Oxidation of Alcohols to Aldehydes and Ketones

BASIC REACTIONS IN ORGANIC SYNTHESIS

EDITOR-IN-CHIEF: GABRIEL TOJO

DEPARTMENT OF ORGANIC CHEMISTRY,

FACULTY OF CHEMISTRY,

UNIVERSITY OF SANTIAGO DE COMPOSTELA 15872-SANTIAGO DE COMPOSTELA SPAIN.

qogatojo@usc.es

Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice, by Gabriel Tojo and Marcos Fernández

Oxidation of Alcohols to Aldehydes and Ketones

A Guide to Current Common Practice

GABRIEL TOJO and MARCOS FERNÁNDEZ

Authors:
Gabriel Tojo
Department of Organic Chemistry
Faculty of Chemistry
University of Santiago de Compostela
15872-Santiago De Compostela
Spain

Marcos Fernández Department of Organic Chemistry Faculty of Chemistry University of Santiago de Compostela 15872-Santiago De Compostela Spain

Editor-on-Chief
Gabriel Tojo
Department of Organic Chemistry
Faculty of Chemistry
University of Santiago de Compostela
15872-Santiago De Compostela
Spain

Library of Congress Control Number: 2005927383

ISBN-10: 0-387-23607-4 ISBN-13: 978-0387-23607-0

Printed on acid-free paper.

©2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc. 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

springer.com

This book is dedicated to the thousands of scientists cited in the references that constructed our present knowledge on the oxidation of alcohols to aldehydes and ketones. Thanks to their collective effort, the preparation of medicines, pesticides, colorants and plenty of chemicals that make life more enjoyable, is greatly facilitated.

Acknowledgements

We thank the staff of the library of the Faculty of Chemistry of the University of Santiago de Compostela (SPAIN) for their most serviceable help in collecting literature for the preparation of this book.

Preface

There is natural selection in the synthetic organic laboratory. Successful reagents find their way into specialized journals and tend to populate the researcher's benches. Sometimes, old species like active manganese dioxide in the oxidation of unsaturated alcohols are so well adapted to a certain reaction niche that they remain unchallenged for a long time. On other occasions, a successful new species like Dess Martin's periodinane enjoys a population explosion and very quickly inhabits a great number of laboratories. On the other hand, the literature is filled with promising new reagents that fell into oblivion because nobody was able to replicate the initial results on more challenging substrates.

Very few synthetic operations in Organic Chemistry match the importance of the oxidation of alcohols to aldehydes and ketones. The present book, which is a monograph on this operation, is not primarily aimed at specialized researchers interested in the development of new oxidants. Rather, it was written with the objective of being a practical guide for any kind of scientist, be it a chemist of whatever sort, a pharmacologyst, a biochemist, or whoever is in the practical need to perform a certain alcohol oxidation in the most quick and reliable way. Therefore, a great emphasis is given to those oxidants that are employed most often in laboratories, because their ubiquity proves that they possess a greater reliability. Reagents appearing in only a few publications, regardless of promising potential, are only briefly mentioned. We prefer to err on the side of ignoring some good reagents, rather than including bad reagents that would lead researchers to loose their precious time.

This book is meant to be placed near working benches in laboratories, rather than on the shelves of libraries. That is why full experimental parts for important oxidations are provided. Although plenty of references from the literature are facilitated, this book was written with the aim of avoiding as much as possible the need to consult original research articles. Many researchers do not have scientific libraries possessing numerous chemical journals ready available, and, many times, although such library might be

x Preface

available, it is just inconvenient to leave the laboratory in order to consult some reference.

Our aim is to facilitate a little practical help for anybody preparing new organic chemicals.

Abbreviations

Ac acac	acetyl acetylacetonate	DDQ	2,3-dichloro-5,6-dicyano-1,4-benzo-
Bn	benzyl		quinone
Boc	<i>t</i> -butoxycarbonyl	de	diastereomeric excess
BOM	benzyloxymethyl	DIBAL-H	diisobutylaluminum
b.p.	boiling point		hydride
Bs	benzenesulfonyl	DIPEA	diisopropylethyl-
BSA	bis(trimethylsilyl)		amine, Hünig's base
	acetamide	DMAP	4-(dimethylamino)-
Bu	<i>n</i> -butyl		pyridine
t-Bu	<i>tert</i> -butyl	DMB	2,5-dimethoxybenzyl
Bz	benzoyl	DME	1,2-dimethoxyethane
ca.	circa	DMF	N,N-dimethylforma-
CA	Chemical Abstracts		mide
CAN	cerium (IV)	DMP	Dess-Martin periodi-
	ammonium nitrate		nane
cat.	catalytic	DMSO	dimethyl sulfoxide
Cbz or Z	benzyloxycarbonyl	EDC	16,14e-2,1-
cHex	cyclohexyl		(3-dimethylamino
CI	chemical ionization		propyl)-3-ethyl
18-Crown-6	1,4,7,10,13,16-		carbodiimide
	hexaoxacyclo		hydrochloride
	octadecane	EE	1-ethoxyethyl
Ср	cyclopentadienyl	eq.	equivalent
CSA	camphorsulfonic acid	Et	ethyl
d	density	Fl	9-phenylfluoren-9-yl
DBU	1,8-diazabicyclo	Fmoc	9-fluorenyl
	[5.4.0]undec-7-ene		methoxycarbonyl
DCAA	dichloroacetic acid	g	gram
DCC	N, N-dicyclohexyl	glac.	glacial
	carbodiimide	Glc	glucose

xii Abbreviations

h IBA	hour o-iodosobenzoic acid	PMP POM	<i>p</i> -methoxyphenyl [(<i>p</i> -phenylphenyl)oxy]
IBX	o-iodoxybenzoic acid		methyl
imid.	imidazole	ppm	parts per million
<i>i</i> -Pr	isopropyl	PPTS	pyridinium
L	litre		<i>p</i> -toluenesulfonate
LDA	lithium	Pr	propyl
	diisopropylamide	PTFA	pyridinium
m	multiplet		trifluoroacetate
M	mol/L	Py	pyridine
MCPBA	<i>m</i> -chloroperoxyben-	ref.	reflux
	zoic acid	Ref.	reference
Me	methyl	r.t.	room temperature
MEM	(2-methoxyethoxy)	SEM	2-(trimethylsilyl)
	methyl		ethoxymethyl
min.	minute	SET	single electron transfer
MOM	methoxymethyl	TBDPS	t-butyldiphenylsilyl
m.p.	melting point	TBS	<i>t</i> -butyldimethylsilyl
MP	<i>p</i> -methoxyphenyl	TEMPO	2,2,6,6,-tetramethyl-1-
Ms	mesyl,		piperidinyloxy
	methanesulfonyl		free radical
MS	molecular sieves	TEA	triethylamine
MTBE	methyl t-butyl ether	TES	triethylsilyl
MW	molecular weight	TFA	trifluoroacetic acid
NBS	N-bromosuccinimide	TFAA	trifluoroacetic
NCS	N-chlorosuccinimide		anhydride
NMO	N-methylmorpholine	THF	tetrahydrofuran
	<i>N</i> -oxide	THP	tetrahydropyran-2-yl
NMR	nuclear magnetic	T_{i}	internal temperature
	resonance	TIPS	triisopropylsilyl
p.	page	TLC	thin layer
PCC	pyridinium		chromatography
	chlorochromate	TMS	trimethylsilyl
PDC	pyridinium	TMSEt	2-(trimethylsilyl)ethyl
	dichromate	TPAP	tetrapropylammonium
Ph	phenyl		perruthenate
PMB or		Tr	triphenylmethyl, trityl
MPM	<i>p</i> -methoxybenzyl	Ts	<i>p</i> -toluenesulfonyl
PMBOM	<i>p</i> -methoxy		
	benzyloxymethyl		

Contents

1.	Chr	omium-Based Reagents	1
		Introduction	
		1.1.1. Jones Reagent	1
		1.1.2. Sarett and Collins Reagents	2
		1.1.3. Pyridinium Dichromate (PDC)	
		1.1.4. Pyridinium Chlorochromate (PCC)	4
		1.1.5. Election of Oxidant	
		Section 1.1. References	5
	1.2.	Jones Oxidation	5
		1.2.1. General Procedure for Transformation of Alcohols	
		to Ketones by Jones Oxidation	6
		1.2.2. Protecting Group Sensitivity to Jones Oxidation	8
		1.2.3. Functional Group Sensitivity to Jones Oxidation	
		1.2.4. In situ Deprotection and Oxidation of	
		Alcohols to Ketones	1
		1.2.5. Obtention of Aldehydes by Jones Oxidation	2
		1.2.6. Side Reactions	
		Section 1.2. References	17
	1.3.	Collins Oxidation	20
		1.3.1. General Procedure for Oxidation of Alcohols	
		to Aldehydes and Ketones by Collins Oxidation 2	21
		1.3.2. Functional Group and Protecting Group Sensitivity	
		to Collins Oxidation	24
		1.3.3. Side Reactions	25
		Section 1.3. References	27
	1.4.	Pyridinium Dichromate (PDC)	28
		1.4.1. General Procedure for Oxidation of Alcohols	
		to Aldehydes and Ketones with Pyridinium	
		Dichromate (PDC)	30
		1.4.2. Functional Group and Protecting Group Sensitivity	
			33

xiv Contents

	1.4.3. Side Reactions	38
	Section 1.4. References	43
1.5.	Pyridinium Chlorochromate (PCC)	46
	1.5.1. General Procedure for Oxidation of Alcohols	
	to Aldehydes and Ketones with Pyridinium	
	Chlorochromate (PCC)	50
	1.5.2. Functional Group and Protecting Group Sensitivity	
	to Oxidation with PCC	52
	1.5.2.1. Protecting Groups	52
	1.5.2.2. Alkenes	53
	1.5.2.3. Furan Rings	55
	1.5.2.4. Tertiary Allylic Alcohols	55
	1.5.2.5. Secondary Allylic Alcohols	57
	1.5.2.6. Homoallylic Alcohols	58
	1.5.2.7. 5,6-Dihydroxyalkenes	59
	1.5.2.8. 5-Hydroxyalkenes	
	1.5.2.9. Epoxides	62
	1.5.2.10. Lactols	64
	1.5.2.11. Acetals	64
	1.5.2.12. 1,2-Diols	65
	1.5.2.13. 1,4-Diols	65
	1.5.2.14. 1,5-Diols	66
	1.5.2.15. Nitrogen-Containing Compounds	67
	1.5.2.16. Sulfides	68
	1.5.3. Side Reactions	68
	1.5.3.1. Oxidative Breakage of a Carbon-Carbon Bond	
	from an Intermediate Chromate Ester	68
	1.5.3.2. Formation of Conjugated Enones (or Enals)	
	by Eliminations Subsequent to Alcohol	
	Oxidation	70
	1.5.3.3. Chromate as Leaving-Group and Reactions	
	Induced by the Acidic Nature of PCC	72
	1.5.3.4. Oxidative Dimerization of Primary Alcohols	74
	1.5.3.5. Oxidation Products Suffering Subsequent	
	Reactions in Which PCC Plays no Role	75
	1.5.3.6. Side Reactions in Which Several of the	
	Above Principles Operate	76
	Section 1.5. References	77
1.6.	Other Chromium-Based Oxidants	83
	1.6.1. Chromic Acid	83
	1.6.2. Chromium Trioxide and Pyridine	86

Contents xv

		1.6.3. Dichromate Salts	86
		1.6.4. Halochromate Salts	87
		1.6.5. Oxidations Using Catalytic Chromium Compounds	89
		1.6.6. Miscellanea	91
		Section 1.6. References	92
2.	Acti	ivated Dimethyl Sulfoxide	97
		Introduction	
		2.1.1. A Proposal for Nomenclature of Reactions Involving	
		Activated DMSO	99
		Section 2.1. References	100
	2.2.	Pfitzner-Moffatt Oxidation (Carbodiimide-Mediated Moffatt	
		· · · · · · · · · · · · · · · · · · ·	100
		2.2.1. General Procedure for Oxidation of Alcohols by	
		Pfitzner–Moffatt Method	103
		2.2.2. Functional Group and Protecting Group Sensitivity	
			106
		2.2.3. Side Reactions	110
		Section 2.2. References	111
	2.3.	Albright-Goldman Oxidation (Acetic Anhydride-Mediated	
			113
		2.3.1. General Procedure for Oxidation of Alcohols by	
		Albright-Goldman Method	115
		2.3.2. Functional Group and Protecting Group Sensitivity	
			117
		2.3.3. Side Reactions	117
		Section 2.3. References	118
	2.4.	Albright-Onodera Oxidation (Phosphorous	
		Pentoxide-Mediated Moffatt Oxidation)	118
		2.4.1. General Procedure Albright–Onodera Oxidation	
		using the Taber Modification	119
		2.4.2. Functional Group and Protecting Group Sensitivity	
		to Albright-Onodera Oxidation	120
			120
	2.5.	Parikh-Doering Oxidation (Sulfur Trioxide-Mediated Moffatt	
		Oxidation)	120
		2.5.1. General Procedure for Parikh–Doering Oxidation	122
		2.5.2. Functional Group and Protecting Group Sensitivity to	
			125
			125
		Section 2.5. References	126
	2.6.	Omura-Sharma-Swern Oxidation (TFAA-Mediated Moffatt	
		Oxidation)	128

xvi Contents

		2.6.1. General Procedure (Procedure A) for Oxidation of	
		Alcohols with Omura-Sharma-Swern Method 13	33
		2.6.2. Functional Group and Protecting Group Sensitivity	
		to Omura–Sharma–Swern Oxidation	35
		2.6.3. Side Reactions	36
		Section 2.6. References	39
	2.7.	Swern Oxidation (Oxalyl Chloride-Mediated Moffatt	
		Oxidation) 14	11
		2.7.1. General Procedure for Oxidation of Alcohols	
		using Swern Oxidation	19
		2.7.2. Functional Group and Protecting Group Sensitivity to	
		Swern Oxidation	52
		2.7.3. Reactions Performed <i>in situ</i> after a Swern Oxidation 15	57
		2.7.4. Side Reactions	51
		2.7.4.1. Activated DMSO as a Source of Electrophilic	
		Chlorine 16	51
		2.7.4.2. Activated DMSO as a Source of Electrophilic	
		Sulfur 16	52
		2.7.4.3. Transformation of Alcohols into Chlorides 16	52
		2.7.4.4. Methylthiomethylation	54
		2.7.4.5. Base-induced Reactions	55
		2.7.4.6. Acid-induced Reactions	66
		2.7.4.7. Formation of Lactones from Diols 16	57
		Section 2.7. References	68
	2.8.	Corey–Kim Oxidation17	72
		2.8.1. General Procedure for Oxidation of Alcohols using	
		the Corey–Kim Method	74
		2.8.2. Functional Group and Protecting Group Sensitivity	
		to Corey–Kim Oxidations	76
		2.8.3. Side Reactions	76
		Section 2.8. References	76
	2.9.	Other Alcohol Oxidations Using Activated DMSO	17
		Section 2.9. References	
3.		rvalent Iodine Compounds 18	
	3.1.	Introduction	
		Section 3.1. References	
	3.2.	Dess–Martin Periodinane	32
		3.2.1. General Procedure for Oxidation of Alcohols using	
		Dess-Martin Periodinane	37
		3.2.2. Functional Group and Protecting Group Sensitivity to	
		Dess–Martin Oxidation	90

Contents	xvii
Contents	xvii

3.2.3. Reactions Performed in situ During a Dess-Martin	
Oxidation	
3.2.4. Side Reactions	
Section 3.2. References	
3.3. <i>o</i> -Iodoxybenzoic Acid (IBX)	. 202
3.3.1. General Procedure for Oxidation of Alcohols with IBX	. 205
3.3.2. Functional Group and Protecting Group Sensitivity to	
Oxidations with IBX	. 207
3.3.3. Reactions Performed in situ During Oxidation	
with IBX	
Section 3.3. References	
3.3.4. Side Reactions	. 211
3.4. Other Hypervalent Iodine Compounds Used for Oxidation	
of Alcohols	
Section 3.4. References	
4. Ruthenium-Based Oxidations	
4.1. Introduction	
4.1.1. Perruthenate and Ruthenate Ions	
4.1.2. Ruthenium Compounds in a Lower Oxidant State	. 217
Section 4.1. References	. 219
4.2. Ruthenium Tetroxide	. 220
4.2.1. General Procedure for Oxidation of Secondary	
Alcohols with Stoichiometric RuO ₄	. 222
4.2.2. General Procedure for Oxidation of Alcohols with	
Catalytic RuO ₄	. 224
4.2.3. Functional Group and Protecting Group Sensitivity to	
Ruthenium Tetroxide	. 225
Section 4.2. References	. 227
4.3. Tetra- <i>n</i> -Propylammonium Perruthenate (TPAP)	
(Ley Oxidation)	. 228
4.3.1. General Procedure for Oxidation of Alcohols	
with TPAP	. 231
4.3.2. Functional Group and Protecting Group Sensitivity to	
Oxidation with TPAP	. 232
4.3.3. Reactions Performed in situ During an Oxidation	
with TPAP	. 235
4.3.4. Side Reactions	. 236
Section 4.3. References	. 238
5. Oxidations Mediated by TEMPO and Related Stable Nitroxide	
Radicals (Anelli Oxidation)	. 241
5.1. Introduction	

xviii Contents

Section 5.1. References	
5.2. TEMPO-Mediated Oxida	tions
5.2.1. General Procedure	for Oxidation of Alcohols
with TEMPO-NaC	OCl (Anelli's Protocol) 246
	for Oxidation of Alcohols
with TEMPO-PhI(OAc) ₂ (Protocol of Piancatelli and
	247
5.2.3. Functional Group	and Protecting Group Sensitivity to
Oxidations Mediate	ed by TEMPO248
Section 5.2. References	
6. Oxidations by Hydride Transfe	er from a Metallic Alkoxide 255
Section 6.1. References	
6.2. Oppenauer Oxidation	
	litions 256
6.2.3. Oxidations Using S	Sodium or Potassium Alkoxides 260
6.2.4. Recent Developme	nts 262
	for Oppenauer Oxidation
	onditions
6.2.6. Functional Group	and Protecting Group Sensitivity to
	on
	ed <i>in situ</i> During an Oppenauer
Oxidation	
6.2.8. Side Reactions	
Section 6.2. References	
6.3. Mukaiyama Oxidation	
6.3.1. General Procedure	for Mukaiyama Oxidation 276
6.3.2. Functional Group	and Protecting Group Sensitivity
to Mukaiyama Oxi	dation
6.3.3. Side Reactions	
Section 6.3. References	
7. Fétizon's Reagent: Silver Carb	onate on Celite [®] 281
Section 7.1. References	
	zon's Reagent ⁹ 284
	for Oxidation of Alcohols with
•	and Protecting Group Sensitivity to
-	1 286

Contents	ΧİX

		7.2.4. Side Reactions	
		Section 7.2. References	87
8.		ctive Oxidations of Allylic and Benzylic Alcohols in the	
		ence of Saturated Alcohols	
	8.1.	Introduction	
		Section 8.1. References	
	8.2.	Manganese Dioxide (MnO ₂)	90
		8.2.1. General Procedure for Selective Oxidation of	
		Allylic, Benzylic and Propargylic Alcohols	
		···	96
		8.2.2. Functional Group and Protecting Group Sensitivity to	
		Oxidation with MnO ₂	97
		8.2.3. Reactions Performed in situ During Oxidations	
		with MnO ₂	01
		8.2.4. Side Reactions	06
		8.2.5. Barium Manganate: More Reactive and	
		Reproducible Alternative to Active MnO ₂	09
		8.2.6. General Procedure for Selective Oxidation of	
		Allylic, Benzylic and Propargylic Alcohols in	
		Presence of Saturated Alcohols, using	
		Barium Manganate (BaMnO ₄)	11
		Section 8.2. References	11
	8.3.	2,3-Dichloro- 5,6-dicyano-p-quinone (DDQ)	
		8.3.1. General Procedure for Selective Oxidation of	
		Unsaturated Alcohols in Presence of Saturated	
		Ones using DDQ	21
		8.3.2. Functional Group and Protecting Group Sensitivity to	
			23
			25
		Section 8.3. References	26
	8.4.	Other Oxidants	28
		Section 8.4. References	
9.	Sele	ctive Oxidations of Primary Alcohols in the Presence of	
			31
		Introduction	31
		Section 9.1. References	32
	9.2.	TEMPO-Mediated Oxidations	
		Section 9.2. References	
	9.3.	$RuCl_2(PPh_3)_3$	
	•	9.3.1. General Procedure for Selective Oxidation of	
		Primary Alcohols in Presence of Secondary	
		Ones Employing RuCl ₂ (PPh ₃) ₃	35
		5 m p 10 j m g 1 t w 1 2 (1 1 1 1 3) 3	

xx Contents

	Section 9.3. References	336
	9.4. Other Oxidants	336
	Section 9.4. References	337
	9.5. Selective Oxidation of Primary Alcohols via Silyl Ethers	337
	Section 9.5. References	337
10.	Selective Oxidations of Secondary Alcohols in Presence of	
	Primary Alcohols	339
	10.1. Introduction	339
	Section 10.1. References	340
	10.2. Reaction with Electrophilic Halogen Sources	340
	10.2.1. General Procedure for Selective Oxidation	
	of Secondary Alcohols in Presence of Primary Ones,	
	using Steven's Protocol (Sodium Hypochlorite	
	in Acetic Acid)	341
	Section 10.2. References	342
	10.3. Oxidation of Intermediate Alkyltin Alkoxides	343
	10.3.1. General Procedure for Selective Oxidation of	
	Secondary Alcohols in Presence of Primary	
	Ones by Treatment of Intermediate Tin Alboxides	
	with Bromine or <i>N</i> –Bromosuccinimide	344
	Section 10.3. References	345
	10.4. Other Oxidants	346
	Section 10.4. References	347
	10.5. Selective Oxidations of Secondary Alcohols via Protection	
	of Primary Alcohols	348
	Section 10.5. References	349

Chromium-based Reagents

1.1. Introduction

Chromium trioxide (CrO₃) is a strong oxidizing agent that appears in the form of deep-red hygroscopic crystals. Upon solution in water, it forms chromic acid that equilibrates with polymeric anhydrides.¹

1.1.1. Jones Reagent

Although CrO₃ is soluble in some organic solvents, like *tert*-butyl alcohol, pyridine or acetic anhydride, its use in such solvents is limited, because of the tendency of the resulting solutions to explode.^{2,3} Nevertheless, acetone can safely be mixed with a solution of chromium trioxide in diluted aqueous sulfuric acid. This useful property prompted the development of the so-called *Jones oxidation*, in which a solution of chromium trioxide in diluted sulfuric acid is dropped on a solution of an organic compound in acetone. This reaction, first described by Jones,¹³ has become one of the most employed procedures for the oxidation of alcohols, and represents a seminal contribution that prompted the development of other chromium (VI) oxidants in organic synthesis.

The mechanism of the oxidation of alcohols with Jones reagent is often depicted as given below.⁴

2 1.1. Introduction

The alcohol (1) is transformed into a chromic acid ester (2), which evolves to an aldehyde or a ketone (3). When an aldehyde is generated, it can react with water to form the hydrate (4) that can evolve as in Equation below,⁵ resulting in the formation of an acid (5).

$$\begin{array}{c} O \\ H_2O \\ R \end{array} \begin{array}{c} OH \\ -C - OH \\ H \end{array} \begin{array}{c} OH \\ -C - OH \\ H \end{array} \begin{array}{c} OH \\ -C - OH \\ -C - OH \end{array} \begin{array}{c} Rate \\ Imitting \\ -C - OH \\ -C - OH \end{array} \begin{array}{c} OH \\ -C - OH \\ -C - OH \end{array}$$

Other chromium-based reagents are also found to oxidize alcohols, following a mechanism like the one depicted above for oxidation with chromic acid.⁴

An interesting consequence of the fast formation of the chromic ester is that, sometimes, chromium-based oxidants counter-intuitively are able to oxidize quicker alcohols possessing a greater steric hindrance, as the initially formed chromic ester releases greater tension on evolving to a carbonyl. Thus, axial alcohols are oxidized quicker than equatorial ones with chromic acid.⁶ The reverse—a somehow expected behavior—is observed, for example in oxidations with activated DMSO.⁷

Although Jones oxidation is very useful for the transformation of secondary alcohols into ketones, it can be difficult to stop the oxidation of primary alcohols at the intermediate aldehyde stage.

Useful yields of aldehydes can be obtained when the proportion of hydrate in equilibrium with the aldehyde is low (see page 12).

1.1.2. Sarett and Collins Reagents

Chromium trioxide reacts with pyridine in a highly exothermic reaction, resulting in the formation of the complex $CrO_3 \cdot 2Py$, which is soluble in organic solvents. A solution of this complex in pyridine is called *Sarett*

Chapter 1 3

reagent.² This reagent is very efficient, not only in the oxidation of secondary alcohols to ketones, but—for its lack of water—also in the oxidation of primary alcohols to aldehydes. A useful modification of the Sarett reagent involves the use of CrO₃ · 2Py dissolved in methylene chloride, forming the so-called *Collins reagent*.⁸ This reagent has a number of advantages over Sarett reagent, including the use of a solvent—methylene chloride—that is not as basic as pyridine.

Both, the preparation of Sarett reagent and Collins reagent can be quite dangerous. For instance, during the generation of the $CrO_3 \cdot 2Py$ complex, chromium trioxide must be added over pyridine, as doing an inverse addition leads to an explosion. The $CrO_3 \cdot 2Py$ complex is highly hygroscopic, and can explode in the presence of organic matter. This prompted the development of the Ratcliffe variant of the Collins reaction, in which the $CrO_3 \cdot 2Py$ complex is formed in situ in methylene chloride solution, by adding chromium trioxide to a stirred solution of pyridine in methylene chloride. As this variant of the Collins reaction is much safer and convenient than both Sarett reaction and the classic Collins reaction, nowadays it is almost the only one employed in organic synthesis when $CrO_3 \cdot 2Py$ is used.

Chromium trioxide derivatives are very strong oxidizing agents that have the potential to explode in the presence of organic matter. Therefore, we suggest that no substantial changes over the standard oxidation procedures are tested during research. It is particularly dangerous to test non-standard solvents or higher temperatures than recommended. Chromium-based oxidations are mainly done in methylene chloride, which is a solvent very refractory to ignition.

1.1.3. Pvridinium Dichromate (PDC)

When pyridine is added to a solution of chromium trioxide in water, it is possible to obtain a precipitate of the pyridinium salt of dichromic acid, that is pyridinium dichromate (PDC).¹¹

Pyridinium dichromate

4 1.1. Introduction

This oxidant is a bright-orange solid that is soluble in organic solvents, and very convenient to store and manipulate, because of its lack of hydrophilicity. Pyridinium dichromate (PDC), which is normally used in dichloromethane at room temperature, is a very efficient oxidant able to transform alcohols in aldehydes and ketones in high yield. The absence of water in the reaction media prevents the over-oxidation of aldehydes into carboxylic acids.

1.1.4. Pyridinium Chlorochromate (PCC)

The interaction of CrO₃ with hydrochloric acid, in the presence of water, results in an equilibrium, in which chlorocromic acid is present. Addition of pyridine results in the formation of a precipitate of the pyridinium salt of chlorocromic acid, the so-called pyridinium chlorochromate (PCC).¹²

$$\begin{array}{c}
O \\
\parallel \\
O \\
\end{array}$$

$$\begin{array}{c}
C \\
C \\
\end{array}$$

$$\begin{array}{c}
O \\
\end{array}$$

This reagent is a yellow-orange solid, which shares many properties with PDC. Thus, non-hygroscopic PCC is very convenient to store, and is able to transform alcohols into aldehydes and ketones in high yield when it is used in dichloromethane solution at room temperature.

1.1.5. Election of Oxidant

The following guidelines can help in the election of a certain chromium-based oxidant in the laboratory:

- Jones oxidation is very easy to carry out, because of the absence of need to keep anhydrous conditions. Furthermore, it is very cheap. It is the oxidation of choice for robust substrates on a big scale. It is neither suitable for very acid sensitive substrates, nor for the preparation of many aldehydes.
- Collins oxidation is very cheap, but has the added experimental difficulty of having to work under anhydrous conditions. Although sometimes it lacks the selectivity of PDC or PCC, it can produce very good yields of aldehydes and ketones in uncomplicated substrates.
- PDC and PCC are more expensive reagents that normally guarantee the best results in difficult cases.

Chapter 1 5

Section 1.1. References

1 Bosche, H. G. in Houben-Weyl, *Methoden der organischen Chemie*. 4th ed.; E. Müller, Ed., Vol. 4/1b, Georg Thieme Verlag, Stuttgart, 1975, p. 429.

- 2 Poos, G. I.; Arth, G. E.; Beyler, R. E.; Sarett, L. H.; J. Am. Chem. Soc. 1953, 75, 422.
- 3 Zibuck, R.; Streiber, J.; Org. Synt. Coll. Vol. IX 1998, 432.
- 4 a) Lanes, R. M.; Lee, D. G.; *J. Chem. Ed.* **1968**, *45*, 269. b) Westheimer, F. H.; Nicolaides, N.; *J. Am. Chem. Soc.* **1949**, *71*, 25.
- 5 Roček, J.; Ng, C.-S.; J. Org. Chem. 1973, 38, 3348.
- 6 Schreiber, J.; Eschenmoser, A.; Helv. Chim. Acta 1955, 38, 1529.
- 7 Albright, J. D.; Goldman, L., J. Am. Chem. soc. 1967, 89, 2416.
- 8 Collins, J. C.; Hess, W. W.; Frank, F. J.; Tetrahedron Lett. 1968, 3363.
- 9 Collins, J. C.; Hess, W. W.; Org. Synt. Coll. Vol. VI 1988, 644.
- 10 Ratcliffe, R.; Rodehorst, R.; J. Org. Chem. 1970, 35, 4000.
- 11 Hudlický, M. Oxidations in Organic Chemistry; ACS: Washington, DC, 1990, p. 25.
- 12 a) Corey, E. J.; Suggs, J. W.; *Tetrahedron Lett.* 1975, 2647. b) Piancatelli, G.; Scettri, A.; D'Auria, M.; *Synthesis* 1982, 245.
- 13 Bowden, K.; Heilbron, I. M.; Jones, E. R. H.; Weedon, B. C. L.; J. Chem. Soc. 1946, 39.

1.2. Jones Oxidation

Chromium trioxide is a strong oxidizing agent, and its use in organic synthesis had to overcome two problems:

- Its lack of solubility in most organic solvents,
- Its tendency to explode in the presence of organic matter.

In 1946, Jones discovered that secondary alcohols could be efficiently oxidized to ketones by pouring a solution of chromium trioxide in diluted sulfuric acid over a solution of the alcohol in acetone. ¹³ This procedure, which has proved to be quite safe, allows a sufficient contact of the alcohol with chromium oxide derivatives for a reaction to take place. Jones oxidation marked the beginning of the highly successful saga of chromium-based oxidants.

The action of sulfuric acid on chromium trioxide results in a number of equilibria, in which the major specie is chromic acid (see page 1). Thus, Jones conditions are often referred as "chromic acid" in acetone.

It is also possible to prepare a "chromic acid" solution by treating sodium dichromate ($Na_2Cr_2O_7$) or potassium dichromate ($K_2Cr_2O_7$) with sulfuric acid. Consequently, sodium¹⁴ and potassium¹⁵ dichromate can be used, instead of chromium trioxide, in Jones oxidations.

Jones oxidation is carried out under very convenient experimental conditions with no need to employ a dry environment or an inert atmosphere. It is very useful for the oxidation of secondary alcohols, while it rarely succeeds in the transformation of primary alcohols into aldehydes due to its tendency to cause over-oxidation to carboxylic acids (see page 2).

One obvious limitation of Jones oxidation is the use of acidic conditions that may cause interference with acid-sensitive functional groups. It must be mentioned that, due to the presence of separated organic and aqueous phases, containing respectively the organic substrate and sulphuric acid, such interferences are much less common than expected, and many protecting groups that can be deprotected using acid survive Jones oxidation. The concentration of sulfuric acid can be decreased in order to minimize interferences with acid-sensitive functionalities, although this causes a decrease on the oxidizing power of Jones reagent. ¹⁶

1.2.1. General Procedure for Transformation of Alcohols to Ketones by Jones Oxidation

A 0.15–0.40 volume^a of concentrated sulfuric acid is added over one volume of a 1.5–4.5 M (150–450 g/L) solution of CrO₃ (MW= 100.0) in water. A fraction of the resulting red solution is dropped over a 0.01–0.5 M stirred solution of the alcohol in acetone.^b The alcohol causes the reduction of the red Cr (VI) cations to chromium species with a greenish look. A complete oxidation of the alcohol in a short time requires normally between 1.2 and 5.0 equivalents of chromium trioxide. When a TLC analysis shows that most alcohol is consumed,^{c, d} the oxidant is quenched by the addition of 0.1–0.4 volumes of 2-propanol.^e If so desired, the reaction mixture can be neutralized by the addition of saturated aqueous NaHCO₃ or diluted NaOH. The resulting mixture is extracted with an organic solvent, such as EtOAc, CH₂Cl₂ or Et₂O. The collected organic solutions are washed with brine, dried (Na₂SO₄ or MgSO₄) and concentrated, giving a crude ketone that may need some purification.

- ^a The use of a more limited quantity of sulfuric acid helps to avoid interferences with acid-sensitive functional groups. On the other hand, this causes a decrease in the oxidizing power of Jones reagent.¹⁶
- The solution of the alcohol in acetone can be kept either over an ice-water bath or at room temperature during all the reaction. It is also possible to keep the reaction mixture over an ice-water bath during the addition of the chromic acid solution when the major exotherm is expected, and let it reach room temperature afterwards. For reactions on a multigram scale, cooling on an ice-water bath is particularly recommended. During the oxidation of very sensitive substrates, it may be advisable to perform the entire oxidation at a temperature as low as -20° C.
- ^c The consumption of the alcohol can be signaled by the persistence of the red color of the chromium acid solution, which is being dropped into the reaction flask. As the red color of the solution being added is mixed with the green color of the reduced chromium species already present in the reaction flask, it may take some practice to appreciate the color changes. A sheet of white paper, placed bellow a reaction flask made of glass, substantially helps to distinguish these color changes.
- ^d It normally takes between 10 min and 12 h.
- ^e Other alcohols, such as MeOH, can also be used. A conspicuous change to deep green color indicates the complete quenching of the chromium (VI) species.

Chapter 1 7

Some successful oxidations of secondary alcohols to ketones, using Jones reagent, are listed bellow:

OH O OEt
$$\frac{1.5 \text{ eq. CrO}_3, \text{ H}_2\text{SO}_4, \text{H}_2\text{O}}{\text{acetone, 0}^\circ\text{C} \longrightarrow \text{r.t.}} \text{OEt}$$

$$10\text{-}20 \text{ h}$$

$$52\%$$

Ref. 3

A detailed description for a multigram scale preparation of an unstable ketone is provided.

Ref. 17

The internal and the isopropyliden acetals withstand the acidic conditions.

Ref. 18

Both, the very acid-sensitive t-butyl ester and the Boc group resist the acidic conditions.

Ref. 19

The simultaneous oxidation of an allylic alcohol, a lactol and an aldehyde is observed.

Ref. 20

The oxidation-sensitive primary and secondary amines remain unaffected, probably due to protonation under the acidic conditions.

Ref. 21

This very difficult oxidation succeded with Jones reagent at very low temperature, while it failed using Swern, Collins, MnO₂, TEMPO, PCC and Dess-Martin conditions. One of the resulting ketones tautomerizes to a very oxidation-sensitive enol.

1.2.2. Protecting Group Sensitivity to Jones Oxidation

Although Jones oxidation is carried out in the presence of aqueous sulfuric acid, functionalities with a high sensitivity to acidic conditions can remain unchanged due to the segregation between the organic and aqueous phases.

Only very acid-sensitive protecting groups are hydrolyzed under the conditions of the Jones oxidation. When free alcohols result from the hydrolysis of very acid-sensitive protecting groups, they are *in situ* oxidized to ketones or carboxylic acids.

It must be mentioned that diverse acid strengths, temperatures and reaction times are used in Jones oxidation, which leads to uneven responses of the same protecting groups.

Most silyl ethers, including the ubiquitous TBS ethers,²² resist Jones oxidation, with the exception of the very acid-sensitive TMS ethers.²³

Anomalous cases are known in which the normally robust TBS ethers are hydrolyzed.²⁴ Contrastingly, rare instances have been published in which the sensitive TMS ethers remain unchanged²⁵ under Jones oxdation.

Alkoxyalkyl protected alcohols remain unchanged under Jones oxidation, except those protected with the very acid-sensitive THP group. ^{26,27b}

Nevertheless, THP ethers can remain untouched in some cases,²⁷ while MOM ethers normally resist Jones oxidation²⁸, and they can be deprotected in some uncommon instances.²⁹

Chapter 1 9

Protecting group		Reactivity
Silyl ethers	Remain unchanged: TMS, ^{25,35} TBS, ²² TIPS, ³⁶ TBDPS ^{37,23b}	Hydrolysis followed by oxidation to acid
ROCH-		or ketone: TMS, ²³ TBS ²⁴
R'	Remain unchanged: MOM, ²⁸ MEM, ³⁸ BOM, ³⁹ PMBOM, ^{36b} THP ²⁷	Hydrolysis followed by oxidation to acid or ketone: THP ^{26,27b}
Alkyl ethers	Remain unchanged: PMB, ³⁰ ^t Bu ³¹	Hydrolysis followed by oxidation to acid or ketone: Ph ₃ C-, ³² p-MeOPh(Ph) ₂ C- ³³
Esters	Remain unchanged	_
Alkylidene protecting diols	Remain unchanged: isopropylidene, ⁴⁰ benzylidene, ⁴¹ cyclohexylidene ⁴²	_

Table 1.1. Sensitivity of Alcohol Protecting Groups to Jones Oxidation

Benzyl, PMB³⁰ and t-butyl ethers are not affected, ³¹ while the very acid sensitive trityl and p-MeOPh(Ph)₂C-ethers are hydrolyzed, and the resulting primary alcohols are oxidized to carboxylic acids. ^{32,33}

In fact, it has been reported³⁴ that benzyl ethers can react with Jones reagent, resulting in the formation of ketones and benzoates. This happens under relatively harsh conditions, and normally no interference from benzyl ethers is observed during the oxidation of alcohols with Jones reagent.

Alcohols protected as esters, and diols protected as cyclic acetals resist Jones oxidation.

It is important to stress that, although MOM, TMS and THP ethers can be hydrolyzed under Jones oxidation, many cases are known in which this does not happen (Table 1.1.).

Depending on substrate and exact reaction conditions, acetals protecting both aldehydes and ketones can resist or be hydrolyzed under Jones oxidation. When the hydrolysis leads to the formation of an aldehyde, an ensuing oxidation to carboxylic acid occurs (Table 1.2.).

Regarding amine protecting groups, both amides and uretanes⁴⁹ resist the action of Jones oxidation, including the very acid-sensitive Boc protecting group.^{18,47,49}

1.2.3. Functional Group Sensitivity to Jones Oxidation

Aldehydes are oxidized to carboxylic acids by Jones oxidation; although, in certain cases, the oxidation of primary alcohols can be stopped at the aldehyde stage (see page 12).

Protecting group		Reactivity
Aliphatic acetals Cyclic acetals	Remain unchanged: dimethyl acetal ⁴³ Remain unchanged: ethylidene acetal ⁴⁵ 2,2-dimethylpropylidene acetal ^{45c,46}	Hydrolysis: dimethyl acetal ⁴⁴ Hydrolysis followed by oxidation to acid, or deprotection to ketone: ethylidene acetal ⁴⁷ propylidene acetal ⁴⁸

Table 1.2. Sensitivity of Carbonyl Protecting Groups to Jones Oxidation

Lactols are oxidized to lactones. Depending on substrate and the precise reaction conditions, sulfides can remain unchanged⁵¹ or be transformed into sulfoxides⁵² or sulfones.⁵³ *O*-Alkyl cyclic hemiacetals including glycosides, both can remain unchanged⁵⁴ or suffer oxidation to lactones.³⁵

Most epoxides resist Jones oxidation with the exception of the very acid-labile ones,⁵⁵ that is the ones able to generate a very stable carbocation on opening.

Amines, pyridines and esters resist Jones oxidation, including the very acid-sensitive *t*-butyl esters.⁵⁶ Amines and pyridines withstand Jones oxidation, probably because they are protected by protonation under the reaction conditions.

Normally, nitrocompounds resist⁵⁷ the action of Jones reagent. Very rarely, a nitrogroup can suffer activation on contact with Jones reagent, resulting, on being attacked by a nucleophile. This reaction can compete with the normal

Functional group		Reactivity
Aldehydes	_	Oxidation to acids; ⁵⁹ nevertheless, sometimes the oxidation of primary alcohols can be stopped at the aldehyde stage ^{60,61}
Lactols	_	Oxidation to lactones ^{19,62}
Sulfides	Remain unchanged ⁵⁶	Oxidation to sulfoxides ⁵² or sulfones ⁵³
OR	Remain unchanged ⁵⁴	Hydrolysis followed by oxidation to acid ⁶³ or lactone ³⁵
Epoxides	Remain unchanged with the exception of the most acid-sensitive ones ⁵⁵	_
Amines and pyridines	Remain unchanged ⁶⁴	_
Esters	Remain unchanged, including the very acid sensitive t-butyl esters ⁵⁶	_

Table 1.3. Sensitivity of Functional Groups to Jones Oxidation

Chapter 1 11

oxidation of the alcohol, only when the alcohol is hindered and the attack on the nitrogroup is favoured by some intramolecular process.⁵⁸

1.2.4. In situ Deprotection and Oxidation of Alcohols to Ketones

The sensitivity of some alcohol protecting groups to the acidic conditions of Jones oxidation allow the operation of one-pot reactions, in which deprotection of alcohols is followed by *in situ* oxidation to ketones. Some interesting synthetic applications of this principle are listed bellow:

The TBDPS ether remains unaffected, while the more acid-sensitive TMS ether is hydrolysed and the corresponding alcohol is oxidized to ketone.

The deprotection of the TBS ethers—with the corresponding oxidation to ketones or carboxylic acids—can be purposefully facilitated by the addition of some hydrofluoric acid^{65} or KF^{66} to the Jones reaction mixture.

The TBS group is removed with the assistance of potassium fluoride added to the Jones reagent. The resulting alcohol is oxidized to a ketone.

1.2.5. Obtention of Aldehydes by Jones Oxidation

Jones oxidation is generally not useful for the transformation of primary alcohols into aldehydes. This is due to the equilibrium of the aldehydes with the corresponding hydrates in the aqueous media, leading to the subsequent oxidation of the aldehyde hydrates into carboxylic acids. In fact, kinetic studies support the assumption that chromic acid oxidizes aldehydes into carboxylic acids via the corresponding aldehyde hydrates.⁵

Nevertheless, in those cases in which the proportion of hydrate in equilibrium with the aldehyde is low, it is possible to obtain a useful yield of aldehyde. ^{60,61} Electron donating groups, ^{68,69} conjugation with alkenes and aromatic rings⁵ and steric hindrance ⁶⁹ decrease the proportion of hydrates in equilibrium with aldehydes. This explains the fact that alcohols successfully transformed into aldehydes by Jones oxidation, normally belong to the allyl, ⁷⁰ benzyl⁷¹ or neopentyl kind. ⁷²

In simple molecules, it is possible to obtain a good yield of aldehyde—including examples possessing an important proportion of hydrate in equilibrium—by continuous distillation of the aldehyde from the reaction mixture.⁷³ This procedure only succeeds in the preparation of simple volatile aldehydes.

The obtention of aldehydes can be facilitated by the use of ethyl methyl ketone, ⁷⁴ instead of acetone, due to the lower polarity of the former, leading to a decreased concentration of aldehyde hydrate.

1.2.6. Side Reactions

Alcohols, possessing substituents able to stabilize carbocations at the β position, may suffer a carbon-carbon bond breakage as in Equation below (route **b**), competing with the normal transformation to ketones on Jones oxidation (route **a**). ⁷⁵

This explains the following side products from oxidation of alcohols with Jones reagent: