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Foreword

When Verilog was first developed in the mid-1980s the mainstream level
of design abstraction was on the move from the widely popular switch and
gate levels up to the synthesizable RTL. By the late 1980s, RTL synthesis and
simulation had revolutionized the front-end of the EDA industry.

The 1990s saw a tremendous expansion in the verification problem space
and a corresponding growth of EDA tools to fill that space. The dominant lan-
guages that grew in this space were proprietary and specific to verification
such as OpenVera and e, although some of the more advanced users did make
the freely available C++ language their solution. Judging which of these lan-
guages was the best is very difficult, but one thing was clear, not only they
were disjointed from Verilog but verification engineers were expected to
learn multiple complex languages. Although some users of Verilog were
using the language for writing testbenches (sometimes going across the PLI
into the C language) it should be no surprise to anybody if I say that using
Verilog for testbenches ran out of steam even before the 1990s started. Unfor-
tunately, during the 1990s, Verilog stagnated as a language in its struggle to
become an industry standard, and so made the problem worse.

Towards the end of the 1990s, a startup company called Co-Design broke
through this stagnation and started the process of designing and implementing
the language we now know as the SystemVerilog industry standard. The
vision of SystemVerilog was to first expand on the abstract capabilities of
synthesizable code, and then to significantly add all the features known to be
necessary for verification, while keeping the new standard a strict superset of
the previous Verilog standards. The benefits of having a single language and a
single coherent run-time environment cannot be expressed enough. For
instance, the user benefits greatly from ease of use, and the vendor can take
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many significant new opportunities to achieve much higher levels of simula-
tion performance.

There is no doubt that the powerful enhancements put into SystemVerilog
have also made the overall language quite complex. If you have a working
knowledge of Verilog, and are overwhelmed by the complex verification con-
structs now in SystemVerilog and the books that teach you the advanced
lessons, this is the book for you. The author has spent a large amount of time
making language mistakes that you need not repeat. Through the process of
correcting his mistakes with his vast verification experience, the author has
compiled over three hundred examples showing you the correct ways of cod-
ing and solving problems, so that you can learn by example and be led gently
into the productive world of SystemVerilog.

PHIL MOORBY
New England, 2006



Preface

What is this book about?

This book is the first one you should read to learn the SystemVerilog veri-
fication language constructs. It describes how the language works and
includes many examples on how to build a basic coverage-driven, con-
strained-random layered testbench using Object Oriented Programming
(OOP). The book has many guidelines on building testbenches, which help
show why you want to use classes, randomization, and functional coverage.
Once you have learned the language, pick up some of the methodology books
listed in the References section for more information on building a testbench.

Who should read this book?

If you create testbenches, you need this book. If you have only written
tests using Verilog or VHDL and want to learn SystemVerilog, this book
shows you how to move up to the new language features. Vera and Specman
users can learn how one language can be used for both design and verifica-
tion. You may have tried to read the SystemVerilog Language Reference
Manual (LRM) but found it loaded with syntax but no guidelines on which
construct to choose. 

I wrote this book because, like many of my customers, I spent much of my
career using procedural languages such as C and Verilog to write tests, and
had to relearn everything when OOP verification languages came along. I
made all the typical mistakes, and wrote this book so you won’t have to repeat
them.

Before reading this book, you should be comfortable with Verilog-1995.
Knowledge of Verilog-2001, SystemVerilog design constructs, or System-
Verilog Assertions is not required.



SystemVerilog for Verificationxxviii

Why was SystemVerilog created?

In the late 1990s, the Verilog Hardware Description Language (HDL)
became the most widely used language for describing hardware for simulation
and synthesis. However, the first two versions standardized by the IEEE
(1364-1995 and 1364-2001) had only simple constructs for creating tests. As
design sizes outgrew the verification capabilities of the language, commercial
Hardware Verification Languages (HVL) such as OpenVera and e were cre-
ated. Companies that did not want to pay for these tools instead spent
hundreds of man-years creating their own custom tools.

This productivity crisis (along with a similar one on the design side) led to
the creation of Accellera, a consortium of EDA companies and users who
wanted to create the next generation of Verilog. The donation of the Open-
Vera language formed the basis for the HVL features of SystemVerilog.
Accellera’s goal was met in November 2005 with the adoption of the IEEE
standard P1800-2005 for SystemVerilog, IEEE (2005).

Importance of a unified language

Verification is generally viewed as a fundamentally different activity from
design. This split has led to the development of narrowly focused language for
verification and to the bifurcation of engineers into two largely independent
disciplines. This specialization has created substantial bottlenecks in terms of
communication between the two groups. SystemVerilog addresses this issue
with its capabilities for both camps. Neither team has to give up any capabili-
ties it needs to be successful, but the unification of both syntax and semantics
of design and verification tools improves communication. For example, while
a design engineer may not be able to write an object-oriented testbench envi-
ronment, it is fairly straightforward to read such a test and understand what is
happening, enabling both the design and verification engineers to work
together to identify and fix problems. Likewise, a designer understands the
inner workings of his or her block, and is the best person to write assertions
about it, but a verification engineer may have a broader view needed to create
assertions between blocks.

Another advantage of including the design, testbench, and assertion con-
structs in a single language is that the testbench has easy access to all parts of
the environment without requiring specialized APIs. The value of an HVL is
its ability to create high-level, flexible tests, not its loop constructs or declara-
tion style. SystemVerilog is based on the Verilog constructs that engineers
have used for decades.
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Importance of methodology

There is a difference between learning the syntax of a language and learn-
ing how to use a tool. This book focuses on techniques for verification using
constrained-random tests that use functional coverage to measure progress
and direct the verification. As the chapters unfold, language and methodology
features are shown side by side. For more on methodology, see Bergeron et al.
(2006).

The most valuable benefit of SystemVerilog is that it allows the user to
construct reliable, repeatable verification environments, in a consistent syn-
tax, that can be used across multiple projects.

Comparing SystemVerilog and SystemC for high-level design

Now that SystemVerilog incorporates Object Oriented Programming,
dynamic threads, and interprocess communication, it can be used for system
design. When talking about the applications for SystemVerilog, the IEEE
standard mentions architectural modeling before design, assertions, and test.
SystemC can also be used for architectural modeling. There are several major
differences between SystemC and SystemVerilog:

SystemVerilog provides one modeling language. You do not have to
learn C++ and the Standard Template Library to create your models
SystemVerilog simplifies top-down design. You can create your sys-
tem models in SystemVerilog and then refine each block to the next
lower level. The original system-level models can be reused as refer-
ence models.
Software developers want a free or low-cost hardware simulator that
is fast. You can create high-performance transaction-level models in
both SystemC and SystemVerilog. SystemVerilog simulators require
a license that a software developer may not want to pay for. SystemC
can be free, but only if all your models are available in SystemC.

Overview of the book

The SystemVerilog language includes features for design, verification,
assertions, and more. This book focuses on the constructs used to verify a
design. There are many ways to solve a problem using SystemVerilog. This
book explains the trade-offs between alternative solutions.

Chapter 1, Verification Guidelines, presents verification techniques to
serve as a foundation for learning and using the SystemVerilog language.
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These guidelines emphasize coverage-driven random testing in a layered test-
bench environment.

Chapter 2, Data Types, covers the new SystemVerilog data types such as
arrays, structures, enumerated types, and packed variables.

Chapter 3, Procedural Statements and Routines, shows the new proce-
dural statements and improvements for tasks and functions.

Chapter 4, Basic OOP, is an introduction to Object Oriented Program-
ming, explaining how to build classes, construct objects, and use handles.

Chapter 5, Connecting the Testbench and Design, shows the new Sys-
temVerilog verification constructs, such as program blocks, interfaces, and
clocking blocks, and how they are used to build your testbench and connect it
to the design under test.

Chapter 6, Randomization, shows you how to use SystemVerilog’s con-
strained-random stimulus generation, including many techniques and
examples.

Chapter 7, Threads and Interprocess Communication, shows how to
create multiple threads in your testbench, use interprocess communication to
exchange data between these threads and synchronize them.

Chapter 8, Advanced OOP and Guidelines, shows how to build a layered
testbench with OOP’s inheritance so that the components can be shared by all
tests.

Chapter 9, Functional Coverage, explains the different types of coverage
and how you can use functional coverage to measure your progress as you fol-
low a verification plan.

Chapter 10, Advanced Interfaces, shows how to use virtual interfaces to
simplify your testbench code, connect to multiple design configurations, and
create interfaces with procedural code so your testbench and design can work
at a higher level of abstraction.
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Icons used in this book

Final comments

If you would like more information on SystemVerilog and Verification,
you can find many resources at

http://chris.spear.net/systemverilog

This site has the source code for the examples in this book. All of the
examples have been verified with Synopsys’ Chronologic VCS 2005.06 and
2006.06. The SystemVerilog Language Reference Manual covers hundreds of
new features. I have concentrated on constructs useful for verification and
implemented in VCS. It is better to have verified examples than to show all
language features and thus risk having incorrect code. Speaking of mistakes,
if you think you have found a mistake, please check my web site for the Errata
page. If you are the first to find any mistake in a chapter, I will send you a free
book.

CHRIS SPEAR
Synopsys, Inc.

Table 1. Book icons

Shows verification methodol-
ogy to guide your usage of 
SystemVerilog testbench fea-
tures

Shows common coding mis-
takes
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Chapter 1

Verification Guidelines

“Some believed we lacked the programming language to describe your perfect world...”
(The Matrix, 1999)

1.1 Introduction

Imagine that you are given the job of building a house for someone. Where
should you begin? Do you start by choosing doors and windows, picking out
paint and carpet colors, or selecting bathroom fixtures? Of course not! First
you must consider how the owners will use the space, and their budget, so you
can decide what type of house to build. Questions you should consider are; do
they enjoy cooking and want a high-end kitchen, or will they prefer watching
movies in the home theater room and eating takeout pizza? Do they want a
home office or extra bedrooms? Or does their budget limit them to a basic
house?

Before you start to learn details of the SystemVerilog language, you need
to understand how you plan to verify your particular design and how this
influences the testbench structure. Just as all houses have kitchens, bedrooms,
and bathrooms, all testbenches share some common structure of stimulus gen-
eration and response checking. This chapter introduces a set of guidelines and
coding styles for designing and constructing a testbench that meets your par-
ticular needs. These techniques use some of the same concepts as shown in
the Verification Methodology Manual for SystemVerilog (VMM), Bergeron et
al. (2006), but without the base classes.

The most important principle you can learn as a verification engineer is:
“Bugs are good.” Don’t shy away from finding the next bug, do not hesitate to
ring a bell each time you uncover one, and furthermore, always keep track of
each bug found. The entire project team assumes there are bugs in the design,
so each bug found before tape-out is one fewer that ends up in the customer’s
hands. You need to be as devious as possible, twisting and torturing the
design to extract all possible bugs now, while they are still easy to fix. Don’t
let the designers steal all the glory — without your craft and cunning, the
design might never work! 

This book assumes you already know the Verilog language and want to
learn the SystemVerilog Hardware Verification Language (HVL). Some of


