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Preface 

He [Kronecker] was, in fact, attempting to describe and to initiate a new 
branch of mathematics, which would contain both number theory and alge
braic geometry as special cases.—Andre Weil [62] 

This book is about mathematics, not the history or philosophy of mathemat
ics. Still, history and philosophy were prominent among my motives for writing 
it, and historical and philosophical issues will be major factors in determining 
whether it wins acceptance. 

Most mathematicians prefer constructive methods. Given two proofs of 
the same statement, one constructive and the other not, most will prefer the 
constructive proof. The real philosophical disagreement over the role of con
structions in mathematics is between those—the majority—who believe that 
to exclude from mathematics all statements that cannot be proved construc
tively would omit far too much, and those of us who believe, on the contrary, 
that the most interesting parts of mathematics can be dealt with construc
tively, and that the greater rigor and precision of mathematics done in that 
way adds immensely to its value. 

Mathematics came to a fork in the road around 1880. On one side, 
Dedekind, Cantor, and Weierstrass advocated accepting transfinite "construc
tions" like those needed to prove the Bolzano-Weierstrass "theorem." On the 
other, Kronecker argued that no such departure from the standards of proof 
adhered to by Dirichlet and Gauss was necessary and that the Aristotelian 
exclusion of completed infinites could be maintained. As we all know, the first 
group carried the day, and the Dedekind-Cantor-Weierstrass road was the 
one taken. 

The new orthodoxy was consolidated by Hilbert a century ago, and has 
reigned ever since, despite occasional challenges, notably from Brouwer and 
Bishop. During this century, the phrase "foundations of mathematics" has 
come to mean for most working mathematicians the complex of ideas sur
rounding the axioms of set theory and the axiom of choice, matters that for 
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Kronecker had no mathematical meaning at all, much less foundational mean
ing. 

Why, a hundred years after this choice was made, and made so decisively, 
do I believe tha t the road Kronecker proposed might win new consideration? 
The advent of computers has had a profound impact on mathematics and 
mathematicians tha t has already altered views about the nature and meaning 
of mathematics in a way favorable to Kronecker. The new technology causes 
mathematics to be taught and experienced in a much more computational 
way and directs at tent ion to algorithms. In other words, it fosters construc
tive at t i tudes. My own preference for constructive formulations was shaped 
by my experience with computer programming in the 1950s, and computer 
programming at tha t t ime was trivial by today's s tandards. 

No evidence supports the image tha t is so often presented of Kronecker as 
a vicious and personal critic of Cantor and Weierstrass—another instance of 
history being writ ten by the victors. As far as I have been able to discover, 
Kronecker vigorously opposed the views of Cantor and Weierstrass, as well as 
those of Dedekind, with whom he was on far bet ter terms, but he was not 
hostile to the men themselves. Moreover, his opposition to their views—which 
was of course reciprocated—was rarely expressed in his publications. In the 
rare instances in which he mentioned such issues, he merely stated his belief 
tha t the new ways of dealing with infinity tha t were coming to be accepted 
were unnecessary. Instead of excoriating nonconstructive methods, as legend 
would have us believe, he concentrated his efforts on backing up his beliefs 
with concrete mathematical results proved constructively. 

No one doubts t ha t Kronecker was one of the giants of nineteenth-century 
mathematics, but it is often said tha t he succeeded in his works because he 
ignored the strictures tha t he advocated in his philosophy. This view of the 
relation of Kronecker's mathematics to his philosophy is often ascribed to 
Poincare, but as I have writ ten elsewhere [21], this ascription is based on 
a misinterpretation of a passage [53] in which Poincare writes about issues 
unrelated to the t rea tment of infinity in mathematics . Indeed, no one who has 
studied Kronecker's works could believe tha t he accepted completed infinites 
or made use of nonconstructive arguments. Like many other mathematicians 
since, he was impatient with the philosophy of mathematics and wanted only 
to get on with his mathematics itself, but for him "mathematics" was always 
constructive. 

Tha t a t t i tude inspires these essays. My goal has been not to argue against 
the prevailing orthodoxy, but to show tha t substantial mathematics can be 
done constructively, and tha t such mathematics is interesting, illuminating, 
and concordant with the new algorithmic spirit of our times. I have given ex
amples of what I mean by constructive mathematics, without trying to define 
it. The underlying idea is well expressed in the essay of Poincare mentioned 
above, in which he says tha t the guiding principle for bo th Kronecker and 
Weierstrass was to "derive everything from the natural numbers" so tha t the 
result would "partake of the certainty of arithmetic." I regard the natural 
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numbers not as a completed infinite set but as a means of describing the ac
tivity of counting. (See Essay 1.1.) The essence of constructive mathematics 
for me hes in the insistence upon treat ing infinity, in Gauss's phrase, as a 
fagon de parler, a shorthand way of describing ideas tha t need to be restated 
in terms of finite calculations when it comes to writing a formal proof. 

It will surely be remarked tha t almost all of the topics t reated in the essays 
come from algebra and number theory. They not only partake of the certainty 
of arithmetic, as Poincare says, they are ar i thmetic—what Kronecker called 
"general ari thmetic." (Again, see Essay 1.1.) But there are three exceptions. 
In Essay 4.4, Newton's polygon is t reated as a method of constructing an 
infinite series, which means, constructively, as an algorithm for generating ar
bitrarily many terms of the series. Convergence is not an issue because the 
theory t reats the series themselves, not their limits in any sense. In Essay 5.1, 
a complex root of a given polynomial—a convergent sequence of rational com
plex numbers whose limit is a root of the polynomial—is found by an explicit 
construction. Finally, Essay 5.4, which sketches a proof of the spectral theo
rem for symmetric matrices of integers, necessarily deals with real numbers, 
tha t is, with convergent sequences of rationals. 

An essay is "a short literary composition on a single subject, usually pre
senting the personal views of the author." There is nothing literary about 
these essays, but they do treat their mathematical subjects from a personal 
point of view. For example. Essay 5.1 explains why the "fundamental the
orem of algebra" is misnamed—in a very real sense it isn't even t rue—and 
Essay 1.2 explains why Euclid's s tatement of Proposition 1 of Book 1 of the 
Elements^ "On a given finite straight line to construct an equilateral tr ian
gle" is bet ter than "Given a straight line segment, there exists an equilateral 
triangle of which it is one of the sides," the form in which most of Euclid's 
present-day successors would s ta te it. These are my opinions. To my dismay, 
it is incessantly borne in on me how few of my colleagues share them and 
how completely mathematicians today misunderstand and reject them. These 
compositions t ry—they essay—to present them in a way tha t will permit the 
reader to see past the preconceptions tha t s tand between what I regard as 
a commonsense a t t i tude toward the study of mathematics and the at t i tudes 
most commonly accepted today. They essay to reopen the Kroneckerian road 
not taken. 

A c k n o w l e d g m e n t s 

I am profoundly grateful to Professor David Cox, who provided encourage
ment when it was sorely needed, and backed it up with sound advice. I also 
thank Professors Bruce Chandler, Ricky Pollack, and Gabriel Stolzenberg for 
friendship and for many years of stimulating conversation about the history 
and philosophy of mathematics . 

Most of all, I thank my wife, Bet ty Rollin, to whom this book is dedicated, 
for more than I could ever enumerate. 
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The essays are divided into five parts: 

A Fundamental Theorem 
Topics in Algebra 
Some Quadratic Problems 
The Genus of an Algebraic Curve 
Miscellany 

The fundamental theorem of Part 1 constructs a splitting field for a given 
polynomial. As is shown in Part 2, the case in which the given polynomial 
has coefficients in a ring of the form Z[ci, C2, . . . , Cj^]—a ring of polynomials 
in some set of indeterminates ci, C2, .. •, Cj^ with integer coefficients—suffices 
for the apparently more general case of a polynomial f{x) whose coefficients 
are "algebraic quantities" in a very general sense. For this reason, only poly
nomials with coefficients in Z[ci, C2, . . . , Cjy] are considered in Part 1. 

Another way to state the problem "Construct a splitting field for a given 
polynomial" is "Extend the notion of computation with polynomials with 
integer coefficients in such a way that the given polynomial can be written 
as a product of linear factors." Computation in Z[ci, C2, . . . , Cj^] involves 
just addition, subtraction, and multiplication, but it extends to computations 
involving division in the field of quotients of the integral domain Z[ci, C2, 
. . . , ĉ y] in the same way that computation in the ring of integers extends to 
computation in the field of rational numbers. As Gauss's lemma shows (Essay 
1.4), this extension does not affect the factorization of polynomials. A simple 
further extension of Z[ci, C2, . . . , ĉ ]̂ is effected by "adjoining" one root of 
a monic, irreducible polynomial with coefficients in Z[ci, C2, . . . , Cy] to the 
field of rational functions. This simple construction, which Galois used with 
amazing success, although with some lack of rigor, is generally known as a 
"simple algebraic extension" of the field of quotients of Z[ci, C2, . . . , ĉ y]. For 
the sake of brevity, I have called a field constructed in this way the "root field" 
of the monic, irreducible polynomial used in its construction (Essay 1.3). 
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Wi th this specific description of the way in which computations in Z[ci, 
C2, . • . , ĉ y] are to be extended, the construction problem to be solved becomes, 
"Given a polynomial / with coefficients in Z[ci, C2, . . . , ĉ y], find an auxiliary 
polynomial g with coefficients in the same ring such tha t g is monic and 
irreducible and such t ha t its root field splits / " in the sense tha t / can be 
wri t ten as a product of linear factors with coefficients in the root field of g. 

The problem, then, is, "Given / construct f̂." The solution in Par t 1 is 
iterative. Suppose tha t ^ is a failed a t tempt at a solution. Thus, the factor
ization of / over the root field of g contains at least one irreducible factor 
of degree greater than 1. The iteration needs to construct a better a t tempt 
at a solution. Specifically, it needs to construct a new auxiliary polynomial, 
call it gi, with the property tha t the factorization of / over the root field of 
gi contains more linear factors t han does the factorization of / over the root 
field of f̂. If gi fails to split / , the same procedure can be applied again to find 
a g2 tha t gives / more linear factors than gi did. Since the number of linear 
factors of / increases with each new ^, and since the number of such factors 
is bounded above by the degree of / , such an iteration must eventually reach 
a solution of the problem—an a t tempted g tha t does not fail. 

To make this sketch into an actual iterative construction of a splitting field 
for / requires two main steps. First, given / and an a t tempt at g^ one needs 
to be able to factor f when it is regarded as a polynomial with coefficients not 
in Z[ci, C2, ' • y Ci,] hut in its extension, the root field of g. The difficult step 
in the construction of a splitting field for / is the algorithmic solution of this 
factorization problem. The algorithm is set forth in Essay 1.5, with examples, 
and the proof tha t it achieves its objective is in Essay 1.6. The relation of the 
algorithm to Kronecker's solution of the same factorization problem is among 
the subjects discussed in Essay 1.7. Second, one needs to describe explicitly 
how to pass from a g tha t fails to split / to a new gi tha t comes closer to 
splitting / . The underlying idea of the construction is simple: Because g does 
not split / , there is an irreducible factor, call it (/), of / over the root field of g 
whose degree is greater than 1. Adjoin to the root field of g a root of (j). This 
double adjunction, first of a root of g and then of a root of 0, gives a field 
over which / has more linear factors—a field in which / has more roots— 
because it contains a root of 0, and the root field of g did not. The problem 
is to write this double adjunction as a simple one—specifically as the field 
obtained by adjoining a root of a new gi with coefficients in Z[ci, C2, • . . , ĉ y]. 
The construction of such a gi is given in Essay 1.8. 

Finally, although there are infinitely many polynomials g tha t split / , there 
is only one splitting field of / in the sense that if ^ is a minimal splitting 
polynomial of / one tha t is itself split by any polynomial tha t splits / — t h e 
root field of g is isomorphic to the root field of any other minimal splitting 
polynomial of / . 

The end result is a theorem tha t in my opinion deserves the name "Fun
damental Theorem of Algebra" much more than the theorem tha t is and 
probably always will be known by tha t name: Given a polynomial f (in one 
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variable) with coefficients in Z[ci, C2, ..., Cjy] there is an explicit way to ex
tend rational computations in Z[ci, C2, .. -, Cj^] so that f factors into linear 
factors; moreover, any two minimal ways of doing this are isomorphic. For 
the relation of this theorem to the "Fundamental Theorem of Algebra" see 
Essay 5.1. 

The theorem of Part 1 that has just been described is implicitly contained— 
with no hint of a proof—in Lemma III of Galois's treatise [27] on the algebraic 
solution of equations (see [22]). In this sense, it is the foundation of Galois 
theory. The connection is explained in Essays 2.1 and 2.3. Essay 2.2 is devoted 
to justifying Kronecker's assertion that every field of algebraic quantities is 
isomorphic to the root field of a polynomial with coefficients in some Z[ci, 
C2, . . . ; Cj^] as that concept was defined in Part 1. This fact is the basis of 
Kronecker's later view—despite the fact that he had previously given the title 
Foundations of an Arithmetical Theory of Algebraic Quantities to his ma
jor publication—that "algebraic quantities" were unnecessary in mathemat
ics and that algebraic questions should be studied using "general arithmetic" 
instead (see Essay 1.1). 

The algorithmic description of fields of algebraic quantities in terms of 
"adjunction relations" in Essay 2.3 gives a construction of the splitting field 
of a polynomial that is very close to Chebotarev's in his excellent but little-
known book on Galois theory [8]. 

The construction of the splitting field of a general monic polynomial of 
degree n in Essay 2.4 proves another basic theorem of Galois—another to 
which Galois gave no hint of a proof—that the Galois group of an nth-degree 
polynomial f{x) whose coeflacients are 'letters' is the full symmetric group. 
The splitting field is explicitly given by adjunction relations fi{ai) — 0, where 

(1) fi{x) - ^^""^ 
{x - ai){x - 0̂ 2) • • • {x - ai-i) 

is the irreducible polynomial satisfied by a root a^ of f{x) whose coefficients 
are polynomials in the roots o î, 0:2, . . . , o^i-i already adjoined. (The right 
side of (1), as it stands, is of course not a polynomial; it becomes one once 
i — 1 roots a i , 0̂ 2, • • •, <^z-i of / (^ ) have been adjoined and the divisions (1) 
calls for have been performed.) The degree n! of the extension is of course the 
product of the degrees of these adjunction relations. The nub of the matter is 
the proof that each fi{x) is irreducible over the field generated by a i , 0̂ 2, • • •, 
ai-i. These ideas stem from Kronecker, as does the fundamental theorem of 
divisor theory in Essay 2.5. 

Part 3 deals with different matters altogether. Its primary inspiration is 
Gauss's proof of quadratic reciprocity in Section 5 of the Disquisitiones Arith-
meticae^ but the proof is recast by translating it from a study of quadratic 
forms and their composition to a study of modules and their multiplication. 
The "modules" involved are entities of the following type. With "number" 
meaning a number 0, 1, 2, . . . , let a "hypernumber" for a given A mean 
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an expression y -\- x\/~A in which x and y are numbers. Such hyper numbers 
can be added and multiphed, and, when the sizes of the coefficients allow it, 
subtracted as well. It is natural to assume tha t the given A is not a square, 
because otherwise, y -f- x\/A would be a number, and nothing new would be 
found by computing with hypernumbers. It will also be assumed that A is 
positive, but this assumption is made for the sake of simplicity and has no 
particular justification except tha t the case of positive A suffices for the proof 
of quadratic reciprocity. 

Let m i , 7722, • • • 5 ^/x be a list of hypernumbers. Two hypernumbers a and 
b will be said to be congruent mod [mi, m2, ..., ruk], denoted by a = 6 mod 
[mi, m2, . . . , rn^], if they can be made equal by adding sums of multiples 
(with multipliers tha t are hypernumbers) of m i , m2, . . . , m^ to each. This 
is a simple generalization of Gauss's definition of a = 6 mod m, which means 
tha t a and b can be made equal by adding multiples of m to each. (This form 
of the definition eliminates the need for negative numbers in the discussion of 
congruences.) A m o d u l e is a list of hypernumbers [mi, m2, . . . , m^] written 
between square brackets to indicate tha t they are to be used to define a 
congruence relation in this way. Two modules are equal if they define the 
same congruence relation. Essay 3.2 gives all these definitions, along with an 
algorithm for determining whether two given modules are equal. 

When the product of two lists is defined to be the list tha t contains all 
products with one term from the first list and one from the second, the module 
determined by the product depends only on the modules determined by the 
factors, so the operation gives a way to multiply modules. Since the multipli
cation defined in this way is clearly associative and commutative, the modules 
for a given A form a commutative semigroup in which the module [1] is an 
identity. 

One more level of abstraction is needed for the most interesting construc
tion. Let a module be called principal if it can be represented by a list 
[y + x^/A] with just one hypernumber and if, in addition, tha t hypernumber 
satisfies y'^ > Ax'^. The principal modules are a subsemigroup of the semi
group of modules—which means simply tha t a product of principal modules 
is principal—so there is an associated quotient structure: Two modules are 
equivalent if they can be made equal by multiplying each by a principal 
module. (That is. M i ~ M2 means there are principal modules Pi and P2 
for which Mi Pi — M2P2') The equivalence classes of modules for a given A 
defined in this way form a finite semigroup, which I call the c lass semigroup. 
It can be determined for each given A by algorithms described in Essay 3.3. 
These algorithms are essentially the same as Gauss's methods in Section 5 of 
the Disquisitiones for determining the equivalence classes of binary quadratic 
forms for a given "determinant" A^ but in my opinion they are simpler in con
ception. Some rudimentary facts about class semigroups are proved in Essay 
3.4 tha t are then used in Essay 3.5 to prove the law of quadrat ic reciprocity. 

The final two essays of Par t 3 relate the multiplication of modules to 
Gauss's composition of binary quadratic forms by showing how, given two 
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binary quadratic forms, the theory of multiphcation of modules can be used 
to determine whether there is a third binary quadratic form that composes 
them in Gauss's sense, and, if so, to find all such compositions. Once this con
nection is clearly made, it seems to me that the module-and-multiplication 
formulation will have more appeal than the form-and-composition formula
tion. But whether or not the module-and-multiplication version is preferred 
over Gauss's, it has the advantage of relating directly to Gauss's, thereby 
making Gauss's masterpiece more accessible to modern readers whose famil
iarity with Dirichlet's simplification of it may, for reasons explained in Essay 
3.6, be an impediment. 

Part 4, on the genus of an algebraic curve, is inspired by Abel's great memoir of 
1826 (first published, thanks to the negligence of the Paris Academy, in 1841). 
The inspiration for the algorithmic method of Part 4 goes back even further, 
to Newton's method of constructing infinite series expansions of algebraic 
functions, commonly known today as "Newton's polygon." 

The construction used in Part 4 (see Essay 4.1) to describe the genus of a 
curve is based on ideas of Abel that predate the theory of Riemann surfaces 
by many years, and it makes no reference to complex numbers, much less to 
Riemann surfaces. Let an algebraic curve xi^^v) — 0 be given (where x is 
an irreducible polynomial with integer coefficients that contains both x and 
y and, for simplicity, is monic in y), and let a large number N of points on 
the curve also be given. Choose a rational function 0 on the curve with many 
zeros (it will have equally many poles, of course) including zeros at all of the 
N given points. An algebraic variation of the N points is a variation of the 
N points that can be achieved as a variation of the N special zeros of the 
rational function 0 when the coeflicients of 9 are varied in such a way that the 
remaining zeros and all of the poles remain unchanged. (It is assumed that 
the N given zeros are points where x is finite, and the poles are specifically 
taken to be the poles of x^ for some large z/, but in fact any set of poles will 
do, as long as there are enough of them, and the zeros can also be at points 
where x is infinite.) The N zeros then vary with N — g degrees of freedom, 
where the number ^, the genus of the curve, depends only on the curve, not 
on the other choices. 

To make this rough idea of the genus of x(^, ^) = 0 into a definition re
quires, of course, that much more be said. Although the natural first step 
might seem to be the introduction of complex numbers in order to deal rigor
ously with the zeros and poles of ^ on x(x, 2/) = 0, the approach taken in Part 
4 is quite the opposite: It dispenses with the notion of zeros and poles alto
gether. Just as the degree of a polynomial determines the number of its roots, 
general conditions on rational functions 6 can be related heuristically to the 
notions of zeros and poles of 9 on the curve xi^^v) — 0 ^^d their locations. 
On this basis, one can give a satisfactory description of rational functions 9 
on x{x,y) = 0 with prescribed poles of prescribed multiplicity, all in terms of 
"general arithmetic"—the arithmetic of polynomials with integer coefficients. 
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Then Abel's description of the genus can be given sohd, constructive meaning 
in terms of the number of free coefficients in 0 when conditions are placed on 
its zeros and poles, a description that uses nothing but general arithmetic. 

Essay 4.2 relates Abel's construction to Euler's addition formula for elliptic 
curves and to the geometric description of addition on an elliptic curve that 
is so familiar in the present time of great interest in elliptic curves. Essay 4.3 
gives the details of the definition of the genus of x(x, ^) = 0 in these terms. 

Essay 4.4 is an exposition of the Newton algorithm. The task of the al
gorithm is to construct a solution y oi xi^iV) — 0 ^s an infinite series of 
(possibly) fractional powers of x. In constructive mathematics an infinite se
ries must of course be presented as an algorithm that generates the successive 
terms of the series, and this is what the Newton algorithm does. More pre
cisely, the input to the algorithm is a truncated series solution 7/ of x(^, ?/) = 0 
and the algorithm generates one further term of the series. In the early stages, 
a truncated solution may be ambiguous, meaning that it may be extended in 
more than one way, and the algorithm must determine all possible extensions; 
eventually, as is proved in the essay, a set of unambiguous truncated solutions 
is reached, each of which is prolonged by the algorithm with the addition of 
one more term in just one way and therefore represents an infinite series so
lution. (Note that convergence is not an issue, because the series itself—not 
any kind of limit of the series—is the objective.) 

Essay 4.5 gives an algebraic method of evaluating the genus as it was 
defined in Essay 4.3. Essay 4.6 gives a simpler description of the genus as the 
dimension of the vector space of holomorphic differentials on the curve. 
These differentials are the ones that have no poles, and they have the property 
that the algebraic variations of a set of Â  points on the curve are described 
by the differential equations 

N 

^hj{xi,yi)dxi = 0 for j = 1, 2, . . . , ^, 

where the differentials hj{x,y)dx are a basis of the space of holomorphic 
differentials. Essay 4.7 uses the holomorphic differentials on a curve to state 
and prove the Riemann-Roch theorem as a formula for the number of arbitrary 
constants in a rational function with given poles. 

The last essay of Part 4 proves that the genus is a birational invariant, 
even though the method of Essay 4.5 for computing it depends on the choice 
of a parameter x on the curve. This important result can be stated as follows: 
In the terminology of Essay 2.2, the field of rational functions on an algebraic 
curve is an algebraic field of transcendence degree one. The genus as it is 
defined above depends only on this field itself, not on the particular presen
tation of it as a root field that is used in the definition. This conclusion is 
established, in essence, by showing that if x and z are different parameters on 
the curve then hdx is Si holomorphic differential (relative to the parameter x) 
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if and only ii h • ^ - dz is a, holomorphic differential (relative to the parameter 
z)^ so the spaces of holomorphic differentials in the two cases are isomorphic. 

The miscellany of Part 5 begins with a proof of what is called the Fundamental 
Theorem of Algebra—in fact two proofs of it. But my main point in that essay 
is that this theorem is not truly a theorem of algebra at all because it relates 
in an essential way to the nonalgebraic notion of complex numbers. The next 
essay gives a proof of the Sylow theorems in the theory of finite groups, and 
the following two summarize the constructive and algorithmic approach of my 
1995 book on linear algebra. My hope is that Linear Algebra and the present 
book will reinforce one another—this book making the case for the clarifying 
power of algorithmic methods and Linear Algebra giving yet another example 
of that power. The final essay is a further correction to the Kronecker legend. 



A Fundamental Theorem 

Essay 1.1 General Arithmetic 

La derniere chose qu^on trouve en faisant un ouvrage c^est de savoir celle 
qu^il fallait mettre la premiere. (The last thing one discovers in composing 
a work is what should be put first.)—Pascal, Pensees 

Kronecker quoted this saying of Pascal in the first of a series of lectures he 
gave on the concept of number.* It may have been a somewhat rueful reflection 
on his own experience with his 1881 treatise Grundzilge einer arithmetischen 
Theorie der algebraischert Grossen (Elements of an Arithmetical Theory of 
Algebraic Quantities) [39], which contains at least two indications that he al
tered his point of view profoundly while writing it, deciding ultimately that 
the subject of his title was not the one he should be dealing with at all. In 
his introduction to the treatise and in point IV of its last section he speaks 
of reducing the entire theory of "algebraic quantities" to the theory of ratio
nal functions of variables. In later works he did just that. For example, in 
Ein Fundamentalsatz der allgemeinen Arithmetik [42] and Uber den Zahlbe-
griff [43], both published in 1887, he emphasized the importance of rational 
computation with polynomials with integer coefficients and again stated that 
theories of algebraic numbers and algebraic quantities could be reduced to 
such rational computations. Thus, whether or not it was the last thing he dis
covered in writing his 1881 treatise, Kronecker came to believe that he should 
have begun with rational algebra. That is where these essays begin. 

Elsewhere Kronecker said, "In mathematics, I recognize true scientific 
value only in concrete mathematical truths, or, to put it more pointedly, only 
in mathematical formulas" (see [21]). I would rather say "computations" than 
"formulas," but my view is essentially the same. Computation, in turn, is an 
outgrowth of counting, and in this sense mathematics is founded on numbers, 

* These lectures, given in the last year of Kronecker's life, 1891, are preserved in 
the form of a handwritten transcript in the archives of the mathematics library 
of the University of Strasbourg, and were recently published [45]. 
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Fig. 1.1. Kronecker. 

not as abstract "objects" of any kind, but as the system of symbols by which 
we record the results of counts. We learn to use and understand the symbols 
0, 1, 2, 3, . . . at an early age, and most of us understand fairly soon that the 
important thing is not the actual names or symbols that are used, or even 
the decimal system on which they are based, but the mere fact that there are 
agreed-upon symbols and names and an agreed-upon system for counting. In 
this essay, the word "number" will mean a number 0, 1, 2, . . . in this most 
basic sense. 

The more sophisticated computations that we learn later in life grow out 
of counting. First, the operations of addition and multiplication are grounded 
in counting. (Counting first to a then to b is the same as counting to a -\- b. 
Counting a times to b is the same as counting to ab.) Subtraction—the inverse 
of addition—of course makes sense only when the number being subtracted 
is not larger than the one from which it is to be subtracted. However, expe
rience teaches us to widen our horizon in such a way that this limitation on 
subtraction can be put in the background and for the most part ignored. This 
can be done very conveniently in the way Kronecker does it in the essay Uber 
den Zahlbegriff {On the Concept of Number), mentioned above. 

He first introduces ''''Buchstabenrechnung,''^ calculation with letters, in the 
following way: "The same laws [that govern the addition and multiplication of 
numbers] needed to be regarded as valid for calculation with letters as soon as 
letters began to be used to represent numbers whose determination might or 
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should be postponed. Wi th the introduction of the principle of computing with 
indeterminates as such, which originated with Gauss, the special theory of 
whole numbers broadened into the general arithmetical theory of polynomials 
with whole number coefficients."* 

In particular, we can compute with—add and multiply—polynomials in a 
single indeterminate t whose coefficients are numbers. When we use Gauss's 
notation f{t) = g{t) mod ( t+1) to mean tha t f{t) can be transformed into g{t) 
using the identity t + 1 ^ 0 mod (t + 1 ) , we then have a system of computat ion 
in which t plays the role of —1. This system of computat ion is what we mean 
by the ring of integers. 

In modern notation, these observations can be abbreviated Z = N[t] mod 
( t+1) , meaning tha t an element of Z—an integer—is represented by an expres
sion of the form aof^ + ait'^~^ + • • • + a^, where N denotes the set of numbers 
{0 ,1 , 2 , . . . } , where t is an indeterminate, and where n, ao, a i , . . . , a^ are num
bers. Two such representations by definition represent the same element of Z if 
one can be transformed into the other using t-\-l = 0 mod (^+1) in conjunction 
with the usual laws tha t govern addition and multiplication of numbers. Since 
t^ = t2 + (t-f 1) =t'^-\-t-\-l =t{t-hl)-hl = 1 mod ( t + 1 ) , we can always replace 
t^ with 1. Therefore, we can replace t^ with t, t^ with t^ and then with 1, and 
so forth, to represent any integer by an expression of the form at -\- 6, where a 
and b are numbers. Two such expressions represent the same integer, tha t is, 
at-\-b = ct-{-d mod (t + 1), if and only if at + 6-f a + c = ct + d-\-a-\-c mod (t + 1), 
which is to say b-{-c = d-\-a mod (t + 1). Since this congruence does not involve 
t, it is equivalent to the equation b -\- c — d -\- a. In short, the simple device of 
computat ion with polynomials in t mod t + 1 is all tha t is needed to describe 
the usual construction of the ring of integers as ordered pairs of numbers (a, b) 
subject to the equivalence relation "(a, b) = (c, d) means a-\- d = b^ c^^ when 
equivalence classes are added and multiplied in the obvious ways. As Kro-
necker observes, the interpretation of the equation 7 — 9 = 3 — 5 truly involves 
this new meaning of the equal sign. 

In essence, the device of using integers instead of numbers makes it possible 
to do computat ions without bothering about whether particular subtractions 
are possible unless a reason arises to examine tha t issue. Similarly, it makes 
possible writing all terms of an equation on one side of the equal sign, which 
greatly simplifies reasoning by eliminating the need to consider separately 
cases in which the terms would appear on different sides of the equation if 
numbers were used instead of integers. 

* Dieselben Gesetze mussten flir die sogenannte Buchstabenrechnung als maass-
gebend angenommen werden, sobald man anfing, die Buchstaben zur Bezeichnung 
von Zahlen zu verwenden, deren Bestimmung vorbehalten bleiben kann oder soil. 
Aber mit der principiellen Einfiihrung der "Unbestimmten" (indeterminatae), 
welche von Gauss herriihrt, hat sich die specielle Theorie der ganzen Zahlen zu 
der allgemeinen arithmetischen Theorie der ganzen ganzzahligen Functionen von 
Unbestimmten erweitert. 
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The fourth rational operation, division, is the most interesting one. The 
division of numbers naturally takes the form of division with remainder: Two 
numbers a and b with b ^ 0 determine numbers q and r by the conditions 
a = qb -\- r and r < b. This operation is of course very closely connected to 
the original meaning of Gauss's congruence concept a = r mod b. 

In the more general setting of Buchstabenrechnung—computing with poly
nomials in several indeterminates whose coefficients are numbers—the notion 
of divisibility has a clear meaning, but the more useful concept of division with 
remainder does not. An exception is the case of division by a polynomial with 
integer coefficients tha t is monic in one of its indeterminates, meaning tha t 
b = x'^ -\- terms of degree less than n in x. In this case, for any polynomial a 
with integer coefficients, there are unique polynomials q and r with integer 
coefficients for which a — qb-\-r and for which the degree of r in x is less than 
the degree n of 6 in x. 

Another role played by division in elementary ari thmetic is the cancella
tion law of multiplication: If ab = ac and a ^ 0, then b = c. This law is 
obviously valid for numbers—even for integers. Its validity in other contexts, 
when equality is replaced by some kind of congruence, is often a crucial issue. 
When it is valid, the ring of congruences classes under addition and multi
plication is an integral domain . For an integral domain one can construct 
a field of quotients^ the set of all formal quotients p/q in which ^ 7̂  0, when 
p/q = p' /q' is defined to mean pq' = p'q and when addition and multiplication 
are defined by (p/q) + {p'/q') = {pq' -^ p'q)/qq' and (p/q) • {p'/q') = pp'/qq'. 
However, for the most par t fields of quotients themselves—for example, the 
field of rational numbers—will be avoided. The potential of one, the ability to 
compute with formal quotients of elements of an integral domain, is enough. 

Toward the end of his life, Kronecker adopted the te rm "general arith
metic" {allgemeine Arithmetik) for the arithmetic of rings of the form Z[ci, 
C2, . . . , Cj/], which is to say rings of polynomials in some set of indeterminates 
ci , C2, . . . , Cjy with integer coefficients (or, in conformity with the approach 
above, rings N[t, ci , C2, . . . , Cjy] mod {t + 1), where N denotes the set of num
bers). Of course there is little to be said about these rings themselves; rather, 
the substance of general arithmetic lies in the study of certain further con
structions tha t use them. 

Kronecker wrote a number of papers about what he called m o d u l e sys 
t e m s , and he formulated his proof of his Fundamentalsatz of general arith
metic in terms of module systems. For me, however, his module systems pose 
difficulties. For one thing, a module system in its simplest form—namely, a 
ring of the form Z[ci, C2, . . . , ĉ ,] mod [Mi, M2, . . . , M^] , a polynomial ring 
in which computations are done modulo a finite number of given relations 
Mi = 0—is not normally a field because division is not normally possible. 
Therefore, one needs to enlarge the realm of objects with which one computes 
in some way in order to allow the computat ions to use the most convenient and 
natural representations of them—for example to allow the use of cj = y ~ 
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in computations with ^ / ^ . For another thing, this description Z[ci, C2, . . . , 
Cjy] mod [Ml, M2, . . . , M^] of module systems opens the door to the prob
lem of determining whether two such module systems are isomorphic, which is 
tan tamount to the "ideal membership problem" for rings of the form Z[ci, C2, 
. . . , Cjy], a problem tha t poses serious difficulties* from a constructive point of 
view. 

For these reasons, I have avoided module systems^ and have instead used 
the concrete notion of a simple algebraic extension of the field of quotients of 
a ring Z[ci, C2, . . . , Cj^]; such simple algebraic extensions are described and 
given the name "root fields" in Essay 1.3. As will be shown in Essay 2.2— 
using an argument Kronecker himself gave [39, §2]—fields of this type provide 
a setting for all algebraic computations. 

* Much serious work has been done on the ideal membership problem and the 
related problem of constructing Grobner bases, but since I have not been able to 
understand this work in a way that is consistent with my notions of constructivity, 
I am glad that it is unnecessary for the topics I develop here. 

' Specific module systems in which the problems mentioned above do not arise are 
used in some of the constructions—for example in Essays 1.5 and 2.4. 
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Essay 1.2 A Fundamental Theorem 

Proposition V. Probleme. Dans quel cas une equation est-elle soluble par 
de simples radicaux? (Proposition V. Problem. In what case is an equation 
solvable by simple radicals?—E. Galois, [27] 

The essays tha t follow contain applications of general ari thmetic to a variety 
of topics, one of which is the theorem Kronecker s tated and proved in his 1887 
paper Ein Fundamentalsatz der allgemeinen Arithmetik (On a Fundamental 
Theorem of General Arithmetic) [42]. This theorem states, roughly, tha t every 
polynomial has a splitting field. 

Proposition 1 of Book 1 of Euclid's Elements [25] is, in the Heath transla
tion, "On a given finite straight line to construct an equilateral triangle." To 
modern ears, this seems a strange way to state a proposition. A modern writer 
would be more likely to say, "Given a finite straight line, there is an equilateral 
triangle of which it is one of the sides." But Euclid has many such proposi
tions. His propositions fall into two categories, often described as "problems" 
and "theorems." T h a t Proposition 1 is a "problem" is signaled not only by 
the form of its s ta tement but also by the fact tha t its proof ends with "as 
was to be done" ra ther than "as was to be proved." Gauss on at least one 
occasion* concludes a proof with Q E F ("quod erat faciendum"—that which 
was to be done) instead of QED ("quod erat demonst randum"—that which 
was to be demonstrated) , and Galois in his treatise [27] on the algebraic solu
tion of equations presents eight "propositions," five of which are "theorems," 
two of which are "problems," and one of which is a "lemma," but today the 
designation "problem" has disappeared from formal mathematical exposition, 
and the designation "proposition" has become more or less synonymous with 
"theorem." 

The usual definition of "constructive mathematics" is tha t it requires exis
tence theorems to be proved constructively—that is, constructive mathematics 
does not accept as a proof of existence an argument tha t assumes a disproof 
of existence and derives a contradiction. But the very notion of an "existence 
theorem" reflects a nonconstructive bias. Is it not ridiculous to say, "Every 
polynomial has a splitting field," and then to stipulate tha t "The proof will 
give an actual construction of a splitting field" ? Is it not more reasonable to 
follow the Euclidean model and say "Given a polynomial, construct a splitting 
field for it," thereby making clear tha t the proof is a construction? 

In these essays I do follow the Euclidean model, except tha t I have decided 
to use the word "theorem" for both types of Euclidean "propositions." Mathe
maticians today regard "theorems" as the fundamental units of mathematics. 
Kronecker used the term Fundamentals atz even though his theorem was in 
t ru th a construction. I doubt tha t an effort to give another term like "prob
lem" or "construction" the same s ta tus as "theorem" would succeed. And a 

See §73 of Disquisitiones Arithmeticae. The notation QEF at the end of §73 was 
omitted from the German translation by Maser. 
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"fundamental problem" or a "fundamental construction" would be much less 
imposing t h a n a "fundamental theorem." Thus, these essays, although they 
will not contain "existence theorems," will contain many theorems tha t are 
constructions, including the theorem of this essay. 

Gauss's doctoral dissertation of 1799 was devoted to a proof of a theorem 
very close to what is now called the "fundamental theorem of algebra": A 
polynomial of degree n has n complex roots when they are counted with multi
plicities. In the dissertation he sharply criticizes earlier a t t empts to prove the 
theorem, saying tha t they used computat ions with the roots and tha t such 
computat ions virtually assumed the t r u th of the theorem to be proved. How
ever, as Bashmakova and Rudakov point out in an essay on the history of the 
theorem [35], Gauss returned to the theorem in 1815 and gave a new proof 
tha t took an approach very similar to the one he had criticized in 1799; he 
justified on other grounds certain limited computations with the roots of the 
given polynomial, and then used such computat ions to show tha t the roots 
could be described as complex numbers. (For this second proof, see Essay 5.1.) 

Kronecker, with his Fundamentalsatz, came to the realization tha t this 
is the theorem: what is important is not the complex numbers but , rather, 
the fact t ha t computations with the roots can be justified. Tha t is, given a 
polynomial with integer coefficients, one can describe a system of computation 
that extends computations with integers in such a way that the polynomial has 
a number of roots equal to its degree. 

In a pragmatic sense, Galois had realized the same thing more than fifty 
years earlier. Lemma III of his treatise on the algebraic solution of equations 
[27], which was writ ten in 1830-1831 even though it was not published until 
1846, is in essence a construction of a splitting field for a given polynomial. 
Unfortunately, Galois does not prove Lemma III. He does give a construction 
of a splitting field, but the construction uses computations with the roots! 
Thus, from a foundational point of view, what Galois proved was tha t if there 
is any vaHd way to compute with the roots of a polynomial, then computat ions 
with the roots can always be done using what is now called a Galois resolvent, 
as in his Lemma III. Until computat ions with the roots were validated— 
until Kronecker's Fundamentalsatz was proved—Galois theory was without a 
general foundation, even though splitting fields could be constructed in specific 
cases. 

For example, in the case of the polynomial x^ — 2, the polynomial y^ -\-10S 
is a Galois resolvent, which is to say tha t computations in Q[y] mod (y^-^lOS) 
extend computat ions in the field of rational numbers Q in such a way tha t 
x^ — 2 factors into linear factors, as is shown by the formula 

(1) .3 _ 2 . f. - ?; V . + y^^) (. + y^±^) mod ( / + 108). 
i8y V 36 y V 36 , 

Put t ing aside for the moment the question of how such a formula might be 
constructed, one can easily check tha t it is correct; the product of the last 
two factors is ^{{36x + y^)'^ - 324y'^) = 3^(36^x2 _̂  ^2xy^ + y'^{-10S) -


