the native Hottentots. Despite these introductions, the disease did not become endemic in Central Africa until the late 19th century.

Introduction of the virus into Australia, despite being an isolated continent, occurred within one year of European arrival in the city of Sydney. From 1829–1831, the disease broke out among the aborigines of Southeast Australia, which clearly facilitated European settlement of this region.

Smallpox raged throughout areas of the world from the 17th to mid-20th centuries despite the monumental discovery of vaccination by Jenner in 1796, which had long been recognized as being effective. It was only through the concerted efforts of the world community through the United Nations that smallpox was effectively eradicated with the last natural case occurring in October 1977, the patient being Ali Maow Maalin, a hospital cook in the town of Merak, Somalia.

1.4 Smallpox as a Historical Bioweapon

Given the influence of smallpox on world events and the common knowledge that once infected, a survivor was immune to the disease, it is not surprising that smallpox has been considered as a possible weapon. A couple of illustrations suffice. During the French and Indian wars, the British commander, Lord Jeffrey Amherst, for whom the City and University in the US State of Massachusetts are named, deliberately introduced the virus into the warring Indian factions. Amherst, in a letter to one of his officers, Colonel Henry Bouquet, in 1763 stated, “Could it not be contrived to send the smallpox among these disaffected tribes of Indians? We must on this occasion use every stratagem in our power to reduce them”. Bouquet replied, “I will try to inoculate the Indians with some blankets that may fall into their hands and take care not to get the disease myself” (Duffy, 1951).

During World War II, both the British and Americans considered using smallpox as a deliberate weapon. One factor mitigating this was the fact that there was available a good vaccine, which was widely distributed. Therefore, further consideration was abandoned. In 1969, President of the United States, Richard M. Nixon officially banned development of any biological
weapon. In 1972, the UK, US, and Soviet Union all signed the Biological Weapons Convention, superficially ending consideration of smallpox, by this time near eradication, as a weapon of war. Over the years, unfortunately, it appears that efforts to weaponize smallpox were not universally abandoned. In 1972, a Soviet defector, Dr. Kanatjan Alibekov (Ken Alibek) claimed to have been in charge of a bioweapons program designed to develop smallpox into an offensive weapon. Another soviet scientist, Dr. Vladimir Pasechnik, who died in 2001, also supported the thesis that the former Soviet Union had intensified development and perfection of an aerosolized form of smallpox through a company Biopreparat, which had been established in 1973 and which was reportedly active until the end of the Gorbachov era (Alibek, 1999). These activities have since been abandoned. While there is no official acknowledgment of efforts to weaponize smallpox, heightened terrorist activities and concern about rogue Nations have led to renewed efforts to develop better vaccines and ameliorative measures against smallpox infections.

1.5 Monkeypox Virus and Engineered Viruses: The Future of Smallpox and Smallpox-like Infections

Formally, the world is certified as "smallpox-free”, as the last natural case occurred in 1977. However, there are two aspects of smallpox that merit vigilance for the future. First, there is monkeypox virus, which can cause serious disease in both monkeys and man. Then, there is the possibility of genetically engineering of monkeypox virus, clandestine strains of smallpox, or even the more attenuated orthopoxviruses to exacerbate or create a smallpox-like disease.

Monkeypox virus, an indigenous disease of rodents in equatorial Africa, causes a disease in monkeys and humans indistinguishable from smallpox. Fatality rates of humans in central Africa infected with monkeypox virus are similar to those of smallpox caused by variola major virus. However, monkeypox virus is less transmissible from human to human. Nevertheless, unlike variola strains, which are present in closely guarded deposits only in Russia and the United States, monkeypox virus is ever present in zoonotic reservoirs and poses a continuing threat to human populations, as the territory allocated to wildlife continues to shrink, thereby increasing the likelihood of contact between humans and wild animals.

Monkeypox was first recognized in 1958 at the State Serum Institute in Copenhagen (von Magnus et al., 1959) in a colony of monkeys. The disease was noted in 1970 in humans living in tropical rainforest areas in western and Central Africa (Lourie et al., 1972; Marennikova et al., 1972a). The first case of human monkeypox was reported in Zaire in 1972 (Ladnyi et al.,
1972). It is now recognized that monkeypox is a zoonotic disease of rodents with transmission to both monkeys and man. Human infections are generally seen when humans increase their contact with forests where the natural animal reservoirs of the virus are located. Between February 1996 and October 1997, there were some 511 suspected cases in the Democratic Republic of the Congo (formerly Zaire). The increased frequency of the disease, while related in part to population movements resulting from the political instability of the region, also generated concern that the virus had somehow changed or mutated into a more virulent form. There were also some concerns that the virus might be a progenitor of smallpox virus; however, molecular studies have clearly indicated that this is not the case. The two viruses are distinct, and it is virtually impossible that monkeypox virus could naturally evolve into smallpox virus (Douglass & Dumbell, 1992; Shchelkunov et al., 2001).

The aspects of human monkeypox that have garnered the most attention are the clinical similarities to smallpox and the similar fatality rates. The virus is classified as a possible emerging pathogen by the CDC in Atlanta, USA, and has received considerable attention. A perusal of the map of Africa showing the case distribution of monkeypox virus indicates two "pockets" of the virus, one in Central and the other in West Africa (see Figure 5.11; Jezek & Fenner, 1988). Evidence now suggests that fatalities are much more prevalent in Central than West Africa. Indeed, it now appears that there are two variants of the virus in circulation, and that the strain circulating in West Africa is considerably attenuated as compared to the Central African (Zairian) strain.

Further appreciation of the concerns about monkeypox by Public Health Officials is highlighted by a recent outbreak of the disease in the United States. In early June 2003, monkeypox was reported among several people in the United States. Ultimately, 72 cases were reported but no deaths. It is likely that humans became infected after coming in contact with wild prairie dogs. The prairie dogs in turn in all likelihood became infected after coming in contact with the Gambian giant pouched rat imported as part of a shipment of animals into the US on April 9 for use as pets. Since that time, importation of the Gambian rat has ceased as has importation of tree squirrels, rope squirrels, dormice, brush-tailed porcupines, and striped mice. Interestingly, unlike what was reported for monkeypox infections in the Congo, there were no deaths in the United States. A possible explanation for this dichotomy is that the strain imported into the US was the more attenuated West African strain of monkeypox virus. A second concern highlighted by the American outbreak, was the fear that the virus might become zoonotic in North American rodents. At the present time, at least for this outbreak, this does not appear to be the case, although the zoonotic potential of the virus cannot be ignored.
Another current concern stems from data in the scientific literature that suggest that poxviruses can be engineered in the laboratory to partially overcome the immune response. Ectromelia virus is an orthopoxvirus of mice and hence a member of the same virus family as smallpox. In certain strains of mice (BALB/c), the virus is virtually uniformly lethal, whereas in other strains (C57BL/6) the animals are relatively resistant to the virus. However, when a recombinant ectromelia virus engineered to express the cytokine IL-4 is used to infect mice, all animals including those of the normally resistant C57BL/6 strain develop systemic disease with uniformly high mortalities. A second equally sobering finding was the report that ectromelia expressing IL-4 was able to overcome the effects of vaccination (Jackson et al., 2001). While more recent data suggest that vaccination can protect animals against most of the effects of the ectromelia IL-4 virus (R.M. Buller, personal communication), the concept of engineering poxviruses of increased virulence is a significant issue that argues for continued worldwide vigilance.