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Preface 

Traditional deterministic computer-aided-design (CAD) tools no longer serve 
the needs of the integrated circuit (IC) designer. These tools rely on the use 
of corner case models which assume worst-case values for process parame
ters such as channel length, threshold voltage, and metal linewidth. However, 
process technologies today are pushed closer to the theoretical limits of the 
process equipment than ever before (sub-wavelength lithography is a prime ex
ample) - this leads to growing levels of uncertainty in these key parameters. 
With larger process spreads, corner case models become highly pessimistic 
forcing designers to over design products, particularly in an application-specific 
integrated circuit (ASIC) environment. This growing degree of guardbanding 
erodes profits, increases time to market, and generall will make it more diffi
cult to maintain Moore's Law in the near future. 

The concept of statistical CAD tools, where performance (commonly gate 
delay) is modeled as a distribution rather than a deterministic quantity, has 
gained favor in the past five years as a result of the aforementioned growing 
process spreads. By propagating expected delay distributions through a circuit 
and not a pessimistic worst-case delay value, we can arrive at a much more ac
curate estimation of actual circuit performance. The major tradeoff in taking 
this approach is computational efficiency. Therefore, we can only afford to use 
statistical CAD tools when their performance benefit is compelling. In earlier 
technologies this was not the case. However, many companies now feel that 
the levels of variability, and the stakes, are high enough that the day of sta
tistical CAD has arrived. An inspection of current CAD conference technical 
programs reflect a large amount of interest from both academia and industry; 
the current year's Design Automation Conference (DAC) has at least a dozen 
papers on this topic, nearly 10% of the conference program. While a large 
fraction of this work has been in extending traditional deterministic static 
timing analysis (STA) to the statistical regime, power is also critical due to 
the exponential dependencies of leakage current on process parameters. 

As a result of the above trends, the pace of progress, in the past few years 
in statistical timing and power analysis has been rapid. This book attempts to 
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summarize recent research highlights in this evolving field. Due to the rapid 
pace of progress we have made every effort to include the very latest work 
in this book (e.g., at least five conference publications from the current year 
are included in the reference list). The goal is to provide a "snapshot" of the 
field circa mid-2005, allowing new researchers in the area to come up to speed 
quickly, as well as provide a handy reference for those already working in this 
field. Note that we do not discuss circuit techniques aimed at reducing the 
impact of variability or monitoring variability, although we feel these will play 
a key role in meeting timing, power, and yield constraints in future ICs. The 
focus here is on CAD approaches, algorithms, modeling techniques, etc. 

On a final note, a key to the widespread adoption of statistical timing 
and power analysis/optimization tools is designer buy-in. This will only come 
about when there is open discussion of variability data, variation modeling 
approaches (e.g., Does a Quad-Tree model accurately capture the actual be
havior of spatially correlated process parameters?), and related topics. We 
believe that the recent progress in algorithms for statistical analysis and opti
mization has brought us to the point where these practical issues, and not the 
underlying tool capabilities, are the limiting factor in commercial acceptance 
of the approaches described in this book. 

This book is organized into six chapters. The first chapter provides an 
overview of process variability: types, sources, and trends. The second chapter 
sets the stage for the following four chapters by introducing different statisti
cal modeling approaches, both generic (Monte Carlo, principal components) 
and specific to the topic of integrated circuit design (Quad-Tree). The third 
chapter summarizes recent work in statistical timing analysis, a ripe field of 
research in the past 4-5 years. Both block-based and path-based techniques 
are described in this chapter. Chapter 4 turns attention to power for the 
first time - both high-level and gate-level approaches to modeling variation in 
power are presented with emphasis on leakage variability. Chapter 5 combines 
ideas from the previous two chapters in examining parametric yield. This im
portant performance metric may replace other more traditional metrics, such 
as delay or power, in future ICs as the primary objective function during the 
design phase. Finally, Chapter 6 describes current state-of-the-art in the sta
tistical optimization area - the work to date is primarily aimed at timing yield 
optimization and ranges from sensitivity-based to dynamic programming and 
Lagrangian relaxation techniques. 

The authors would like to thank Carl Harris of Springer Publishers for 
arranging for this book to be published and also for consistently pushing us 
to the finish line. We thank Sachin Sapatnekar for comments on the general 
content of the book and we also thank Amanda Brown and Paulette Ream 
for help in proofreading and generating figures. 

Ann Arbor Michigan, Ashish Srivastava 
May 2005 Dennis Sylvester 

David Blaauw 
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1 

Introduction 

The impact of process and environmental variations on performance has been 
increasing with each semiconductor technology generation. Traditional corner-
model based analysis and design approaches provide guard-bands for parame
ter variations and are, therefore, prone to introducing pessimism in the design. 
Such pessimism can lead to increased design effort and a longer time to mar
ket, which ultimately may result in lost revenues. In some cases, a change in 
the original specifications might also be required while, unbeknownst to the 
designer performance is actually left on the table. Furthermore, traditional 
analysis is limited to verifying the functional correctness by simulating the 
design at a number of process corners. However, worst case conditions in a 
circuit may not always occur with all parameters at their worst or best pro
cess conditions. As an example, the worst case for a pipeline stage will occur 
when the wires within the logic are at their slowest process corner and the 
wires responsible for the clock delay or skew between the two stages is at the 
best case corner. However, a single corner file cannot simultaneously model 
best-case and worst-case process parameters for different interconnects in a 
single simulation. Hence, a traditional analysis requires that two parts of the 
design are simulated separately, resulting in a less unified, more cumbersome 
and less reliable analysis approach. The strength of statistical analysis is that 
the impact of parameter variation on all portions of a design are simultane
ously captured in a single comprehensive analysis, allowing correlations and 
impact on yield to be properly understood. 

As the magnitude of process variations have grown, there has been an 
increasing realization that traditional design methodologies (both for analysis 
and optimization) are no longer acceptable. The magnitude of variations in 
gate length, as an example, are predicted to increase from 35% in a 130 nm 
technology to almost 60% in a 70 nm technology. These variations are generally 
specified as the fraction 3<r//x (3<r is assumed to be the worst case shift in 
the parameter), where a and \i are the standard deviation and mean of the 
process parameter, respectively. Thus a 60% variation in 70 nm technology 
implies that the standard deviation of the distribution of gate length across a 
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large number of samples is 14 nm. With variations as large as these, it becomes 
extremely important that the designers treat these variation in a statistical 
manner rather than using gaurd-bands in deterministic analysis. 

1.1 Sources of Variations 

The traditional approach to ensuring acceptable yield is to estimate mar
gins, while assuming worst-case process and environmental conditions. With 
increasing clock frequency and the growth of variations, these margins have 
become a larger fraction of the total clock cycle, making the traditional tech
niques hard to sustain. Part of this difficulty is that margins do not result from 
a single source of randomness. They are, in fact, used to capture a host of 
physical effects that are either truly statistical (and hence unknown at design 
time), or are hard to model while performing analysis. 

The first step to consider the impact of variations during the design pro
cess is to understand the sources of variations and the impact they have on 
performance. We first characterize the variations based on their sources. 

1.1.1 Process Variations 

Process variations are fluctuations in the value of process parameters observed 
after fabrication. These variations result from a wide range of factors during 
the fabrication process which determine the ranges of variations. It is obvious 
that large variations in process parameters will lead to designs that devi
ate strongly from their specifications. These variations effect the performance 
characteristics of devices as well as interconnects. The resulting distribution 
for performance across a large set of fabricated samples leads to the defini
tion of parametric yield, which is the fraction of manufactured samples that 
meet the performance constraints. Parametric yield should be contrasted to 
manufacturing yield that defines the fraction of samples manufactured with
out catastrophic manufacturing failures (such as wire shorts and opens) that 
render a given sample useless at any frequency. 

For a given process technology, two different designs can have significantly 
different parametric yield. This results from the fact that the same variations 
in process parameters may influence two designs in very different manners. 
For example, we will see in Chap. 2 that designs with a large number of timing 
critical signals have an increased susceptibility to process variations. In this 
context, we define the so-called timing yield as the fraction of samples of a 
design that meet the timing constraint, and similarly we define the power yield 
as the fraction of samples that meet the power constraint. 

1.1.2 Environmental Variations 

These variations capture the variations in the surrounding environment in 
which a chip sits during its operation. This includes temperature variations, 
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variation in the power supply and variations in switching activity (defined by 
the input vectors). A reduced power supply lowers the drive strengths of the 
devices and hence degrades performance. Similarly, an increased temperature 
results in performance degradation for both devices and interconnects. It is 
important to understand that these variations depend on the work-load of the 
processor and are hence time-dependent. Thus, the set of input vector com
binations that result in a worst-case voltage supply drop can occur on any 
possible sample of the design but will, in all likelihood, occur only intermit
tently during its operational life time. Thus, power supply and temperature 
variations are generally not treated statistically, since every shipped chip is 
required to operate without failures over its entire operational life-time. Power 
supply drops and high temperatures are, therefore, assumed during the ver
ification of a design. However, identifying specific worst-case conditions for 
temperature and power supply variation is extremely difficult. Therefore, de
signers often focus on minimizing temperature and supply variations as much 
as possible, such as ensuring that the voltage drop on a power grid is always 
within 5%-10% of the nominal supply voltage. 

A particularly interesting situation occurs when process variations in
creases the current demands on the power supply grids. In older technologies, 
leakage power dissipation was a concern only in designs that spent a large 
fraction of their time in stand-by. With leakage power becoming a significant 
contributor to total power dissipation, leakage currents flowing through the 
power grid can result in significant supply voltage drops. Moreover, assum
ing that all devices are operating at their highest leakage will be extremely 
pessimistic. In this situation, it becomes important to estimate the mean and 
variance of voltage drops and temperature hot-spots based on variation in 
process parameters [50], [51], since worst-case leakage induced power-supply 
drops and hot-spots cannot be expected to occur on each sample of a design. 

Leakage currents themselves also increase strongly with an increase in 
temperature, just as increasing leakage currents may result in a higher tem
perature. In certain cases, this positive feedback can be strong enough to 
cause thermal runaway, where the currents and temperature in the design 
continue to increase until failure. Thus, it is important that chip level leakage 
and temperature analysis are performed in a self-consistent manner [156]. 

1.1.3 Mode l ing Variations 

These variations result from the fact that the power and delay models used 
to perform design analysis and optimization are inaccurate and do not per
fectly capture device characteristics. These models, if conservative, will make 
it harder to meet design specifications, whereas aggressive models will result 
in yield loss. The sample-space of these variations is over design iterations, 
with different modeling errors at different design points. The tradeoff, in us
ing smaller margins to capture modeling variations, involves the likelihood of 
tuning particular paths post-fabrication or going through the entire design 
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process again. Thus, we typically want to be conservative while accounting 
for modeling variations, since it affects all fabricated samples of a design. 

1.1.4 Other Sources of Variations 

Though most variations are included within the previous three classes of vari
ations, there are physical effects that result in a change in process parameter 
with time. These effects include phenomena such as hot electrons, negative 
bias temperature instability (NBTI) and electromigration. Hot electron and 
NBTI effects result in device degradation with time causing the threshold 
voltage of the device to rise. Electromigration may cause increased wire resis
tance due to a reduction in the width of a wire, which increases the resistance 
of the wire and increases propagation delay. In the worst case, it will result in 
wire opens and shorts causing functional failure. The impact of these varia
tions depends strongly on process and environmental variations. A wire that 
has a smaller width to start-off (due to patterning) and is used to provide 
current to a hot section of the design that demands large currents is much 
more likely to fail due to electromigration. If these effects are not properly 
accounted during the design process, they may result in timing errors that 
become visible during operation or burn-in. The analysis of these variations 
is particularly difficult, since they become visible after a reasonable time of 
operation. Therefore, techniques such as burn-in, which are accelerated test 
techniques, are used. These testing techniques are used to stress the design 
to operate under worst-case conditions. However, these testing techniques are 
expensive and have a large application time. 

1.2 Components of Variation 

For the purpose of design analysis, it is beneficial to divide the variations 
into two categories: inter-die and intra-die variations. As we will see in later 
chapters, these components influence the performance of a design differently. 
Moreover, the influence of these components also depends on how well the 
design is optimized, which impacts the number of critical paths in a design. 

1.2.1 Inter-die Variations 

Inter-die variations refer to a parameter variation that has the same value 
across a single die, and hence captures variations that occur from die-to-die, 
wafer-to-wafer and lot-to-lot. Since these variations are independent, they are 
all represented using a single variational term for ease of analysis. These vari
ations are thus represented by a single value for each die and represent a 
shift in the mean or expected value of the parameter distribution from the 
nominal value. These variations include gate-length variations due to fluctua
tions in the time of exposure during fabrication and metal thickness variations 
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between different metal layers. Thus, considering inter-die variations for a pro
cess parameter, we can write the value of a parameter for a device as a random 
variable (RV). 

P - Pnom + APi n t e r (1.1) 

where Pnom is the nominal value of the process parameter and Pinter is a zero 
mean RV that captures the inter-die variation. The RV Pinter has a single 
value for all components on the die. The inter-die variations are generally as
sumed to have a simple distribution, such as Gaussian, with a given variance. 
These variations may have systematic trends across dies that can be captured 
if the specific orientation and location of a die on the wafer is known. How
ever, the designer typically has no control where his chip will be placed on a 
wafer. Moreover, this information is not available at design time and hence 
the impact of these factors on process parameters must be captured using a 
random variable. 

Inter-die variations in a single process parameter are easily captured by 
corner models, which assume that all devices and interconnects on a given 
sample of the design have a value that is shifted away from the mean by a fixed 
value that degrades (improves) performance, for slow (fast) path analysis. 
However, when a number of process parameters are considered simultaneously 
it is important to consider the correlation between these process parameters. 
As discussed above, thickness of metal layers that are negatively correlated 
can result in timing failures when the logic is slower than nominal and clock 
is faster than nominal. The number of process corners at which a design needs 
to be simulated for functional correctness thus increase exponentially with the 
increase in process parameters. 

1.2.2 Intra-die Variations 

Intra-die variation is the component of variation that causes device parameters 
to vary across different locations within a single die. Thus, each device on a 
die requires a separate RV to represent its intra-die variation. Depending 
on the source of variations, intra-die variations may be spatially correlated 
or spatially uncorrelated. Though all variations are random, the accepted 
terminology is to use the term random variations specifically to refer to the 
uncorrelated component of intra-die variations. 

It is obvious that intra-die variations result in a huge increase in the di
mensionality of the problem by requiring an extra RV for each device. In 
addition, these RVs are correlated due to proximity-effects. Since, it is com
putationally very expensive to generate samples of correlated RVs of high 
dimensionality, traditional statistical analysis methodologies such as Monte 
Carlo become unsuitable in scenarios where intra-die variations are signifi
cant, whereas deterministic approaches fail to capture the effect of intra-die 
variations completely. Spatially correlated random variations can be handled 
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by dividing the chip into regions that can be assumed to be perfectly corre
lated and using a correlation matrix to capture the correlation among these 
RVs. If the number of these perfectly correlated regions are small, they can 
be handled easily. 

Now, considering both intra-die and inter-die variations for a process pa
rameter, we can write the value of a process parameter as 

P = Pnom + APi n t e r + A P i n t r a ( ^ , £/*) 

— Miora ~r ^ P n t e r ~r £^Pspatial \%ii Vi) ~r ^P-andom, i \1-^J 

where APin t r a (^z, Vi) represents intra-die variation that consists of a spatially 
correlated component APspa tiai, which is a function of the location on the die 
and an independent or so-called random component APrancjom, i that has no 
correlation with other devices and is represented as a separate RV for each 
device. 

Intra-die variations can also be classified based on their origin as: wafer-
level trends, layout dependent variations and statistical variations. 

Wafer-level Variations 

Wafer-level variation originate due to effects such as lens aberrations and 
result in bowl-shaped or other known distributions over the entire reticle, which 
results in a slanted profile of the process parameter across a single die. Again, 
the direction of slant varies depending on the orientation of the die on the 
wafer and cannot be ascertained a priori. 

Layout Dependent Variations 

Layout dependent variations result in different geometric dimensions due to 
lithographic and etching techniques that are used during fabrication. These 
include fabrication steps such as chemical mechanical polishing (CMP) and 
optical proximity correction (OPC). CMP results in variations in dimensions 
due to dishing (shown in Fig. 1.1) and erosion. Dishing arises from the fact 
that all excess copper must be removed from the wafer - to accomplish this 
goal, a wafer is typically over-polished, removing some of the copper that is 
supposed to remain. As copper etches much faster than the surrounding di
electric, the wire ends up being shorter than the oxide. Dishing is the vertical 
distance between the final oxide level and the lowest point in the copper wire. 
A substantial amount of dishing leads to increased resistance, worsened pla-
narity, and overall process non-uniformity. Constraints are set on the process
ing equipment (including slurries and pads) to limit the amount of dishing in 
the widest wire expected in a given process. Oxide erosion is another problem 
- normally in this case CMP is applied to an array of dense lines. The oxide 
between wires in a dense array tends to be over-polished compared to nearby 
areas of wider insulators (that is, oxide between sparse features will be thicker 
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Fig. 1.1. Dishing results in smaller height of copper interconnects resulting in higher 
resistance, with wider wires having the largest impact. 
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Fig. 1.2. Characterization of polysilicon lines based on their orientation and dis
tance to nearby polysilicon lines [104]. (©2005 IEEE) 

than that between dense features). Both dishing and oxide erosion are prob
lematic in wide lines and dense arrays, respectively, and are therefore layout 
dependent. They lead to higher resistances and more surface non-uniformity. 

The patterning of features smaller than the wavelength of light used in op
tical lithography results in distortions due to the diffraction of light referred 
to as optical proximity effects (OPE). Shorter wavelength lithography tech
nology is too costly and unstable to be used in current technologies. Changes 
made to the mask layout to account for these distortions are known as opti
mal proximity corrections (OPC). Another technique that is used to improve 
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the performance of sub-wavelength lithography is phase-shift masks (PSM), 
which exploits the phenomenon of interference to enable patterning of features 
with higher resolution. OPEs are also layout dependent and result in different 
CD variations depending on their environment (presence of neighboring lines) 
and orientation (vertical or horizontal). Figure 1.2 shows the classification of 
polysilicon lines based on their orientation and distance to the neighboring 
lines from the left and right edges. The edge is characterized as being dense 
if the next line is at the minimum possible distance, denso if the next line is 
at some intermediate distance, and isolated if the next line is further apart. 
Based on test-chip measurements, the work in [104] found that proximity CD 
variation is a strong function of both the orientation and the nearby environ
ment. Controlling these variations has become extremely critical in current 
technologies and has resulted in an explosion in the number of design rules. 
Polysilicon routing in two orthogonal directions may no longer be allowed in 
certain technologies, so that better control can be achieved in one single direc
tion. Since these variations are layout dependent, they are generally treated 
as spatially correlated intra-die variations. 

Statistical Variations 

Statistical quantization effects, such as random dopant variations, have also 
grown with scaling of process dimensions. The number of dopant atoms in 
the channel region of a device decreases as the critical dimension is scaled 
down. As the number of dopant atoms becomes less, small variation in their 
number result in a large variation in device performance. Moreover, the actual 
location of these atoms also plays a role in determining the threshold voltage 
of a device, further increasing the variability. These variations are true random 
variations with no correlation across devices and represent one source of intra-
die random variations. Such random variations can result from a host of other 
sources as well, such as lithography, etching, CMP etc. Although their impact 
in current technologies is small, it is expected to grow as process parameters 
scale. Their impact on performance has been manageable since random intra-
die variations have the well known averaging effect, and their impact on path 
delay decreases with increasing logic depth. However, they result in an increase 
in mean circuit delay. In addition, the trend to increase clock frequency of a 
design using aggressive pipelining has resulted in smaller logic depths, which 
increases the effect of these random intra-die variations. 

These variations have a strong influence on leakage power as well, which 
has become a big cause for concern even in current technologies. As an exam
ple, increased Vth variability and lower Vth values (which result in a much 
higher leakage) can result in functional failures in dynamic logic designs. 
To counter worst-case leakage scenarios, a stronger keeper device is required 
which has a negative impact on both power and performance. Adaptive post-
fabrication techniques such as [74], which turn on a subset of parallel keeper 
devices depending on the variations will become useful in these scenarios. 
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We have classified variations as being inter- and intra-die variations with 
intra-die variations having spatially correlated and random components. An
other equivalent view is to divide variations as being spatially uncorrelated 
and correlated with the correlated variation further divided as being intra- or 
inter-die variations depending on their correlation distance [158]. However, we 
will work with the previous definition of variations throughout the remainder 
of this book. 

1.3 Impact on Performance 

In this section, we will discuss the impact of variation on performance pa
rameters. However, first we need to establish the components of variations 
that dominate each of the device and interconnect parameters. Variation in 
gate-length is perhaps the most critical device variation and has significant 
components of both inter-die variation (resulting from variation in duration 
of exposure) and intra-die variation (resulting from lens aberration and other 
lithography effects) [158], [124]. The intra-die variations in gate length are 
also expected to have significant components of spatially correlated variation 
with a small amount of random variations. 

Device threshold voltage presents an interesting picture, since it is depen
dent on a number of process parameters such as channel doping concentration 
and gate length. Variations in gate length result in a change in the Drain In
duced Barrier Lowering (DIBL) coefficient which results in a change in the 
threshold voltage. Thus, it is beneficial to separate the variation of thresh
old voltage between gate length independent variation, resulting from chan
nel doping variations which are random intra-die variations, and gate length 
dependent variation (which has equal components of inter-die and spatially 
correlated intra-die variations). In current technologies, most of the variation 
in threshold voltage is due to variation in gate length and is thus spatially 
correlated. However, in future technologies random dopant variations are ex
pected to increase raising the level of random variations significantly. In terms 
of interconnect parameters variations, most of the variations are spatially cor
related intra-die variations and inter-die variations. 

The trends in the magnitude of process variations is shown in Fig. 1.3 
based on the National Technology Roadmap of Semiconductors [99]. The fig
ure shows the increase in the variability of interconnect parameters such as 
wire width W, wire thickness T, wire height H and resistivity p, along with 
device parameters such as gate-oxide thickness Tox and threshold voltage VT 
and environmental factors such as power supply voltage Vdd- It shows that 
variations in gate-length are expected to increase significantly as compared to 
other process parameters, with variability increasing in all parameters. 

The impact of the variations on power and performance was highlighted in 
[20], which showed measured data over 1000 samples of a design manufactured 
in an 180 nm technology. The results showed a 20X variation in leakage current 
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1.3 Impact on Performance 11 

for a 1.3X variation in performance. The large variations in leakage result in 
a large fraction of samples that fail to meet the power constraint. Moreover, 
these samples are the high performance samples of a design and hence result 
in a two sided constraint on the region that represents samples that meet both 
the timing and power constraint. 

Though the problem of variations seems to be growing tremendously, [124] 
recently showed that spatial correlated variations have been kept within man
ageable limits due to better polysilicon CD control. It was argued that the 
impact of inter-die variation can be kept within limits through better analysis 
and design techniques. 



2 

Statistical Models and Techniques 

Traditionally, circuit performance has been modeled in the industry using 
worst-case models which are used to predict the performance of a design un
der worst-case process, temperature, and voltage conditions. However, with 
scaling process dimensions, the impact of process variations has grown, mak
ing traditional worst-case models extremely pessimistic. This results in the 
reduction of feasible regions for the design and increases design effort. Addi
tionally, most of this effort is aimed at accounting for worst-case situations 
that will most likely not occur in actual designs. This has resulted in signif
icant interest in statistical modeling techniques that can be used to enable 
statistical analysis and optimization. 

Although the need for statistical modeling has been acknowledged to be 
critical, industry has been reluctant in adopting modeling techniques that can 
be used to replace traditional worst-case models. This stems from the fact that 
statistical models are expensive and difficult to construct, and unless analysis 
and optimizations tools are built on top of these modeling techniques, the 
utility and validity of these models will be questionable. 

In this chapter, we will discuss key statistical techniques, such as princi
pal component analysis, that have been extensively used in developing tech
niques for process variation modeling and analysis to simplify the problem 
of simultaneously considering different components of variations. We will also 
look at specialized modeling techniques to account for sources of variations 
as discussed in Chap. 1. Having developed the basic infrastructure to model 
process variation, we will then discuss performance modeling techniques us
ing response surfaces. Then we will discuss statistical gate-delay models and 
interconnect-delay models that have seen substantial research activity in the 
past few years. 

Before we discuss modeling techniques, let us spend some time understand
ing the basics of a crucial statistical technique known as Monte Carlo. This 
will serve as a benchmark against which all modeling and analysis techniques 
will be tested for accuracy. The need for techniques such as Monte Carlo be
comes obvious as soon as we look at the scale of the problem at hand. We 
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will show that the error in Monte Carlo techniques reduces with the number 
of samples n as 0 ( n - 1 / 2 ) . Hence, obtaining an accuracy improvement of two 
orders of magnitude requires that the number of samples be increased by four 
orders of magnitude. Thus, the number of simulations required to obtain rea
sonable accuracy using Monte Carlo is generally extremely large and using a 
Monte Carlo based analysis or optimization engine will be prohibitive. Even 
though this seems to be computationally demanding, this dependence is much 
better than non-statistical techniques where the error reduces as 0{n~l/d), 
where d is the dimensionality of the problem. 

Therefore, Monte Carlo methods are used in almost all cases to evaluate 
the results obtained using newly developed analysis techniques. These tech
niques, which are, in general, orders of magnitudes faster than performing 
Monte Carlo simulations, lay the framework for the development of optimiza
tion engines that provide improvements in a reasonable amount of time. How
ever, it is important to understand the basics of Monte Carlo simulations, so 
that they are used reasonably as golden models to test the accuracy of new 
techniques. 

2.1 Monte Carlo Techniques 

Numerical methods that make use of random numbers are known as Monte 
Carlo methods. One of the most important applications of Monte Carlo meth
ods is in the evaluation of multi-dimensional integrals, and hence finds exten
sive application in areas such as yield estimation [154]. 

Non-statistical numerical techniques to estimate one dimensional definite 
integrals proceed by dividing the region, over which the integration needs to 
be performed, into a number of identical parts. Let us apply the technique to 
estimate the definite integral as shown in Fig. 2.1 

/ - J f(x)dx. (2.1) 

The interval [a, b] is divided into n equal subintervals such that a = XQ < x\ < 
X2 < • • • < xn = b. The integral (2.1) can then be approximated by 

I = jf' f{x)dx « %=jr f ( ^ ± i ) h (2.2) 

where h = (b — a)/n. This method is known as the midpoint method, since it 
approximates the area under the curve f(x) in a subinterval using the value of 
the function at the midpoint of the subinterval. If the function varies linearly 
within the subinterval, then the value estimated using the midpoint method 
is exact. Hence, in the general case, midpoint method incurs an 0(h2) error 
in each subinterval of the integral. Since the total number of subintervals is 
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2 3 4 5 6 7 

Fig. 2.1. Midpoint method to approximate the integral of / (x) , or the area under 
a curve. 

inversely proportional to /i, the overall error incurred in estimating the integral 
is 0(h). Thus, we can finally write 

i = £ f{x)dx =
 l=J2 f (?<±p±±) h+o{h) 

J=J2f^i±p±iy + 0(n^). (2.3) 

The approach can be easily extended to two dimensional integrals. We now 
consider the case where the area enclosed by a curve is estimated as shown in 
Fig. 2.2. Using the ideas from the one dimensional case, the two dimensional 
surface is divided into a set of n equal sized squares with dimensions (h, h). If 
the midpoint of the square is enclosed by the curve, then the square contributes 
to the integral, otherwise not. Note that the square either contributes fully 
to the area or contributes nothing. The error in estimating the area of the 
square that actually contributes to the area of the curve is therefore 0(h2). 
Since the number of squares that intersect the curve is 0(h), the overall 
error in estimating the area is again 0(h). However, the number of function 
evaluations required to estimate the area is now proportional to l//i2, which 
results in an overall error in the integral of 0(n~1/ /2). Note that if this idea is 
extended to the evaluation of multi-dimensional integrals of dimension d, the 
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y 

Fig. 2.2. Estimating the area enclosed by the curve C enclosed by a rectangular 
bounding box A'. 

error falls off at a very slow rate of 0{n~l/d) as the number of samples in the 
d-dimensional space are increased. Thus we see that to maintain a reasonable 
accuracy, the number of function evaluations required by the midpoint method 
grows rapidly with the dimensionality of the integral. 

Let us again estimate the area enclosed by a curve as shown in Fig. 2.2, 
now using a statistical technique. Instead of partitioning the entire region 
A\ we generate n random points independently and assume that no of these 
points lie within the region enclosed by the curve. Now we can approximate 
the area enclosed by the curve as 

Ac Ac = AA,^ 
n 

(2.4) 

where AA' is the area of the region A! and Ac is the area enclosed by the curve 
C as shown in the figure. What is the advantage of this method compared 
to the midpoint method? To answer this question we need to estimate the 
error incurred in using approximation (2.4). The probability that a randomly 
generated point lies within the area enclosed by the curve is simply AC/AA>-
If we generate n such samples, then the number of points found to be within 
C can be expressed as 

n0 = X/ (2.5) 

where X{ is the result of the r measurement of x, which is 1 if the randomly 
generated ith point lies within C and 0 otherwise. The expected value of no 
can then be expressed as 
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E[n0) = E \YlXi\ = X>M (2.6) 

where E[x] is the expected value of x, which has a binomial distribution with 
n samples and a probability of success AQ/AA1- The expected value of x can 
then expressed as 

*w—0-&)+ i-£-&- <"> 
Substituting (2.6) and (2.7) into (2.4) and taking expectations we get 

E[AC] = A A , ^ = A A , ^ = AC (2.8) 

and we find that on average the measurement of no will result in an accurate 
estimate of the area enclosed by C. The class of estimators whose expected 
value of error is zero are known as unbiased estimators, therefore Monte Carlo 
provides an unbiased estimate of the area. 

Let us now consider the variance of the estimate provided by Monte Carlo. 
We know from Chebyshev's inequality [109] that for a RV x 

V(\x-r)\ >e)< (2.9) 

where n and a are the expected value and the standard deviation of x, respec
tively. Setting 8 = a2/e2 we can rewrite (2.9) as 

(2.10) vi\x-v\>-j=)<5. 

Since the expected value of no gives the exact value of Ac, using (2.10) allows 
us to estimate the error in the value of no in terms of the number of samples 
for a fixed desired level of accuracy. First, let us calculate the variance of no: 

Var[n0] = E [(n0 - E[n0}f] 

= E 

= E 

n 

X>*-
i = l 

n 

Y,(xi 
i = l 

-E 
n 

£*< 
.i=i -

\2~ 
-E[x])\ 

J 

vi 
/ 

E J2& - E[x})2 + 2j2(xi~ E[X])(XJ - E[x]) (2.11) 
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Since different measurements of x are assumed to be independent, the second 
term on the right in (2.11) does not contribute to the expression and (2.11) 
can be simplified as 

F a r [n0] = E X>i-«2 

= nE[x2 -2xiE[x} + E2[x}} 

= n(E[x2]-E2[x]). (2.12) 

Now 

E[x2} = 0 2 * l - ^ + l 2 * ^ = ^ (2.13) 
\ AA'J AA> AA> 

therefore, the standard deviation a of no can be written as 

„2i n 2 , / i AC \ . -,2 . AC AC 

fikVi-i£ °«o = VV^¥o) = ]Jn{-±){l-^)- (2.14) 

Since the estimate of the area enclosed by C is proportional to the ratio no /n , 
using (2.10) and (2.14), the error in the estimate is 0 (n~ 1 / / 2 ) . Note that the 
estimation in error is independent of the dimensionality of the problem. This 
gives us the very interesting and important result that the error incurred by 
Monte Carlo methods does not depend on the dimensionality of the problem. 
Note that the error in Monte Carlo is fundamentally of a different nature. 
The error in the midpoint method was due to the inability of the linear ap
proximation to fit the actual integrand, whereas in Monte Carlo methods, the 
error has a probabilistic origin. Additionally, for one dimensional integrals the 
midpoint method is more accurate since the error is 0 ( n _ 1 ) whereas Monte 
Carlo methods provide an accuracy which is 0 ( n - 1 / 2 ) . For two dimensional 
integrals both the methods provide similar accuracy, and for higher dimen
sions Monte Carlo methods are always more accurate. The disparity between 
the accuracy of both the methods increases with the dimensionality of the 
problem, since the inaccuracy of the midpoint method increases rapidly. 

Note that to improve the accuracy of the integral by a factor of two while 
using Monte Carlo would always require an increase in the number of samples 
by a factor of four. On the other hand, analytical methods such as the midpoint 
method require an increase in the number of samples by a factor 2 D / 2 , where 
D is the dimensionality of the integral. If D > 4, then Monte Carlo methods 
fare better in this respect as well as compared to analytical midpoint methods. 

For our purposes, we will use Monte Carlo methods to estimate the mo
ments of physical or performance parameters. The main goal will be to esti
mate the quantity 
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E[g{X)\ = / g(x)f(x)dx (2.15) 

where X is a RV with probability density function / ( # ) , g(x) is a function of 
the RV X , and 3ft is the region of interest. If we can generate samples of the 
RV X, then the integral can be estimated as an average of the values of g(x) 
at these sample points. This approach shows better convergence properties 
and reduces the runtime of Monte Carlo based techniques. 

2.1.1 Sampl ing Probabi l i ty Distr ibutions 

Monte Carlo methods rely on sampling the space of interest using random 
samples by generating uniform statistically independent values in the region. 
As it turns out, it is very difficult to generate truly random numbers using 
computers. Specialized pieces of hardware are used in certain applications 
to generate random numbers that amplify the thermal noise of a resistor 
or a diode and then sample it using a Schmitt trigger. If these samples are 
taken at sufficient intervals of time, we obtain a series of random bits. How
ever, in software, random numbers have to be modeled using pseudo-random 
number generators. Pseudo-random numbers, as the name suggests, are not 
truly random and are typically generated using a mathematical formula. Most 
computer languages use linear congruential generators. These generators are 
defined by three positive integers a (multiplier), b (increment), and m (modu
lus) and given an initial seed (the first pseudo-random number ro), generates 
pseudo-random numbers in the following fashion: 

r-fc+i = ark + 6(modm). (2.16) 

If desired, the random numbers generated can be mapped to a given range 
by dividing the numbers obtained using the above generator by m. Note that 
the r/c's can only take one of the m values. Hence, in all practical implementa
tions m is a very large number (eg. 23 2). Also, the choice of a is critical to the 
randomness of the number generated. More details regarding pseudo-random 
generators can be found in [75]. 

We will now review some of the general techniques used to sample arbitrary 
probability distributions and algorithms to generate samples of some of the 
pertinent RVs that we will deal with throughout this book. 

Inverse Transform M e t h o d 

Let us assume that the probability distribution function (pdf) of a RV X that 
we want to sample is given by f(x). The cumulative probability distribution 
(cdf) F(x), which gives the probability that X < x, is then given by 

F(x) = f f(x)dx. (2.17) 
^ — O O 
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Let us take samples of X , which will have a probability density of f(x). 
Now we will use these samples of X to obtain samples of F. Consider a small 
region x < X < x -f dx on the x-axis of the cdf. The number of sample points 
in this region will be proportional to the integral of the pdf in this range. Note 
that this is equal to the change in the value of the cdf. Hence, the number of 
sampling points within a range is equal to the length of the region sampled 
as well. Therefore, these samples of F(x) will be uniformly distributed in the 
range [0,1]. 

Using this idea we can write 

u = F(x) 

x = F-\u) (2.18) 

where u represents samples of a uniformly distributed random variable, and 
F~l is the inverse of F. Hence, if we can find the inverse of F we can use this 
technique to generate random numbers distributed according to the probabil
ity distribution f(x). 

Transformation M e t h o d 

Now let us consider two RVs, X and V, which are related such that Y = f(X), 
where / is a monotonic function (inverse of / is well defined). Let the pdf of 
X and Y be fx(x) and fy(y), respectively. Then from the conservation of 
probability it follows that 

\Px(x)dx\ = \Vy(y)dy\ (2.19) 

which states that the probability of finding X between x and x + da: is the 

same as the probability of finding Y between y = f(x) and y -f dy = f(x + dx) 

as illustrated in Fig. 2.3. From (2.19) it follows that 

When / is non-monotonic, the left hand side in (2.19) is replaced by a sum
mation of the ranges of x that correspond to the given range of y on the right 
hand side in (2.19). An equivalent for (2.20) can then be immediately con
structed [109]. Therefore, to generate samples of a RV Y we need to find a RV 
X whose samples can be easily obtained such that X and Y satisfy (2.20). 

Consider the case where we want to generate samples of a Poisson distri
bution. The pdf of the Poisson distribution is expressed as 

£ t \ J e~y if 0 < y < oo / 0 0 1 \ 
fy(y) = i n - y ~ (2-21) 

I 0 o.w. 
then choosing y = — In x we get 
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y =fx(x) 

y + dy 

y 

x x + dx x 

F i g . 2 . 3 . The probability tha t x << X << x + dx is equal to the probability tha t 
y << Y << y 4- dy for the case when Y varies monotonically with X. 

, , v j 1 if 0 < x < 1 

0 o.w. 
(2.22) 

hence the pdf of Y and X satisfy (2.20). Therefore, if we generate uniform 
samples in the range [0,1], then the negative natural log of these samples will 
have a Poisson distribution. This method requires a differentiable pdf, which 
is a restriction particularly when dealing with discrete RVs. 

Acceptance-Rejec t ion M e t h o d 

If both the above methods are inapplicable due to the restrictions imposed 
on the pdf of the RV then the acceptance-rejection method may be used. Let 
us consider the case where we want to generate samples of a RV X whose 
pdf is as shown in Fig. 2.4. The acceptance-rejection method consists of the 
following steps. First, generate uniform samples in the range [xmin, xmax\. For 
each sample xi evaluate the value of fx(x). Next, generate another random 
sample a in the range [0,maxfx(x)]. If X{ > a, then accept the sample x^ 
otherwise reject it. The accepted samples are then distributed according to 
the pdf fx. 

To generate samples of a Gaussian RV using this approach, we must trun
cate the pdf of the RV. Since most of the values of a Gaussian RV are concen
trated around its mean, a ±4<r range around the mean is sufficient to capture 
the behavior of the Gaussian RV. The steps outlined can then be applied to 
this truncated Gaussian RV to generate the desired random samples. 
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y=fx(x) 

max(f x (x)) 

• x 
mm max 

Fig. 2.4. The acceptance-rejection method to generate samples of a RV with a given 
distribution function. 

Generat ing Mult ivariate Gaussian RVs 

Now let us look at techniques that may be used to generate multivariate 
Gaussian RVs. We will use the transformation method to generate samples of 
a one dimensional Gaussian RV. If u\ and U2 are independent uniform RVs 
in the range [0,1], then 

yi = sin27rui y —21n^2 

2/2 = COS27TU1 V — 2 hi 1̂ 2 (2.23) 

are two independent Gaussian RVs with zero mean and unit variance. The 
Gaussian random numbers generated using the above transformation, also 
known as the Box-Muller transformation, can then be used to generate sam
ples of a Gaussian RV with an arbitrary mean and variance. To obtain the 
desired mean and variance for the Gaussian RV, we use the fact that given 
two Gaussian RVs that are related as Y = aX -f b 

E[Y] = aE[X] 4- b 

Var[Y] = E[Y2]-E2[Y) 

(2.24) 

a2Var[X\. 

To generate an n-dimensional multivariate random variable with a covari-
ance matrix T, and mean A , the first step is to generate n independent random 
variables with zero mean and unit variance. Then, take a sample of these RVs 
(X), and generate a new sample X ' from X such that 


