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Preface to the Third Edition

Since the second edition of this book there has been so much published in the fi eld that 

two points seemed clear. One was a sense that a new, up-to-date monograph was needed. 

The other was the reluctance of two or even three people to undertake the daunting task of 

covering all the ground. Our response was to call on others to help and, thus, to produce the 

present, multiauthored volume. Each of the contributing authors was in a position to write au-

thoritatively, from hands-on research experience. We are confi dent that this has led to a better 

book than the three of us would have produced. As always in a book where different chapters 

are written by different authors, there is some variation in style and we chose not to try to 

smooth it all out.

In every chapter the objective has been to be comprehensive, if not encyclopedic. Putting 

it a little differently, we, and the other authors, have aimed to mention all pertinent literature 

references, although the amount of emphasis accorded each paper necessarily varies.

Since the volume of literature to cover is now so large, a few topics that might have been 

included (or were in the second edition) have been omitted or are covered only in limited detail. 

Notable ones are the treatment of metal-metal bonding in edge-sharing and face-sharing bioc-

tahedra, and metal cluster compounds of rhenium. Also, the vast fi eld of catalysis by dirhodium 

compounds has been restricted to only the area of chiral catalysts.

The physical properties and bonding of many compounds are, in general, described in two 

places, to varying degrees. There are some specifi c reports regarding properties of compounds 

of certain metals in the fi rst fi fteen chapters. Comprehensive discussions (i. e., not element 

specifi c) are provided in Chapter 16.

To assist the user of this book a few comments about how it is organized and indexed are 

pertinent. Because of the element by element (or group of elements) organization, and the divi-

sion of each chapter into numerous sections and subsections, as well as the extensive tables of 

compounds, the table of contents plays the part of an index to a major extent. The index itself is 

thus limited to general topics and concepts that turn up often throughout the book. Individual 

compounds are, in most instances, not listed there.
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Many other people contributed to the production of this volume in addition to those who 

wrote chapters that were not written by the editors themselves. We are very grateful to these 

authors, but we are also much indebted to others. The word indispensable must be reserved for 

Mrs. Debbie Murillo. She created the book from the scattered and mangled fragments available 

after the tragic and utterly unexpected illness of Ms. Beverly Moore, who contributed much 

to preparing early drafts. For Debbie’s mastery of computerized book publishing as well as her 

selfl ess devotion to the task, we owe her a debt that cannot be fully repaid. We have also had 

major assistance from Dr. Xiaoping Wang and Mr. Dino Villagrán in preparing many of the 

illustrations, and we thank Mrs. Julie Zercher for efforts in searching computer fi les.

F. Albert Cotton
Texas A&M University

Carlos A. Murillo
Texas A&M University

Richard A. Walton
Purdue Universtiy
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Forward to the Second Edition
Jack Lewis

Cambridge University

The recognition of the multiple bond in [Re2Cl8]
2− by F. A. Cotton was a clear landmark 

in the development of inorganic transition metal chemistry.  Prior to 1960 the mere 

existence of metal–metal bonding had been under considerable debate.  The determination of 

the structures of Mn2(CO)10 and Re2(CO)10 by Dahl, Ishishi, and Rundle in 1957 established 

beyond any doubt that molecules occurred containing bonding between metal centres rather 

than metal interactions, possibly occurring via the agency of bridging groups as is Fe2(CO)9.

The presence of multiple bonding between metals was recognized, again by Cotton, in the 

trimeric ion [Re3Cl12]
3−.  However, as with the iron carbonyl Fe2(CO)9 the presence of bridging 

between the metals, in this instance by chloride atoms, left the alternative interpretation of the 

cause of diamagnetism in this molecule as arising via the bridging groups.  The determination 

of the structure of the [Re2Cl8]
2− ion established both the presence of an unsupported metal–

metal bond and a high multiple (quadruple) bond between the metal centres.  The trauma in 

the chemical community of exceeding a bond order of three, the limit of the bonding modes 

observed in the p block, and the unequivocal establishing of a multiple bond between transi-

tion metals, was great.  It was however considered by many to be an ‘anomaly’, a rare bonding 

mode.  The subsequent work of Cotton and co-workers has established that this molecule is 

in fact the progenitor of a vast new area of chemistry.  This book documents how progress was 

made in this fi eld.  The synthetic methods were developed in a logical manner and the whole 

force of both structural methods and theoretical interpretation of the bonding was applied to 

the problems in a masterly way.  It provides a prime example of the present day application 

of chemical methods in mapping this fi eld of chemistry that has now been uncovered, and in 

particular the importance of X-ray crystallography as a structural tool.

The appearance of the fi rst edition of this book in 1981 was heralded as the authoritative 

exposition of this area of chemistry and illustrated the vast amount of work and interest that 

had been generated during the initial twenty years of study.  The second edition, a decade 

later shows how the interest in this fi eld has been maintained and in certain aspects increased 

to incorporate the majority of the d-block elements.  The utility of multiple metal bonded 
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molecules in general synthetic chemistry is well illustrated and what had certainly appeared as 

an interesting but possibly unique molecule proved to be the genesis of a wide and fundamental 

area of chemistry.  Metal–metal bonding is now accepted as a major pattern in the transition 

metal complexes, particularly in low oxidation states.  The vast range of molecules containing 

multiple bonding between the metal centres is a refl ection of the signifi cant contribution to 

chemistry made by Cotton and his co-workers.

The authors are to be complimented on maintaining the standard they set in that fi rst edi-

tion, their insight into the fascinating study, and their lucid presentation.
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Preface to the Second Edition

By mid-1981, with the manuscript for the fi rst edition in the hands of the publishers, 

we had little inkling that the fi eld of multiple metal–metal bond chemistry would 

continue to grow at the same explosive rate as it had through much of the 1970s.  However, in 

the intervening 10 years, far more work has been published in the area than in all the period 

prior to 1981.  This spectacular growth of new advances in the fi eld, which continues to this 

day, along with the favorable response that the fi rst edition received, prompted us to embark 

on the preparation of a second edition of Multiple Bonds between Metal Atoms.  The present text 

is the result.

We have endeavored to include not only those topics that appeared in the fi rst edition, but 

all signifi cant advances that have been published since.  The coverage of the literature in the 

fi eld is complete up to December 1990, with most of the literature that appeared throughout 

1991, during the fi nal stages of manuscript preparation, also being cited.  Any omissions of 

work prior to the end of 1990 are inadvertent.  To bring the coverage, at least of the most 

important topics, as nearly up to date as possible, we have added a short additional chapter 

(Chapter 11) which includes literature from late 1991 and early 1992.

The dramatic increase in the literature in this fi eld has necessitated some compromise in 

the depth of coverage of certain topics in order to keep the text size within reasonable bounds.  

Also, certain topics have grown much more rapidly than others and are therefore afforded more 

detailed coverage than in the fi rst edition.  While there has been some signifi cant reshuffl ing in 

the organization, the text is generally along similar lines to those employed previously.  Chap-

ters 1-4 cover the same topics as those in the fi rst edition, although Chapter 2 now includes all 

types of multiply bonded dirhenium and ditechnetium compounds, instead of just those that 

contain quadruple bonds.  Triply-bonded dimolybdenum(III) and ditungsten(III) compounds 

of the type L3MML3 constitute such an important and extensive area of chemistry that they are 

now afforded coverage in a separate chapter (Chapter 5). There has also been such a dramatic 

growth in the chemistry of multiply bonded dimetal compounds of the platinum metals, and 

many of their closely allied singly-bonded analogs, that separate chapters are now devoted to the 

chemistry of diruthenium and diosmium compounds (Chapter 6), singly-bonded dirhodium (II) 
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compounds (Chapter 7), and compounds of the other platinum metals, especially those of 

diplatinum(III) (Chapter 8).  There are many other classes of multiply bonded compounds that 

bear an important and, in some cases, close relationship to those of the types L3MML3, L4MML4,

and L5MML5 which are the principal focus of this text.  These comprise the following: higher 

nuclearity clusters (trinuclear, tetranuclear, hexanuclear, and octanuclear); various organome-

tallics, such as the mixed cyclopentadienylcarbonyl compounds ( 5-C5R5)2M2(CO)n (e.g., ( 5-

C5Me5)2Mo2(CO)4); edge-sharing and face-sharing bioctahedra; simple diatomic molecules.  All 

are discussed together in Chapter 9.  Finally, Chapter 10, which contains the most important 

physical, spectroscopic, and theoretical results that have been obtained on compounds dis-

cussed in earlier chapters, follows closely the format of Chapter 8 in the fi rst edition, except for 

the omission of diatomic molecules now covered in Chapter 9.

As before, we appreciate the invaluable assistance of our many friends and colleagues who 

have continued to ply us with preprints and other interesting tidbits of information on un-

published results.  These insights have helped us greatly throughout the preparation of this 

manuscript.  In this regard, a particular word of thanks is due to our good friend Professor 

Malcolm H. Chisholm.  One of us (R. A. W.) is most grateful to Keng-Yu (Ivan) Shih for his 

critical reading of several chapters.  Once again, we are particularly grateful for the wonderful 

secretarial assistance of Mrs Rita Biederstedt and Mrs Irene Casimiro who have patiently helped 

us overcome many obstacles in the preparation of both editions of this text.  This edition is 

dedicated to both of them, with our profound thanks for their help in this and many other of 

our scientifi c endeavours.

F. Albert Cotton,
College Station, Texas 

Richard A. Walton
West Lafayette, Indiana

March 1992
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Forward to the First Edition
Roald Hoffmann
Cornell University

Our central science progresses, but often by uncoordinated steps.  Experiments are done 

here, perceived as important there, fruitfully extended elsewhere.  There are satisfac-

tions, to be sure, in the interactive, perforce international nature of modern chemistry.  Yet 

most advances at the frontiers of our lively discipline seem small in scope, chaotic.

Occasionally does one encounter a large chunk of chemistry that is the coherent outcome of 

the work of one group.  Initial observations evolve into an idea.  This idea leads to the synthesis 

of novel molecules or new measurements and to the recognition of an entirely new structural 

type or a different mechanism.  The new fi eld expands, seemingly without limit.  All this takes 

time, for the minds and hands of men and women must be engaged in the effort.  The careful 

observer of the chemical scene seeks out such rare achievements.  For when the tangled web 

of our experience is so transformed, by one person, into symmetries of pristine order and the 

chemical equivalent of the rich diversity of pattern of an oriental carpet—it is then that one 

encounters a moment of intellectual pleasure that really makes one feel good about being a 

chemist.

Such a story is that of metal–metal multiple bonding.  A recognition of the structural and 

theoretical signifi cance of the Re–Re quadruple bond by F. A. Cotton in 1964 was followed by 

a systemic and rational exploration of metal–metal bonding across the transition series.  Cotton 

and his able co-workers have made most such complexes.  The consistent and profi cient use of 

X-ray crystallography results in their studies, not only for structure determination but as an 

inspiration to further synthetic chemistry, has served as a model for modern inorganic research.  

Much of the chemistry of metal–metal multiple-bonded species—and interesting chemistry 

it is indeed—is due to F. A. Cotton and his students.  Throughout this intellectual journey 

into fresh chemistry they have been guided by a lucid theoretical framework.  Their bounteous 

achievement is detailed in this book.  I want to record here my personal thanks to them for 

providing us with the psychological satisfaction of viewing a scientifi c masterpiece.
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Preface to the First Edition

The renaissance of inorganic chemistry that began in the 1950s has been propelled by 

the discovery of new and important classes of inorganic molecules, many of which do 

not conform to classical bonding theories. Among these landmark discoveries has been the 

isolation and structural characterization of transition metal compounds that possess multiple 

metal-metal bonds. From the seminal discoveries in this area in the early 1960s has developed 

a complex and fascinating chemistry. This chemistry is simultaneously different from but very 

relevant to the classical chemistry of the majority of the transition elements. Since the synthetic 

methodologies, reaction chemistries, and bonding theories are now remarkably well under-

stood, we felt the topic had reached a level of maturity suffi cient to justify a comprehensive 

treatise.

The content of this book encompasses all the classes of compounds currently known to 

possess, or suspected of possessing, metal-metal bonds of order two or greater, as well as some 

compounds with single bonds that have a close formal relationship to the multiple bonds. 

Synthetic procedures, reaction chemistries, spectroscopic properties, and bonding theories 

are discussed in detail for these molecules, and, in addition, we have attempted to place in 

historical perspective the most important discoveries in this fi eld. Since both of us have worked 

in this fi eld for many years, much of our discussion inevitably takes on a rather personal fl avor, 

particularly in our treatment of the circumstances surrounding many of the major advances. 

We have endeavored to cover all the pertinent literature that was in our hands by the end of 

December 1980. When possible, we have also referred to those key developments that may 

have emerged during the early part of 1981, while the manuscript was in press.

Throughout the preparation of the manuscript we were fortunate to have the assistance of 

many friends and colleagues who not only provided us with valuable information on unpub-

lished results, but on occasion critically read various sections of the text and otherwise helped us 

surmount minor hurdles. We especially appreciate the assistance of Professors M. H. Chisholm, 

D. A. Davenport, F. G. A. Stone, O. Glemser, and B. E. Bursten. We also thank the various 

authors and editors who kindly gave us permission to reproduce diagrams from their papers; the 

appropriate numbered reference is given in the captions to those fi gures that were reproduced 
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directly from the literature or were modifi ed so slightly as to retain an essential similarity to 

those in the original publications. Finally, we appreciate the expert patient secretarial assistance 

of Mrs Rita Biederstedt and Mrs Irene Casimiro in the preparation of the manuscript.

F. Albert Cotton
College Station, Texas

Richard A. Walton
West Lafayette, Indiana

June 1981
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1.1 Prolog

1.1.1 From Werner to the new transition metal chemistry

From the time of Alfred Werner (c. 1900) until the early 1960s, the chemistry of the transi-
tion metals was based entirely on the conceptual framework established by Alfred Werner.1 This 
Wernerian scheme has as its essential feature the concept of a single metal ion surrounded by a 
set of ligands. It focuses attention on the characteristics of the individual metal ion, the interac-
tion of the metal ion with the ligand set, and the geometrical and chemical characteristics of 
this ligand set. It is true that following Werner there was an enormous development and refi ne-
ment of his central concept. Progress occurred notably in the following areas: metal carbonyls 
and other compounds where the metal ‘ion’ is formally not an ion; sophisticated analysis of the 
electronic structures of complexes; understanding of the thermodynamics and kinetics pertain-
ing to the stabilities and transformations of complexes; structural studies that vastly increase 
the range of geometries now deemed important (i.e. coordination numbers of fi ve and those 
greater than six); an appreciation of the role of metal ions in biological systems; recognition that 
ligands, especially organic ones, are not passive but that their behavior is often greatly modifi ed 
by being attached to a metal atom, in some cases allowing metal atoms to act catalytically.

However, all of these advances constitute continuous (evolutionary) progress. They expand 
upon, augment, ‘orchestrate’ so to speak, Werner’s theme, and that theme is, in essence, one-
center coordination chemistry.

But the transition metals have another chemistry: multicenter chemistry, or the chemistry of 
compounds with direct metal-to-metal bonds. The recognition and rapid development of this 
second kind of transition metal chemistry, non-Wernerian transition metal chemistry, began in the 
period 1963-65, and constitutes a discontinuous (revolutionary) step in the progress of chemistry.  
We see in it the creation and elaboration of a new conceptual scheme, one which is becoming as 
important an intellectual innovation in chemistry as was the Wernerian idea in its time, or the 
ideas of Kekulé, and of van’t Hoff and Le Bel in their time. The recognition of the existence of 
a wholly new and previously entirely unrecognized chemistry of the transition metals, which 
constitute more than half of the periodic table, is certainly an important fundamental step in 
the progress of chemistry.

1
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One of the aspects of this overall development of multicenter transition metal chemistry 
obviously constitutes an innovation with respect to the entire science of chemistry, namely, 
the recognition that there exist chemical bonds of an order higher than triple. The existence of 
quadruple bonds was fi rst recognized in 1964, and since then more than a thousand compounds 
containing them have been prepared and characterized with unprecedented thoroughness by 
virtually every known physical and theoretical method, as well as by a wide-ranging investiga-
tion of their chemistry.

It is especially to be noted that compounds containing quadruple bonds are in most cases 
not at all exotic, unstable, or diffi cult to obtain. On the contrary, many of them can be (and 
are) easily prepared by undergraduate chemistry students and they ‘live out in the air with us’. 
Perhaps the most astonishing thing about this chemistry is that it was discovered so late.

1.1.2 Prior to about 1963

It is well to begin with the following observation. Werner, of course, recognized the exis-
tence of polynuclear complexes and, indeed, he wrote quite a number of papers on that subject.2

However, the compounds he dealt with were regarded (and correctly so) as simply the result of 
conjoining two or more mononuclear complexes through shared ligand atoms. The properties 
of these complexes were accounted for entirely in terms of the various individual metal atoms 
and the local sets of metal-ligand bonds. No direct M–M interactions of any type were consid-
ered and the concept of a metal-metal bond remained wholly outside the scope of Wernerian 
chemistry, even in polynuclear complexes.

Before Werner’s time, however, there were a few compounds in the literature that could not 
be accommodated correctly by the coordination theory. The earliest was chromous acetate, to 
which we shall return later (p. 10). In the period 1857-61, the Swedish chemist Christian Wil-
helm Blomstrand3 and co-workers investigated the dichloride and dibromide of molybdenum 
and found them to have some surprising properties. For example, only one third of the halide 
ions could be precipitated with Ag+, thus indicating that the smallest possible molecular for-
mula is Mo3X6. Werner himself in the several editions of his Neuere Anschauungen auf dem Gebiete 
der Anorganischen Chemie proposed the following formulation:

X X
Mo

X
Mo

X
Mo X2

Towards the middle and end of Werner’s life, further discoveries inconsistent with his theory 
were made. From 1905 to 1910 Blondel and others4 reported dinuclear PtIII compounds, which 
we now know to contain Pt–Pt bonded [Pt2(SO4)4]

2- ions. In 1907, ‘TaCl2 2H2O’ (which, as shown 
below, was later correctly formulated as Ta6Cl14 7H2O) was reported.5  During the 1920s Lindner6

and others attempted to account for the composition of these and other compounds by imaginative 
(but chimerical) polynuclear structures in which metal-metal bonds were not included.

It was only with the advent of X-ray crystallography and its evolution into a tool capable of 
handling reasonably large structures that the existence of non-Wernerian transition metal chemistry 
could be recognized with certainty and the character of the compounds exemplifying it disclosed in 
detail. The fi rst such experimental results were provided by C. Brosset,7 who showed that the lower 
chlorides of molybdenum contain octahedral groups of metal atoms with Mo–Mo distances even 
shorter (~2.6 Å) than those in metallic molybdenum (2.725 Å). Brosset’s publications did not, ap-
parently, stimulate any further research activity.

It was also Brosset8 who showed that K3W2Cl9 contained a binuclear anion, [W2Cl9]
3-,

with the tungsten atoms so close together that “[t]hey are, apparently, within these pairs, in 
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some way bound together.” This promising insight was not pursued.
In 1950, an X-ray diffraction experiment, albeit of an unconventional type carried out on 

aqueous solutions, showed that Ta6Cl14 7H2O and its bromide analog, as well as the corre-
sponding niobium compounds, also contain octahedral groups of metal atoms9 with rather 
short M–M distances (~ 2.8 Å). As before, these remarkable observations did not lead to any 
further exploration of such chemistry.

It was not until 1963, in fact, that attention was effectively focused on non-Wernerian co-
ordination compounds. It was observed at about the same time in two different laboratories10,11

that ‘ReCl4
−’ actually contains triangular Re3 groups in which the Re–Re distances (2.47 Å) are 

very much shorter than those (2.75 Å) in metallic rhenium. In one report10 not only was the 
molecular structure described very precisely, the electronic structure was discussed in detail, 
leading to the explicit conclusion10 that the rhenium atoms are united by a set of three Re–Re 
double bonds.  This work was important because it was the basis for:

1. the fi rst explicit recognition that direct metal–metal bonds can be very strong and can 
play a crucial role in transition metal chemistry, and

2. the fi rst formal recognition that there is an entire class of such compounds to which 
the name metal atom cluster compounds was then applied.12,13

In [Re3Cl12]
3− it was fi rst shown that metal–metal bonds may be multiple, since the MO 

analysis10(a),12 of this cluster clearly shows that there are six doubly occupied bonding MOs cov-
ering the three Re–Re edges of the triangle, thus giving the MO equivalent of double bonds.

It should be noted that during the period of time just considered there were developments 
in the fi eld of metal carbonyl chemistry that also led to the consideration of direct metal–metal 
bonds as stereoelectronic elements of molecular structure. In 1938 the fi rst evidence for the 
structure of a polynuclear metal carbonyl compound, Fe2(CO)9, was obtained by X-ray crystal-
lography.  To account for the diamagnetism of the compound, it was considered necessary to 
postulate a pairing of two electron spins, each of which formally originated from a different 
metal atom.  For many years it was taken as obvious that there exists an Fe–Fe bond.  The struc-
tural integrity does not require such an assumption because there are three bridging carbonyl 
groups.  Today there are convincing (though not entirely conclusive) theoretical arguments 
in favor of spin coupling via the carbonyl bridges without direct Fe–Fe bonding.  It was not 
until 1957, with the determination of the Mn2(CO)10 structure,14 that unequivocal evidence for 
metal–metal bond formation in metal carbonyls was obtained.

1.2 How It All Began

1.2.1 Rhenium chemistry from 1963 to 1965

By mid-1963, further studies of the chemistry of the trinuclear cluster anion [Re3Cl12]
3- had 

led to the recognition that the trinuclear Re3 cluster with Re–Re double bonds was the essential 
stereoelectronic feature of much of the chemistry of rhenium(III), particularly that which used the 
so-called trihalides as the starting materials. Both the chloride and bromide of ReIII had been shown 
to contain these Re3 clusters.15

However, it was precisely the use of these ReIII halides as starting materials that posed a 
practical problem, since their preparation is tedious and time consuming. The idea of ob-
taining the trinuclear complexes by reduction in aqueous solution of the readily available 
[ReO4]

− ion to give, for example, [Re3Cl12]
3− was very attractive. The devising of such an aque-

ous route into trinuclear ReIII chemistry was regarded at MIT as perhaps the one remain-
ing task to be carried out before leaving the fi eld of ReIII chemistry.  During the autumn of 
1963, Dr. Neil Curtis (later Professor of Chemistry at Victoria University in Wellington, New 
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Zealand) was a visiting research associate at MIT, and he set about trying this, with the added 
objective of obtaining mixed clusters, such as [Re2OsCl12]

2-, by using a mixture of [ReO4]
− and 

an osmium compound.
Neither of the original goals has ever been attained because, after a few exploratory experi-

ments, a far more interesting result was obtained by Curtis. He found that by using concen-
trated aqueous hydrochloric acid as the reaction medium and hypophosphorous acid as the 
reducing agent (with or without the presence of any osmium compound), the product was an 
intense blue solution from which materials such as a beautiful royal-blue solid of composition 
CsReCl4 could be isolated. Since this substance had the same empirical formula as the red 
Cs3Re3Cl12 we were keenly interested in learning its true nature.

By a coincidence, of a sort that seems to occur rather often in research, there was another 
visiting research associate in the group at the same time, namely, Dr Brian Johnson (today Pro-
fessor of Chemistry, Cambridge University), who had been checking a rather puzzling report 
from the USSR16 to the effect that reduction of [ReO4]

- in hydrochloric acid by hydrogen gas 
under pressure gave [ReCl6]

3-. This was obviously relevant to Curtis’s work, since it suggested 
that aqueous reduction of [ReO4]

- might give (previously unknown) mononuclear ReIII chloro 
complexes. An even more remarkable feature of this curious report was that the precipitated 
‘MI

3ReCl6’ compounds displayed a variety of colors, depending on the counterion, MI.  Johnson 
showed quickly that the claim of [ReCl6]

3- salts was erroneous17 and that the compounds were 
in fact the rather uninteresting, very familiar, MI

2ReCl6 salts. The variety of colors displayed is 
not easy to explain with certainty, but probably arose from incorporation of impurities. The re-
action conditions cause serious corrosion of the steel bomb in which the reaction is conducted.

However, it had also been claimed16 that there was a dark-blue/green product, to which the 
formula K2ReCl4, was assigned. Johnson found that there was indeed such a product and, in 
view of its apparent similarity to Curtis’s new blue ‘CsReCl4,’ we immediately wondered if the 
Soviet chemists had simply got their formula wrong and that they really had ‘KReCl4.’ It did 
not take long to show that this was precisely the case and that the substance had the empirical 
formula KReCl4 H2O. Since it formed better-looking crystals than did the cesium compound 
(which, incidentally, is actually CsReCl4

1/2H2O
18 before drying), and these had a small triclinic 

unit cell, we considered KReCl4 H2O to be the preferred subject for an X-ray crystallographic 
study. Mr C. B. Harris (now Professor of Chemistry, University of California, Berkeley), who 
was just beginning his doctoral research and had never previously done a crystal structure, 
began a study of these crystals.

The Soviet chemical literature was also examined more carefully to see if there were any 
further reports of interest on the chemistry of lower-valent rhenium. It was found that between 
1952 and 1958 V. G. Tronev and co-workers had published three papers16,19,20 that described an 
assortment of low-oxidation state rhenium halide complexes in which the metal oxidation state 
was proposed to be +2. Much of the impetus for their investigations was a search for analo-
gies between the chemistry of rhenium and platinum, an approach which no doubt prejudiced 
them in favor of the ReII oxidation state. The existence of most of the compounds described 
in their 195219 and 195416 reports has never been substantiated, for example, products such 
as ‘Re(C5H5N)4Cl2,’ ‘Re(C5H5N)2Cl2,’ and ‘Re(thiourea)4Cl2.’ Two compounds—namely, the 
‘K2ReCl4’ already mentioned and blue-green ‘(NH4)2ReCl4,’ which was also obtained by the ac-
tion of hydrogen under pressure upon solutions of NH4ReO4 in concentrated hydrochloric acid 
at 300 ˚C—were further discussed in 1958 when Kotel’nikova and Tronev20 published a more 
substantial contribution, entitled ‘Study of the Complex Compounds of Divalent Rhenium.’ 
Additional details were reported for the various materials emanating from a work-up of the 
blue solutions produced by these hydrogen reductions of perrhenate (KReO4) in concen-


