
SYSTEMVERILOG FOR VERIFICATION
A Guide to Learning the Testbench Language Features

SYSTEMVERILOG FOR VERIFICATION
A Guide to Learning the Testbench Language Features

CHRIS SPEAR
Synopsys, Inc.

1 3

Chris Spear
Synopsys, Inc.
377 Simarano Drive
Marlboro, MA 01752

SystemVerilog for Verification:
A Guide to Learning the Testbench Language Features

Library of Congress Control Number: 2006926262

ISBN-10: 0-387-27036-1 e-ISBN-10: 0-387-27038-8
ISBN-13: 9780387270364 e-ISBN-13: 9780387270388

Printed on acid-free paper.

 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

This book is dedicated to my wonderful wife Laura,
whose patience during this project was invaluable,

and my children, Allie and Tyler, who kept me laughing.

Contents

List of Examples xi
List of Figures xxi
List of Tables xxiii
Foreword xxv
Preface xxvii
Acknowledgments xxxiii

1. VERIFICATION GUIDELINES 1
1.1 Introduction 1
1.2 The Verification Process 2
1.3 The Verification Plan 4
1.4 The Verification Methodology Manual 4
1.5 Basic Testbench Functionality 5
1.6 Directed Testing 5
1.7 Methodology Basics 7
1.8 Constrained-Random Stimulus 8
1.9 What Should You Randomize? 10
1.10 Functional Coverage 13
1.11 Testbench Components 15
1.12 Layered Testbench 16
1.13 Building a Layered Testbench 22
1.14 Simulation Environment Phases 23
1.15 Maximum Code Reuse 24
1.16 Testbench Performance 24
1.17 Conclusion 25

2. DATA TYPES 27
2.1 Introduction 27
2.2 Built-in Data Types 27

SystemVerilog for Verificationviii

2.3 Fixed-Size Arrays 29
2.4 Dynamic Arrays 34
2.5 Queues 36
2.6 Associative Arrays 37
2.7 Linked Lists 39
2.8 Array Methods 40
2.9 Choosing a Storage Type 42
2.10 Creating New Types with typedef 45
2.11 Creating User-Defined Structures 46
2.12 Enumerated Types 47
2.13 Constants 51
2.14 Strings 51
2.15 Expression Width 52
2.16 Net Types 53
2.17 Conclusion 53

3. PROCEDURAL STATEMENTS AND ROUTINES 55
3.1 Introduction 55
3.2 Procedural Statements 55
3.3 Tasks, Functions, and Void Functions 56
3.4 Task and Function Overview 57
3.5 Routine Arguments 57
3.6 Returning from a Routine 62
3.7 Local Data Storage 62
3.8 Time Values 64
3.9 Conclusion 65

4. BASIC OOP 67
4.1 Introduction 67
4.2 Think of Nouns, not Verbs 67
4.3 Your First Class 68
4.4 Where to Define a Class 69
4.5 OOP Terminology 69
4.6 Creating New Objects 70
4.7 Object Deallocation 74
4.8 Using Objects 76
4.9 Static Variables vs. Global Variables 76
4.10 Class Routines 78
4.11 Defining Routines Outside of the Class 79
4.12 Scoping Rules 81
4.13 Using One Class Inside Another 85
4.14 Understanding Dynamic Objects 87
4.15 Copying Objects 91
4.16 Public vs. Private 95

Contents ix

4.17 Straying Off Course 96
4.18 Building a Testbench 96
4.19 Conclusion 97

5. CONNECTING THE TESTBENCH AND DESIGN 99
5.1 Introduction 99
5.2 Separating the Testbench and Design 99
5.3 The Interface Construct 102
5.4 Stimulus Timing 108
5.5 Interface Driving and Sampling 114
5.6 Connecting It All Together 121
5.7 Top-Level Scope 121
5.8 Program – Module Interactions 123
5.9 SystemVerilog Assertions 124
5.10 The Four-Port ATM Router 126
5.11 Conclusion 134

6. RANDOMIZATION 135
6.1 Introduction 135
6.2 What to Randomize 136
6.3 Randomization in SystemVerilog 138
6.4 Constraint Details 141
6.5 Solution Probabilities 149
6.6 Controlling Multiple Constraint Blocks 154
6.7 Valid Constraints 154
6.8 In-line Constraints 155
6.9 The pre_randomize and post_randomize Functions 156
6.10 Constraints Tips and Techniques 158
6.11 Common Randomization Problems 164
6.12 Iterative and Array Constraints 165
6.13 Atomic Stimulus Generation vs. Scenario Generation 172
6.14 Random Control 175
6.15 Random Generators 177
6.16 Random Device Configuration 180
6.17 Conclusion 182

7. THREADS AND INTERPROCESS COMMUNICATION 183
7.1 Introduction 183
7.2 Working with Threads 184
7.3 Interprocess Communication 194
7.4 Events 195
7.5 Semaphores 199
7.6 Mailboxes 201
7.7 Building a Testbench with Threads and IPC 210

SystemVerilog for Verificationx

7.8 Conclusion 214

8. ADVANCED OOP AND GUIDELINES 215
8.1 Introduction 215
8.2 Introduction to Inheritance 216
8.3 Factory Patterns 221
8.4 Type Casting and Virtual Methods 225
8.5 Composition, Inheritance, and Alternatives 228
8.6 Copying an Object 233
8.7 Callbacks 236
8.8 Conclusion 240

9. FUNCTIONAL COVERAGE 241
9.1 Introduction 241
9.2 Coverage Types 243
9.3 Functional Coverage Strategies 246
9.4 Simple Functional Coverage Example 248
9.5 Anatomy of a Cover Group 251
9.6 Triggering a Cover Group 253
9.7 Data Sampling 256
9.8 Cross Coverage 265
9.9 Coverage Options 272
9.10 Parameterized Cover Groups 274
9.11 Analyzing Coverage Data 275
9.12 Measuring Coverage Statistics During Simulation 276
9.13 Conclusion 277

10. ADVANCED INTERFACES 279
10.1 Introduction 279
10.2 Virtual Interfaces with the ATM Router 279
10.3 Connecting to Multiple Design Configurations 284
10.4 Procedural Code in an Interface 290
10.5 Conclusion 294

References 295
Index 297

xi

List of Examples

Example 1-1 Driving the APB pins 17
Example 1-2 A task to drive the APB pins 18
Example 1-3 Low-level Verilog test 18
Example 1-4 Basic transactor code 22
Example 2-1 Using the logic type 28
Example 2-2 Signed data types 28
Example 2-3 Checking for four-state values 29
Example 2-4 Declaring fixed-size arrays 29
Example 2-5 Declaring and using multidimensional arrays 29
Example 2-6 Unpacked array declarations 30
Example 2-7 Initializing an array 30
Example 2-8 Using arrays with for and foreach loops 31
Example 2-9 Initialize and step through a multidimensional array 31
Example 2-10 Output from printing multidimensional array values 31
Example 2-11 Array copy and compare operations 32
Example 2-12 Using word and bit subscripts together 33
Example 2-13 Packed array declaration and usage 33
Example 2-14 Declaration for mixed packed/unpacked array 34
Example 2-15 Using dynamic arrays 35
Example 2-16 Using a dynamic array for an uncounted list 35
Example 2-17 Queue operations 36
Example 2-18 Declaring, initializing, and using associative arrays 38
Example 2-19 Using an associative array with a string index 39
Example 2-20 Creating the sum of an array 40
Example 2-21 Array locator methods: min, max, unique 41
Example 2-22 Array locator methods: find 41

SystemVerilog for Verificationxii

Example 2-23 Array locator methods 42
Example 2-24 User-defined type-macro in Verilog 45
Example 2-25 User-defined type in SystemVerilog 45
Example 2-26 Definition of uint 45
Example 2-27 Creating a single pixel type 46
Example 2-28 The pixel struct 46
Example 2-29 Using typedef to create a union 47
Example 2-30 Packed structure 47
Example 2-31 A simple enumerated type 48
Example 2-32 Enumerated types 48
Example 2-33 Specifying enumerated values 48
Example 2-34 Incorrectly specifying enumerated values 49
Example 2-35 Correctly specifying enumerated values 49
Example 2-36 Stepping through all enumerated members 50
Example 2-37 Assignments between integers and enumerated types 50
Example 2-38 Declaring a const variable 51
Example 2-39 String methods 52
Example 2-40 Expression width depends on context 53
Example 2-41 Disabling implicit nets with ‘default_nettype none 53
Example 3-1 New procedural statements and operators 55
Example 3-2 Using break and continue while reading a file 56
Example 3-3 Ignoring a function’s return value 56
Example 3-4 Void function for debug 57
Example 3-5 Simple task without begin...end 57
Example 3-6 Verilog-1995 routine arguments 58
Example 3-7 C-style routine arguments 58
Example 3-8 Verbose Verilog-style routine arguments 58
Example 3-9 Routine arguments with sticky types 58
Example 3-10 Passing arrays using ref and const 59
Example 3-11 Using ref across threads 60
Example 3-12 Function with default argument values 61
Example 3-13 Using default argument values 61
Example 3-14 Original task header 61
Example 3-15 Task header with additional array argument 61
Example 3-16 Task header with additional array argument 62
Example 3-17 Return in a task 62
Example 3-18 Return in a function 62
Example 3-19 Specifying automatic storage in program blocks 63
Example 3-20 Static initialization bug 64

xiii

Example 3-21 Static initialization fix: use automatic 64
Example 3-22 Time literals and $timeformat 65
Example 4-1 Simple BusTran class 69
Example 4-2 Declaring and using a handle 71
Example 4-3 Simple use-defined new function 72
Example 4-4 A new function with arguments 72
Example 4-5 Calling the right new function 73
Example 4-6 Allocating multiple objects 74
Example 4-7 Creating multiple objects 75
Example 4-8 Using variables and routines in an object 76
Example 4-9 Class with a static variable 77
Example 4-10 Initializing a static variable in a task 78
Example 4-11 Routines in the class 79
Example 4-12 Out-of-block routine declarations 80
Example 4-13 Out-of-body task missing class name 81
Example 4-14 Name scope 82
Example 4-15 Class uses wrong variable 83
Example 4-16 Using this to refer to class variable 83
Example 4-17 Bug using shared program variable 84
Example 4-18 Statistics class declaration 85
Example 4-19 Encapsulating the Statistics class 86
Example 4-20 Using a typedef class statement 87
Example 4-21 Passing objects 88
Example 4-22 Bad packet creator task, missing ref on handle 89
Example 4-23 Good packet creator task with ref on handle 89
Example 4-24 Bad generator creates only one object 90
Example 4-25 Good generator creates many objects 90
Example 4-26 Using an array of handles 91
Example 4-27 Copying a simple class with new 92
Example 4-28 Copying a complex class with new 92
Example 4-29 Simple class with copy function 93
Example 4-30 Using copy function 94
Example 4-31 Complex class with deep copy function 94
Example 4-32 Basic Transactor 97
Example 5-1 Arbiter model using ports 101
Example 5-2 Testbench using ports 101
Example 5-3 Top-level netlist without an interface 102
Example 5-4 Simple interface for arbiter 103
Example 5-5 Top module using a simple arbiter interface 103

SystemVerilog for Verificationxiv

Example 5-6 Testbench using a simple arbiter interface 104
Example 5-7 Arbiter using a simple interface 104
Example 5-8 Connecting an interface to a module that uses ports 105
Example 5-9 Interface with modports 105
Example 5-10 Arbiter model with interface using modports 106
Example 5-11 Testbench with interface using modports 106
Example 5-12 Arbiter model with interface using modports 107
Example 5-13 Interface with a clocking block 109
Example 5-14 Race condition between testbench and design 111
Example 5-15 Testbench using interface with clocking block 113
Example 5-16 Signal synchronization 115
Example 5-17 Synchronous interface sample and module drive 115
Example 5-18 Testbench using interface with clocking block 116
Example 5-19 Interface signal drive 117
Example 5-20 Driving a synchronous interface 117
Example 5-21 Interface signal drive 118
Example 5-22 Bidirectional signals in a program and interface 119
Example 5-23 Bad clock generator in program block 120
Example 5-24 Good clock generator in module 121
Example 5-25 Top module using a simple arbiter interface 121
Example 5-26 Top-level scope for arbiter design 122
Example 5-27 Cross-module references with $root 123
Example 5-28 Checking a signal with an if-statement 124
Example 5-29 Simple procedural assertion 124
Example 5-30 Error from failed procedural assertion 125
Example 5-31 Creating a custom error message in a procedural assertion 125
Example 5-32 Error from failed procedural assertion 125
Example 5-33 Creating a custom error message 126
Example 5-34 Concurrent assertion to check for X/Z 126
Example 5-35 ATM router model header without an interface 128
Example 5-36 Top-level netlist without an interface 129
Example 5-37 Testbench using ports 130
Example 5-38 Rx interface 132
Example 5-39 Tx interface 132
Example 5-40 ATM router model with interface using modports 133
Example 5-41 Top-level netlist with interface 133
Example 5-42 Testbench using interface with clocking block 134
Example 6-1 Simple random class 139
Example 6-2 Constraint without random variables 141

xv

Example 6-3 Constrained-random class 142
Example 6-4 Constrain variables to be in a fixed order 142
Example 6-5 Random sets of values 143
Example 6-6 Inverted random set constraint 143
Example 6-7 Inverted random set constraint 143
Example 6-8 Choosing from an array of possible values 144
Example 6-9 Using randc to chose array values in random order 145
Example 6-10 Weighted random distribution with dist 146
Example 6-11 Dynamically changing distribution weights 146
Example 6-12 Bidirectional constraint 147
Example 6-13 Constraint block with implication operator 148
Example 6-14 Constraint block with if-else operator 148
Example 6-15 Expensive constraint with mod and unsized variable 149
Example 6-16 Efficient constraint with bit extract 149
Example 6-17 Class Unconstrained 149
Example 6-18 Class with implication 150
Example 6-19 Class with implication and constraint 151
Example 6-20 Class with implication and solve...before 152
Example 6-21 Using constraint_mode 154
Example 6-22 Checking write length with a valid constraint 155
Example 6-23 The randomize() with statement 156
Example 6-24 Building a bathtub distribution 157
Example 6-25 Constraint with a variable bound 159
Example 6-26 dist constraint with variable weights 159
Example 6-27 rand_mode disables randomization of variables 160
Example 6-28 Using the implication constraint as a case statement 161
Example 6-29 Turning constraints on and off with constraint_mode 162
Example 6-30 Class with an external constraint 163
Example 6-31 Program defining external constraint 163
Example 6-32 Signed variables cause randomization problems 164
Example 6-33 Randomizing unsigned 32-bit variables 164
Example 6-34 Randomizing unsigned 8-bit variables 165
Example 6-35 Constraining dynamic array size 165
Example 6-36 Random strobe pattern class 166
Example 6-37 Using random strobe pattern class 167
Example 6-38 First attempt at sum constraint: bad_sum1 167
Example 6-39 Program to try constraint with array sum 168
Example 6-40 Output from bad_sum1 168
Example 6-41 Second attempt at sum constraint: bad_sum2 168

SystemVerilog for Verificationxvi

Example 6-42 Output from bad_sum2 168
Example 6-43 Third attempt at sum constraint: bad_sum3 169
Example 6-44 Output from bad_sum3 169
Example 6-45 Fourth attempt at sum_constraint: bad_sum4 169
Example 6-46 Output from bad_sum4 169
Example 6-47 Simple foreach constraint: good_sum5 170
Example 6-48 Output from good_sum5 170
Example 6-49 Creating ascending array values with foreach 170
Example 6-50 UniqueArray class 171
Example 6-51 Unique value generator 172
Example 6-52 Using the UniqueArray class 172
Example 6-53 Command generator using randsequence 173
Example 6-54 Random control with randcase and $urandom_range 175
Example 6-55 Equivalent constrained class 176
Example 6-56 Creating a decision tree with randcase 177
Example 6-57 Simple pseudorandom number generator 178
Example 6-58 Ethernet switch configuration class 180
Example 6-59 Building environment with random configuration 181
Example 6-60 Simple test using random configuration 182
Example 6-61 Simple test that overrides random configuration 182
Example 7-1 Interaction of begin...end and fork...join 185
Example 7-2 Output from begin...end and fork...join 185
Example 7-3 Fork...join_none code 186
Example 7-4 Fork...join_none output 186
Example 7-5 Fork...join_any code 187
Example 7-6 Output from fork...join_any 187
Example 7-7 Generator class with a run task 188
Example 7-8 Dynamic thread creation 189
Example 7-9 Bad fork...join_none inside a loop 190
Example 7-10 Execution of bad fork...join_none inside a loop 190
Example 7-11 Automatic variables in a fork...join_none 191
Example 7-12 Steps in executing automatic variable code 191
Example 7-13 Disabling a thread 192
Example 7-14 Limiting the scope of a disable fork 193
Example 7-15 Using disable label to stop threads 194
Example 7-16 Using wait fork to wait for child threads 194
Example 7-17 Blocking on an event in Verilog 195
Example 7-18 Output from blocking on an event 196
Example 7-19 Waiting for an event 196

xvii

Example 7-20 Output from waiting for an event 196
Example 7-21 Passing an event into a constructor 197
Example 7-22 Waiting for multiple threads with wait fork 198
Example 7-23 Waiting for multiple threads by counting triggers 198
Example 7-24 Waiting for multiple threads using a thread count 199
Example 7-25 Semaphores controlling access to hardware resource 200
Example 7-26 Exchanging objects using a mailbox: the Generator class 203
Example 7-27 Bounded mailbox 204
Example 7-28 Output from bounded mailbox 205
Example 7-29 Producer–consumer without synchronization, part 1 205
Example 7-30 Producer–consumer without synchronization, continued 206
Example 7-31 Producer–consumer without synchronization output 206
Example 7-32 Producer–consumer synchronized with an event 207
Example 7-33 Producer–consumer synchronized with an event, continued 208
Example 7-34 Output from producer–consumer with event 208
Example 7-35 Producer–consumer synchronized with a mailbox 209
Example 7-36 Output from producer–consumer with mailbox 210
Example 7-37 Basic Transactor 211
Example 7-38 Environment class 212
Example 7-39 Basic test program 213
Example 8-1 Base Transaction class 216
Example 8-2 Extended Transaction class 217
Example 8-3 Constructor with argument in an extended class 219
Example 8-4 Driver class 219
Example 8-5 Generator class 220
Example 8-6 Generator class using factory pattern 222
Example 8-7 Environment class 223
Example 8-8 Simple test program using environment defaults 224
Example 8-9 Injecting extended transaction from test 224
Example 8-10 Base and extended class 225
Example 8-11 Copying extended handle to base handle 226
Example 8-12 Copying a base handle to an extended handle 226
Example 8-13 Using $cast to copy handles 226
Example 8-14 Transaction and BadTr classes 227
Example 8-15 Calling class methods 227
Example 8-16 Building an Ethernet frame with composition 230
Example 8-17 Building an Ethernet frame with inheritance 231
Example 8-18 Building a flat Ethernet frame 232
Example 8-19 Base transaction class with a virtual copy function 233

SystemVerilog for Verificationxviii

Example 8-20 Extended transaction class with virtual copy method 234
Example 8-21 Base transaction class with copy_data function 234
Example 8-22 Extended transaction class with copy_data function 235
Example 8-23 Base transaction class with copy_data function 235
Example 8-24 Base callback class 237
Example 8-25 Driver class with callbacks 237
Example 8-26 Test using a callback for error injection 238
Example 8-27 Test using callback for scoreboard 239
Example 9-1 Incomplete D-flip flop model missing a path 244
Example 9-2 Functional coverage of a simple object 249
Example 9-3 Coverage report for a simple object 250
Example 9-4 Coverage report for a simple object, 100% coverage 251
Example 9-5 Functional coverage inside a class 253
Example 9-6 Test using functional coverage callback 254
Example 9-7 Callback for functional coverage 255
Example 9-8 Cover group with a trigger 255
Example 9-9 Module with SystemVerilog Assertion 255
Example 9-10 Triggering a cover group with an SVA 256
Example 9-11 Using auto_bin_max set to 2 257
Example 9-12 Report with auto_bin_max set to 2 258
Example 9-13 Using auto_bin_max for all cover points 258
Example 9-14 Using an expression in a cover point 259
Example 9-15 Defining bins for transaction length 259
Example 9-16 Coverage report for transaction length 260
Example 9-17 Specifying bin names 261
Example 9-18 Report showing bin names 261
Example 9-19 Conditional coverage — disable during reset 262
Example 9-20 Using stop and start functions 262
Example 9-21 Functional coverage for an enumerated type 262
Example 9-22 Report with auto_bin_max set to 2 263
Example 9-23 Specifying transitions for a cover point 263
Example 9-24 Wildcard bins for a cover point 264
Example 9-25 Cover point with ignore_bins 264
Example 9-26 Cover point with auto_bin_max and ignore_bins 264
Example 9-27 Cover point with illegal_bins 265
Example 9-28 Basic cross coverage 266
Example 9-29 Coverage summary report for basic cross coverage 267
Example 9-30 Specifying cross coverage bin names 268
Example 9-31 Cross coverage report with labeled bins 268

xix

Example 9-32 Excluding bins from cross coverage 269
Example 9-33 Specifying cross coverage weight 270
Example 9-34 Cross coverage with bin names 271
Example 9-35 Cross coverage with binsof 271
Example 9-36 Mimicking cross coverage with concatenation 272
Example 9-37 Specifying comments 272
Example 9-38 Specifying per-instance coverage 273
Example 9-39 Report all bins including empty ones 273
Example 9-40 Specifying the coverage goal 274
Example 9-41 Simple parameter 274
Example 9-42 Pass-by-reference 275
Example 9-43 Original class for transaction length 275
Example 9-44 solve...before constraint for transaction length 276
Example 10-1 Interface with clocking block 280
Example 10-2 Testbench using physical interfaces 281
Example 10-3 Testbench using virtual interfaces 282
Example 10-4 Testbench using virtual interfaces 283
Example 10-5 Interface for 8-bit counter 285
Example 10-6 Counter model using X_if interface 285
Example 10-7 Testbench using an array of virtual interfaces 286
Example 10-8 Counter testbench using virtual interfaces 287
Example 10-9 Driver class using virtual interfaces 288
Example 10-10Testbench using a typedef for virtual interfaces 289
Example 10-11Driver using a typedef for virtual interfaces 289
Example 10-12Testbench using an array of virtual interfaces 290
Example 10-13Testbench passing virtual interfaces with a port 290
Example 10-14Interface with tasks for parallel protocol 292
Example 10-15Interface with tasks for serial protocol 293

List of Figures

Figure 1-1 Directed test progress 6
Figure 1-2 Directed test coverage 6
Figure 1-3 Constrained-random test progress 8
Figure 1-4 Constrained-random test coverage 9
Figure 1-5 Coverage convergence 9
Figure 1-6 Test progress with and without feedback 14
Figure 1-7 The testbench — design environment 15
Figure 1-8 Testbench components 16
Figure 1-9 Signal and command layers 19
Figure 1-10 Testbench with functional layer 19
Figure 1-11 Testbench with scenario layer 20
Figure 1-12 Full testbench with all layers 21
Figure 1-13 Connections for the driver 22
Figure 2-1 Unpacked array storage 30
Figure 2-2 Packed array layout 33
Figure 2-3 Packed arrays 34
Figure 2-4 Associative array 37
Figure 4-1 Handles and objects 74
Figure 4-2 Static variables in a class 77
Figure 4-3 Contained objects 85
Figure 4-4 Handles and objects across routines 88
Figure 4-5 Objects and handles before copy with new 93
Figure 4-6 Objects and handles after copy with new 93
Figure 4-7 Objects and handles after deep copy 95
Figure 4-8 Layered testbench 96
Figure 5-1 The testbench – design environment 99

SystemVerilog for Verificationxxii

Figure 5-2 Testbench – Arbiter without interfaces 100
Figure 5-3 An interface straddles two modules 103
Figure 5-4 Main regions inside a SystemVerilog time step 112
Figure 5-5 A clocking block synchronizes the DUT and testbench 114
Figure 5-6 Sampling a synchronous interface 116
Figure 5-7 Driving a synchronous interface 118
Figure 5-8 Testbench – ATM router diagram without interfaces 127
Figure 5-9 Testbench - router diagram with interfaces 131
Figure 6-1 Building a bathtub distribution 157
Figure 6-2 Random strobe waveforms 166
Figure 6-3 Sharing a single random generator 178
Figure 6-4 First generator uses additional values 179
Figure 6-5 Separate random generators per object 179
Figure 7-1 Testbench environment blocks 183
Figure 7-2 Fork...join blocks 184
Figure 7-3 Fork...join block 185
Figure 7-4 Fork...join block diagram 193
Figure 7-5 A mailbox connecting two transactors 202
Figure 8-1 Simplified layered testbench 216
Figure 8-2 Base Transaction class diagram 217
Figure 8-3 Extended Transaction class diagram 218
Figure 8-4 Factory pattern generator 221
Figure 8-5 Factory generator with new pattern 222
Figure 8-6 Simplified extended transaction 225
Figure 8-7 Multiple inheritance problem 232
Figure 8-8 Callback flow 236
Figure 9-1 Coverage convergence 241
Figure 9-2 Coverage flow 242
Figure 9-3 Bug rate during a project 245
Figure 9-4 Coverage comparison 248
Figure 9-5 Uneven probability for transaction length 276
Figure 9-6 Even probability for transaction length with solve...before 276

List of Tables

Table 1. Book icons xxxi
Table 5-1. Primary SystemVerilog scheduling regions 112
Table 6-1. Solutions for bidirectional constraints 147
Table 6-2. Solutions for Unconstrained class 150
Table 6-3. Solutions for Imp1 class 151
Table 6-4. Solutions for Imp2 class 152
Table 6-5. Solutions for solve x before y constraint 153
Table 6-6. Solutions for solve y before x constraint 153
Table 8-1. Comparing inheritance to composition 229

Foreword

When Verilog was first developed in the mid-1980s the mainstream level
of design abstraction was on the move from the widely popular switch and
gate levels up to the synthesizable RTL. By the late 1980s, RTL synthesis and
simulation had revolutionized the front-end of the EDA industry.

The 1990s saw a tremendous expansion in the verification problem space
and a corresponding growth of EDA tools to fill that space. The dominant lan-
guages that grew in this space were proprietary and specific to verification
such as OpenVera and e, although some of the more advanced users did make
the freely available C++ language their solution. Judging which of these lan-
guages was the best is very difficult, but one thing was clear, not only they
were disjointed from Verilog but verification engineers were expected to
learn multiple complex languages. Although some users of Verilog were
using the language for writing testbenches (sometimes going across the PLI
into the C language) it should be no surprise to anybody if I say that using
Verilog for testbenches ran out of steam even before the 1990s started. Unfor-
tunately, during the 1990s, Verilog stagnated as a language in its struggle to
become an industry standard, and so made the problem worse.

Towards the end of the 1990s, a startup company called Co-Design broke
through this stagnation and started the process of designing and implementing
the language we now know as the SystemVerilog industry standard. The
vision of SystemVerilog was to first expand on the abstract capabilities of
synthesizable code, and then to significantly add all the features known to be
necessary for verification, while keeping the new standard a strict superset of
the previous Verilog standards. The benefits of having a single language and a
single coherent run-time environment cannot be expressed enough. For
instance, the user benefits greatly from ease of use, and the vendor can take

SystemVerilog for Verificationxxvi

many significant new opportunities to achieve much higher levels of simula-
tion performance.

There is no doubt that the powerful enhancements put into SystemVerilog
have also made the overall language quite complex. If you have a working
knowledge of Verilog, and are overwhelmed by the complex verification con-
structs now in SystemVerilog and the books that teach you the advanced
lessons, this is the book for you. The author has spent a large amount of time
making language mistakes that you need not repeat. Through the process of
correcting his mistakes with his vast verification experience, the author has
compiled over three hundred examples showing you the correct ways of cod-
ing and solving problems, so that you can learn by example and be led gently
into the productive world of SystemVerilog.

PHIL MOORBY
New England, 2006

Preface

What is this book about?

This book is the first one you should read to learn the SystemVerilog veri-
fication language constructs. It describes how the language works and
includes many examples on how to build a basic coverage-driven, con-
strained-random layered testbench using Object Oriented Programming
(OOP). The book has many guidelines on building testbenches, which help
show why you want to use classes, randomization, and functional coverage.
Once you have learned the language, pick up some of the methodology books
listed in the References section for more information on building a testbench.

Who should read this book?

If you create testbenches, you need this book. If you have only written
tests using Verilog or VHDL and want to learn SystemVerilog, this book
shows you how to move up to the new language features. Vera and Specman
users can learn how one language can be used for both design and verifica-
tion. You may have tried to read the SystemVerilog Language Reference
Manual (LRM) but found it loaded with syntax but no guidelines on which
construct to choose.

I wrote this book because, like many of my customers, I spent much of my
career using procedural languages such as C and Verilog to write tests, and
had to relearn everything when OOP verification languages came along. I
made all the typical mistakes, and wrote this book so you won’t have to repeat
them.

Before reading this book, you should be comfortable with Verilog-1995.
Knowledge of Verilog-2001, SystemVerilog design constructs, or System-
Verilog Assertions is not required.

SystemVerilog for Verificationxxviii

Why was SystemVerilog created?

In the late 1990s, the Verilog Hardware Description Language (HDL)
became the most widely used language for describing hardware for simulation
and synthesis. However, the first two versions standardized by the IEEE
(1364-1995 and 1364-2001) had only simple constructs for creating tests. As
design sizes outgrew the verification capabilities of the language, commercial
Hardware Verification Languages (HVL) such as OpenVera and e were cre-
ated. Companies that did not want to pay for these tools instead spent
hundreds of man-years creating their own custom tools.

This productivity crisis (along with a similar one on the design side) led to
the creation of Accellera, a consortium of EDA companies and users who
wanted to create the next generation of Verilog. The donation of the Open-
Vera language formed the basis for the HVL features of SystemVerilog.
Accellera’s goal was met in November 2005 with the adoption of the IEEE
standard P1800-2005 for SystemVerilog, IEEE (2005).

Importance of a unified language

Verification is generally viewed as a fundamentally different activity from
design. This split has led to the development of narrowly focused language for
verification and to the bifurcation of engineers into two largely independent
disciplines. This specialization has created substantial bottlenecks in terms of
communication between the two groups. SystemVerilog addresses this issue
with its capabilities for both camps. Neither team has to give up any capabili-
ties it needs to be successful, but the unification of both syntax and semantics
of design and verification tools improves communication. For example, while
a design engineer may not be able to write an object-oriented testbench envi-
ronment, it is fairly straightforward to read such a test and understand what is
happening, enabling both the design and verification engineers to work
together to identify and fix problems. Likewise, a designer understands the
inner workings of his or her block, and is the best person to write assertions
about it, but a verification engineer may have a broader view needed to create
assertions between blocks.

Another advantage of including the design, testbench, and assertion con-
structs in a single language is that the testbench has easy access to all parts of
the environment without requiring specialized APIs. The value of an HVL is
its ability to create high-level, flexible tests, not its loop constructs or declara-
tion style. SystemVerilog is based on the Verilog constructs that engineers
have used for decades.

xxix

Importance of methodology

There is a difference between learning the syntax of a language and learn-
ing how to use a tool. This book focuses on techniques for verification using
constrained-random tests that use functional coverage to measure progress
and direct the verification. As the chapters unfold, language and methodology
features are shown side by side. For more on methodology, see Bergeron et al.
(2006).

The most valuable benefit of SystemVerilog is that it allows the user to
construct reliable, repeatable verification environments, in a consistent syn-
tax, that can be used across multiple projects.

Comparing SystemVerilog and SystemC for high-level design

Now that SystemVerilog incorporates Object Oriented Programming,
dynamic threads, and interprocess communication, it can be used for system
design. When talking about the applications for SystemVerilog, the IEEE
standard mentions architectural modeling before design, assertions, and test.
SystemC can also be used for architectural modeling. There are several major
differences between SystemC and SystemVerilog:

SystemVerilog provides one modeling language. You do not have to
learn C++ and the Standard Template Library to create your models
SystemVerilog simplifies top-down design. You can create your sys-
tem models in SystemVerilog and then refine each block to the next
lower level. The original system-level models can be reused as refer-
ence models.
Software developers want a free or low-cost hardware simulator that
is fast. You can create high-performance transaction-level models in
both SystemC and SystemVerilog. SystemVerilog simulators require
a license that a software developer may not want to pay for. SystemC
can be free, but only if all your models are available in SystemC.

Overview of the book

The SystemVerilog language includes features for design, verification,
assertions, and more. This book focuses on the constructs used to verify a
design. There are many ways to solve a problem using SystemVerilog. This
book explains the trade-offs between alternative solutions.

Chapter 1, Verification Guidelines, presents verification techniques to
serve as a foundation for learning and using the SystemVerilog language.

SystemVerilog for Verificationxxx

These guidelines emphasize coverage-driven random testing in a layered test-
bench environment.

Chapter 2, Data Types, covers the new SystemVerilog data types such as
arrays, structures, enumerated types, and packed variables.

Chapter 3, Procedural Statements and Routines, shows the new proce-
dural statements and improvements for tasks and functions.

Chapter 4, Basic OOP, is an introduction to Object Oriented Program-
ming, explaining how to build classes, construct objects, and use handles.

Chapter 5, Connecting the Testbench and Design, shows the new Sys-
temVerilog verification constructs, such as program blocks, interfaces, and
clocking blocks, and how they are used to build your testbench and connect it
to the design under test.

Chapter 6, Randomization, shows you how to use SystemVerilog’s con-
strained-random stimulus generation, including many techniques and
examples.

Chapter 7, Threads and Interprocess Communication, shows how to
create multiple threads in your testbench, use interprocess communication to
exchange data between these threads and synchronize them.

Chapter 8, Advanced OOP and Guidelines, shows how to build a layered
testbench with OOP’s inheritance so that the components can be shared by all
tests.

Chapter 9, Functional Coverage, explains the different types of coverage
and how you can use functional coverage to measure your progress as you fol-
low a verification plan.

Chapter 10, Advanced Interfaces, shows how to use virtual interfaces to
simplify your testbench code, connect to multiple design configurations, and
create interfaces with procedural code so your testbench and design can work
at a higher level of abstraction.

xxxi

Icons used in this book

Final comments

If you would like more information on SystemVerilog and Verification,
you can find many resources at

http://chris.spear.net/systemverilog

This site has the source code for the examples in this book. All of the
examples have been verified with Synopsys’ Chronologic VCS 2005.06 and
2006.06. The SystemVerilog Language Reference Manual covers hundreds of
new features. I have concentrated on constructs useful for verification and
implemented in VCS. It is better to have verified examples than to show all
language features and thus risk having incorrect code. Speaking of mistakes,
if you think you have found a mistake, please check my web site for the Errata
page. If you are the first to find any mistake in a chapter, I will send you a free
book.

CHRIS SPEAR
Synopsys, Inc.

Table 1. Book icons

Shows verification methodol-
ogy to guide your usage of
SystemVerilog testbench fea-
tures

Shows common coding mis-
takes

Acknowledgments

Few books are the creation of a single person. I want to thank all the peo-
ple who spent countless hours helping me learn SystemVerilog and reviewing
the book that you now hold in your hand. I especially would like to thank all
the people at Synopsys for their help, including all my patient managers.

Janick Bergeron provided inspiration, innumerable verification tech-
niques, and top-quality reviews. Without his guidance, this book would not
exist. But the mistakes are all mine!

Alex Potapov and the VCS R&D team always showed patience with my
questions and provided valuable insight on SystemVerilog features.

Mike Barnaby, Bob Beckwith, Quinn Canfield, James Chang, Cliff
Cummings, Al Czamara, John Girard, Alex Lorgus, Mike Mintz, Brad
Pierce, Arturo Salz, and Kripa Sundar reviewed some very rough drafts
and inspired many improvements.

Hans van der Schoot gave me the confidence to write that one last chap-
ter on functional coverage, and the detailed feedback to make it useful.
Benjamin Chin, Paul Graykowski, David Lee, and Chris Thompson origi-
nated many of the ideas that evolved into the functional coverage chapter.

Dan McGinley and Sam Starfas patiently helped lift me from the depths
of Word up to the heights of FrameMaker.

Ann K. Farmer — Arrigato gozaimasu! You brought sense to my
scribblings.

Will Sherwood inspired me to become a verification engineer, and taught
me new ways to break things.

SystemVerilog for Verificationxxxiv

United Airlines always had a quiet place to work and plenty of snacks.
“Chicken or pasta?”

Lastly, a big thanks to Jay Mcinerney for his brash pronoun usage.

All trademarks and copyrights are the property of their respective owners.

Chapter 1

Verification Guidelines

“Some believed we lacked the programming language to describe your perfect world...”
(The Matrix, 1999)

1.1 Introduction

Imagine that you are given the job of building a house for someone. Where
should you begin? Do you start by choosing doors and windows, picking out
paint and carpet colors, or selecting bathroom fixtures? Of course not! First
you must consider how the owners will use the space, and their budget, so you
can decide what type of house to build. Questions you should consider are; do
they enjoy cooking and want a high-end kitchen, or will they prefer watching
movies in the home theater room and eating takeout pizza? Do they want a
home office or extra bedrooms? Or does their budget limit them to a basic
house?

Before you start to learn details of the SystemVerilog language, you need
to understand how you plan to verify your particular design and how this
influences the testbench structure. Just as all houses have kitchens, bedrooms,
and bathrooms, all testbenches share some common structure of stimulus gen-
eration and response checking. This chapter introduces a set of guidelines and
coding styles for designing and constructing a testbench that meets your par-
ticular needs. These techniques use some of the same concepts as shown in
the Verification Methodology Manual for SystemVerilog (VMM), Bergeron et
al. (2006), but without the base classes.

The most important principle you can learn as a verification engineer is:
“Bugs are good.” Don’t shy away from finding the next bug, do not hesitate to
ring a bell each time you uncover one, and furthermore, always keep track of
each bug found. The entire project team assumes there are bugs in the design,
so each bug found before tape-out is one fewer that ends up in the customer’s
hands. You need to be as devious as possible, twisting and torturing the
design to extract all possible bugs now, while they are still easy to fix. Don’t
let the designers steal all the glory — without your craft and cunning, the
design might never work!

This book assumes you already know the Verilog language and want to
learn the SystemVerilog Hardware Verification Language (HVL). Some of

