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Preface 

The present monograph is intended to provide a comprehensive and accessible 
introduction to the optimization of elliptic systems. This area of mathematical 
research, which has many important applications in science and technology. has 
experienced an impressive development during the past two decades. There are 
already many good textbooks dealing with various aspects of optimal design 
problems. In this regard, we refer to the works of Pironneau [1984], Haslinger 
and Neittaanmaki [1988], [1996], Sokolowski and Zolksio [1992], Litvinov [2000], 
Allaire [2001], Mohammadi and Pironneau [2001], Delfour and Zolksio [2001], 
and Makinen and Haslinger [2003]. Already Lions [I9681 devoted a major part 
of his classical monograph on the optimal control of partial differential equations 
to the optimization of elliptic systems. Let us also mention that even the very 
first known problem of the calculus of variations, the brachistochrone studied 
by Bernoulli back in 1696. is in fact a shape optimization problem. 

The natural richness of this mathematical research subject, as well as the 
extremely large field of possible applications, has created the unusual situation 
that although many important results and methods have already been estab- 
lished, there are still pressing unsolved questions. In this monograph, we aim 
to address some of these open problems; as a consequence, there is only a minor 
overlap with the textbooks already existing in the field. 

The exposition concentrates along two main directions: 

0 the optimal control of linear and nonlinear elliptic equations, including 
variational inequalities and control in to  coeficients problems, 

problems involving unknown and/or variable domains, like general shape 
optimization problems defined on various classes of bounded domains in 
Euclidean space, or free boundary problems arising in various physical 
processes. 

It should be noted that many shape optimization problems occur naturally as 
control into coefficients problems. A large and interesting class of examples of 
this type, to which the whole of Chapter 6 is devoted, concerns the optimization 
of basic mechanical structures like beams, plates, arches, curved rods: and shells. 

There are strong connections between all these seemingly different types of 
problems. This fact has for the first time been illustrated in the so-called map- 
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ping method introduced by Murat and Simon [1976], which makes it possible 
to transform domain optimization problems into control into coefficients prob- 
lems. Throughout this monograph, we will try to elucidate such connections. 
Another classical coritribution to the solution of shape optimization problems 
is the speed method, which was introduced by Zolksio [I9791 and thoroughly 
discussed in the above-mentioned publications. 

One basic feature of this textbook is the endeavor to relax the needed regular- 
ity assumptions as much as possible in order to include large classes of possible 
applications. We have succeeded in this aim for several fundamental questions: 

0 The existence theory for general domain optimization problems presented 
in Chapter 2 requires just the uniform continuity of the domain bound- 
aries. 

0 The existence theory and the sensitivity analysis for plates and for curved 
mechanical structures, mainly performed in Chapter 6, is established un- 
der regularity hypotheses that are one or two degrees (depending on the 
case) lower than those usually postulated in the scientific literature. 

Another characteristic of this book is that we have tried to stress the ap- 
plication of optimal control methods even in the case of problems involving 
variable/unknown domains. In this respect, it should be mentioned that our 
techniques are close to the works of Lions 119681, [1983], Cesari [1983], Barbu 
[1984], [1993], and Barbu and Precupanu [1986]. We are thoroughly convinced 
that optimal control theory may provide a rather complete and reliable approach 
to the challenging problems involving the optimization of systems defined on 
variable domains. Many of the presented results in this direction, mostly in 
Chapter 5, are original contributions of the authors. 

In order to give the reader a comprehensive overview of the subject, we also 
report on other important results from the existing literature. Whenever certain 
theoretical developments are already available in textbook form, our discussion 
will be limited to the shortest possible presentation. 

The book is organized in six chapters that give a gradual and accessible 
presentation of the material, where we have made a special effort to present 
numerous examples, both at  the theoretical and at  the numerical level. The 
material covers 

0 motivating examples of "purely" mathematical nature or originating from 
various applications (in Chapter l), 

general existence results for control and shape optimization problems (in 
Chapter 2), 

0 a sensitivity analysis of linear and nonlinear control problems in the ab- 
sence of differentiability assumptions, based on various penalization meth- 
ods (in Chapter 3), 
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0 the presentation of the a priori estimates technique for the numerical 
approxinlation of control problems governed by linear or nonlinear elliptic 
equations (in Chapter 4), 

optimal control and other approaches in unknown domain problems in- 
cluding free boundaries and optimal design (in Chapter 5), 

0 a fairly complete optimization theory of curved mechanical structures like 
arches, curved rods, and shells (in Chapter 6). 

The three appendices collect important notions and results from the theory of 
function spaces and elliptic equations, from convex and nonlinear analysis, and 
from functional analysis, which are frequently used throughout this monograph. 

In Chapters 5 and 6, several rather complex geometric optimization problems 
are studied in detail and are completely solved, including numerical results. We 
do not discuss the questions that arise from the practical implementation of the 
presented methods on a computer or from the solving of the associated finite- 
dimensional problems, as they do not enter into the objective of this book. 

Let us also mention at  this place that in order to keep the exposition a t  a 
reasonable length and due to other reasons, several directions of active research, 
such as second-order optimality conditions, a posteriori error estimates, homog- 
enization methods, and applications of shape optimization in fluid mechanics, 
could not be covered in this textbook. However, we have tried to provide the 
reader with the corresponding relevant references in some of these subjects. 

Now we comment briefly on some examples and applications, and we make a 
more detailed presentation of the text. The aim is to give the reader, from the 
very beginning, a clear image about the problems and the questions that are 
studied in this book, and about their motivation and difficulties. 

We consider first the simplest case of an elastic shell of constant thickness that 
admits a general cylindrical surface as its midsurface. We assume that the shell 
is clamped along two of its generators and the forces acting on it are constant 
along the generators and perpendicular to them. Consequently, it is clear that 
the resulting deformation of the shell is also constant along the generators. 

It is enough to investigate a two-dimensional section perpendicular to the 
generators. The obtained structure in R2 is called an arch, and its deformation 
is described by the so-called Kirchhoff-Love model. We mention bridges, roads, 
industrial tubes, windows, roofs, among others, as real-life examples entering 
this description. The design of such structures puts several important questions 
to the engineer or the architect: maximize the mechanical resistence of the 
structure, minimize the total cost, fulfill all the (technological) constraints that 
are imposed, etc. In general, a "compromise" among the sometimes conflicting 
aims has to be found. 

\.lie indicate now the mathematical formulation of the Kirchhoff-Love model. 
If cp = (cpl, p2) : [O, 11 + R2 is the parametrization of the arch with respect to 
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its arc length and c : [O,1] -- R denotes its curvature, then the deformation 
vector a = (q, u2) E HA(0,l) x H t ( 0 , l )  is the solution of 

Here, fi represents the constant thickness of the arch and [fi, fi] E L2(0, 1)' 
are, respectively, the tangential and normal components of the forces loading 
the clamped arch (assumed to act in its plane), while the tangential compo- 
nent vl and the normal comporient ~2 perform a similar representation for 
the deformation. The arbitrary functions u l  E H;(O,l) and u2 E H i ( 0 , l )  
are test functions specific to the weak (variational) formulation of differential 
equations. Let us also mention that a complete study of this problem may be 
found in Ciarlet [1978, p. 4321. 

As the shape of the arch is completely characterized by its curvature c ,  
the corresponding geometric optimization problems may be formulated as the 
minimization of some functional subject to the Kirchhoff-Love model as a side 
constraint and with the function c as the minimization parameter (control). 
For instance, one integral cost functional of interest is 

This means to find the form of the arch that has a minimal normal displacement 
in the sense of the above norm under the action of some known load (fl, f 2 ) .  

This is a natural safety requirement in many applications. Further (technologi- 
cal) constraints may be imposed directly on the admissible controls c or on the 
corresponding state ( U I ,  u2) . 

We notice that the mere formulation of these problems requires the curvature 
c and its derivative (in the second term on the left side of the above equation). 
To ensure the integrability of such expressions one needs y E W33"(0, or 
cp E C3[0, 112 for the corresponding parametrization. It is obvious that such 
requirements are inappropriate to the potential applications (see Figure 1.1 in 
Chapter 6, the Gothic arch). Moreover, some of the simplest and most popular 
discretization approaches (see Chapter 4) introduce nonsmooth approximations 
of y in a natural way, and again the Kirchhoff-Love model cannot be applied. 
Such examples show that new mathematical methods have to be developed in 
order to relax the regularity hypotheses and to ensure a broad class of appli- 
cations. In this book, a more sophisticated variational technique called the 
control variational method, based on control theory, is discussed. It is due to 
the authors and represents an alternative to the classical Dirichlet principle 
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in the theory of elliptic equations. I t  is used for the analysis and optimiza- 
tion of Lipschitzian arches in Section 6.1 and of a simplified model of plates 
with discontinuous thickness in $3.4.2. More geometric optimization problems 
with mechanical background, such as optimal design of three-dimensional elastic 
curved rods and of general elastic shells, are studied by other methods in Sec- 
tions 6.2 and 6.3. Thickness optimization problems for plates are investigated 
in $2.2.2 and Section 3.4. They are highly nonconvex optimization problems, 
but they still enjoy the property that they are defined in some known domain in 
the Euclidean space Rd , d E N . In the above example, d = 1 and the domain 
is ]0,1[.  

We now present another example that involves unknown/variable domains. 
The application is related to the confinement of plasma in a tokamak machine. 
We denote by R C R2 the smooth and bounded domain representing the cross 
section of the void chamber and by D C R its (unknown) subdomain occupied 
by the confined plasma (see Figure 2.1 in Chapter 1). Within the void region 
R \  D , the poloidal flux $ satisfies (cf. Blum [1989, Ch. V]) the elliptic equation 

which is nonsingular (x > c > 0) due to the natural choice of coordinates, based 
on the symmetry of the tokamak in R 3 .  The boundary d D  of the plasma is 
one of the unknowns of the problem, and this is an example of a free boundary 
problem. In order to identify it,  one uses supplementary measurements on the 
outer boundary dR : 

One can introduce a shape optimization problem with minimization parameter 
given by the unknown domain D C R ,  with performance index 

obtained by the penalization of the second boundary condition and with side 
conditions given by the first boundary condition and the elliptic equation for 
+ in R \ D . This formulation can be further refined by introducing a fictitious 
control variable and a Tikhonov regularization as in Example 1.2.6 in Chap- 
ter 1. Other simple examples of variable domain optimization problems may be 
found in $2.3.1. In Section 5.1, the relationship between free boundary prob- 
lems and shape optimization problems is further explored, while 55.3.1 presents 
the connection between variable domain problems and control into coefficients 
problems via the classical mapping and speed methods. Since such a procedure 
demands high regularity properties for the unknown domains, we introduce in 
Section 5.2 several alternative approaches, based on control theory, which may 
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be applied in more general situations. Moreover, in Section 2.3 a rather com- 
plete existence theory for variable domains optimization problems is developed 
under the mere (uniform) continuity assumption for the unknown boundaries. 
In Sections 2.1, 2.2 (existence), and Chapter 3 (optimality conditions), a rather 
complete presentation of control problems for linear and nonlinear elliptic equa- 
tions, including variational inequalities, is given. 

Although all of us have been actively involved in the study of optimization 
problems in infinite-dimensional spaces for many years, the origin of this book 
can be traced back to the lectures delivered by one of us in 1995 during the sum- 
mer school that is organized annually by the University of Jyvaskyla. These 
lectures have been published iri the form of the report Tiba [1995b]. The fol- 
lowing ten years were marked by an intensive cooperation between us that is 
witnessed by the publication of numerous papers in all of the research directions 
forming the subject of this monograph. 

Much of the material covered in this volume is original and resulted from our 
studies when we were affiliated with the University of Jyvaskyla, the Humboldt 
University Berlin, the Institute for Mathematics of the Romanian Academy of 
Sciences in Bucharest, and the Weierstrass Institute in Berlin. The financial 
support of these institutions, of the Academy of Finland, of the Alexander-von- 
Humboldt Foundation, and of the DFG Research Center MATHEON in Berlin, 
is gratefully acknowledged. 

This monograph is addressed to a large readership, primarily to master's or 
doctoral students and researchers working in this field of mathematics. Much 
of this material will prove useful also to scientists from other fields where the 
optimization of elliptic systems occurs, such as physics, mechanics, and engi- 
neering. 

During the preparation of this monograph, we obtained much encouragement 
and many helpful hints from a number of colleagues who cannot be named 
here. We are also indebted to Springer-Verlag, especially to Achi Dosanjh (New 
York) , for their continuing encouragement. 

Finally, we would like to thank Marja-Leena Rantalainen (Jyvaskyla) and 
Jutta Lohse ( W A S  Berlin) for their efforts in the excellent fiT@ setting of 
this text. We are also indebted to Dip1.-Math. Gerd Reinhardt (WIAS Berlin) 
for his help in solving the problems arising from the inclusion of the figures in 
the text. Of course, the authors carry the full responsibility for each occasional 
misprint or other possible mistake in this monograph. 

Jyvaskyla, Berlin, and Bucharest, March 2005 

P. Neittaanmhki, J. Sprekels, arid D. Tiba 



A Brief Reader's Guide 

The authors are fully aware of the fact that the reader of this volume will usually 
be interested in only a certain part of it. Therefore, we give some hints in order 
to facilitate the reader's orientation within the text. 

The book is divided into six chapters, referred to as Chapter 1 to Chapter 
6, and three appendices, referred to as Appendix 1 to Appendix 3. Each of 
the chapters consists of several "sectio~is," called Section 1.1, Section 6.1, and 
so on. The sections themselves may be divided into several subsections, called 
"paragraphs" and referred to, for example, as $3.1.3. Also, these paragraphs 
may have subparagraphs denoted, for instance, by 83.1.3.1. Clearly, the latter 
refers to the first subparagraph of the third paragraph in the first section of 
Chapter 3. 

Let us also comment on the numbering used in this textbook. Equations are 
numbered by three integers that refer to the corresponding chapter, section, and 
equation, in that order. If, for example, we refer to equation (4.2.6), then we 
mean the sixth equation in the second section of Chapter 4. Definitions, The- 
orems, Lemmas, Propositions, Corollaries, and Examples, are also numbered 
sectionwise within each chapter; typical examples are Theorem 5.2.1, Lemma 
6.2.4; Definition 2.2.1, and so on. -4n exception to this rule is the numbering 
within the three appendices, where references are made in the form Proposition 
Al . l ,  Theorem -42.3, Definition A3.1, and the like, with obvious meaning. Re- 
marks are not numbered. Finally, figures are numbered sectionwise within each 
chapter. 
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Chapter 1 

Introductory Topics 

This first chapter brings a brief introduction to the problems to be studied in the 
following chapters. We present a large variety of examples involving different 
types of controls (distributed, boundary, pointwise, by the coefficients, linear, 
nonlinear, ...). All of them are governed by elliptic differential equations that 
are either defined in a given (fixed) spatial domain or in an a priori unknown 
domain. We also consider cases in which the domain itself is the minimization 
parameter (so-called shape optimization).  For some of the examples, physical 
origin and practical relevance will be pointed out. 

To avoid any unnecessary technicalities, we introduce the mathematical ter- 
minology mainly in the examples, in an informal manner. A brief rigorous 
account of the basic mathematical notions and results used throughout this 
monograph is contained in the three appendices a t  the end of the book, where 
relevant references are also given. It is, however, assumed that the reader has a 
working knowledge of the fundamental elements of analysis and functional anal- 
ysis as presented, for instance, in the standard monographs by Rudin [I9871 and 
Yosida [1980]. 

1.1 Some General Notions 

We now discuss several definitions that are related to general optimal control 
problems. The setting adopted in this section simplifies the presentation and 
the systematization of the fundamental notions and is also motivated by a large 
class of examples and applications that will be described below in the next 
sections. 

To begin with, let us consider three reflexive Banach spaces U, V, Z together 
with their respective dual spaces U*, V*, Z*. By renorming, if necessary, we 
may assume without loss of generality that U, V, Z and their duals are strictly 
convex spaces. Moreover, let a Hilbert space H be given that is identified with 
its dual space and satisfies V c H with continuous embedding. The scalar 
product in H and the pairing between V and its dual are denoted by (. , . ) H  
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and (. , .)vexv, respectively. The corresponding norms are denoted by / . / H ,  

/ . j v ,  I . I U ,  and so on; by [. , .] we denote ordered pairs in product spaces. 

Let B : U + Z be a linear and bounded operator, and let A : V + Z 
denote some (possibly nonlinear) operator. In many examples, we will have 
Z = V*. We assume that for any fixed f E Z and any u E U (called control), 
the equation 

A y =  B u +  f (1.1.1) 

has a unique solution y E V in a sense to be made precise (which is called 
the state). Consequently, (1.1.1) is sometimes named the state equation. In the 
applications to follow, y will be a weak solution to an elliptic problem. It may 
be defined in various ways, as one can see in Appendix 2 and in the subsequent 
examples. Later, we will also consider operators A depending directly on u, 
Ay = A(u)Y, nonlinear operators B, and further generalizations. 

Let a proper, convex, and lower semicontinuous mapping L : V x U + 
] - m ,  +m]  be given. We then introduce the abstract control problem (P) by 

over all the pairs [y, u] satisfying the state equation (1.1.1). 
If E = dom (L) c V x U denotes the closed convex set given by the effective 

domain of L (cf. Appendix I ) ,  then we see that not all of the pairs [y, u] 
satisfying (1.1.1) are meaningful for (1.1.2); indeed, some may give L(y, u) = 
+ m .  Consequently, the minimization in (1.1.2) is in fact considered only over 
all pairs [y, u] E E that satisfy (1.1.1). Such pairs are called admissible for 
the cost functional L or for the optimal control problem (P). We call E the 
constraints set, and we say in this case that the constraints are mixed since they 
involve both the state y and the control u .  

It is quite standard in control theory to formulate the constraints explicitly, 
since they have their own motivation in the underlying applications. In general, 
u = 0 should be allowed as admissible control, corresponding to the case that 
no external influence is acting on the system. 

Suppose now that some nonempty, closed, and convex sets C C H ,  Uad C U 
are given. We may then consider the separate constraints 

control constraints u E Uad, (1.1.3) 

state constraints y E C. (1.1.4) 

We get an equivalent formulation of the control problem (P) by including the 
constraints in the cost functional with the help of the indicator function Ihua, 
of the set C x Uad C H x U .  To this end, we replace L by a new cost functional, 
namely by 

L(Y, U) + ~ X V , , ( Y ,  u). (1.1.5) 

In the following, the new cost functional (1.1.5) will again be denoted by L; this 
will not lead to any confusion. Now recall the definition of the indicator function 
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(cf. Appendix 1) to see that L(y, U) < +M only if (y, u)  E C x Uad, which 
means that any solution of the control problem (1.1.2) with the cost functional 
(1.1.5) automatically satisfies the constraints (1.1.3), (1.1.4). Of course, using 
the new cost functional (1.1.5) does not exclude the possibility that within the 
definition of the set E further (implicit) constraints are hidden. 

In many cases it is advantageous to include only a part of the constraints in 
the cost functional while preserving the others in explicit form. If, for instance, 
only the control constraints are to be included, one considers the cost functional 

L(Y,u)  + I v x u d ( Y 1 ~ ) .  (1.1.5)' 

Also for this cost functional the generic notation L may be preserved with no 
danger of confusion. 

Let us summarize: a general formulation of the optimal control problem (P) 
consists of the following ingredients: 

- a cost functional to be minimized ((1.1.2)), 
- a state system ((1.1.1)), 
- various constraints ((1.1.3), (1.1.4)). 

A fundamental hypothesis for the control problem (P) is that of admissibility. 
It can be stated in the following form: 

Without this assumption, the problem (P) may have an empty admissible set 
and be meaningless. For mathematical reasons, the case in which the admissible 
set of (P) is "rich" in some sense (typically, it has to be an open or a dense set 
with respect to some topology) is more interesting. Under such assumptions, 
we say that (P) is nontrivial. On the other hand, if (P) is "trivial," then its 
solution may be simple and thus not of mathematical interest. 

Finally, let us mention that all the assumptions mentioned here can be relaxed 
in various ways; some of them may even be omitted. For instance, there is a rich 
literature on control problems without convexity hypotheses on L, E, C ,  Uad, 
or allowing (1.1.1) not to be well-posed, and so on. One well-known alternative 
approach is to require various differentiability or generalized differentiability 
assumptions instead. In this connection, we refer to the monographs by Lions 
[I9831 and Clarke [1983], where some extensions of this type are thoroughly 
examined. We shall study such topics in later sections of this monograph. 

1.2 Motivating Examples 

1.2.1 Cost Functionals 

The cost functionals studied in this monograph will generally be of the form 

L(Y, u) = O(Y) + *(u)1 (1.2.1) 
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where B : V +] - a, +m] ,  .J, : U +] - m ,  +m]  denote some proper, convex, 
and lower semicontinuous functions. A standard instance of this type is the 
quadratic functional 

where yd E V is given. 

The interpretation of (1.2.2) in connection with the control problem (P) is 
the following: we seek an admissible control u E Uad such that the associated 
state y E C given by (1.1.1) is as close as possible to the "desired state" yd. In 
addition, this control has to obey a minimal expenditure of energy condition (or 
minimal expenses condition, in general) reflected by the second term in (1.2.2). 
In fact, a compromise between the two (usually conflicting) aims "y close to 
yd)' and "minimal expenses" has to be found, and the relative importance of 
the criteria with respect to each other is expressed by the choice of the weight 
coeficients a, ,B > 0. 

As an anecdotal observation, we remark that the coefficients in (1.2.2) are 
chosen in this special form (as very frequently in the scientific literature) just 
because this "simplifies" the writing of the gradient of L , which plays a central 
role and is frequently used. 

Notice that while (1.2.1), (1.2.2), and (1.1.2) define convex or even strictly 
convex functionals, the composed functional characterizing the control problem 

(PI1 
J(u) = L(Y(u), u) ,  (1.2.3) 

may be nonconvex. In fact, the state y = y(u) defined by (1.1.1) may depend 
nonlinearly on u. If the operator A is linear, then J remains convex (or strictly 
convex), and any optimal control u* is global (unique) if it exists. That is, the 
minimization property is valid with respect to the whole admissible set. The 
set of the global optimal controls is then convex. Otherwise, J may admit 
many local minimum points, in general. The existence of optimal pairs [Y*, u*] 
will be discussed in the next chapter. Their characterization, the development 
of methods to recover additional information on them, and their numerical 
approximation are among our basic objectives in this monograph. 

Another fundamental example for a quadratic cost functional is obtained in 
the following way: Suppose that another Banach space W is given, and let 
D : V + W denote a linear and bounded operator (which in this connection is 
usually called an observation operator). We then consider the cost functional 

where gd E W has the same significance as yd above. This setting is of partic- 
ular practical importance and typically arises in situations in which the state 
y cannot be directly or fully observed, but only indirectly or in parts through 
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the observation Dy. Typically, if (1.1.1) is a partial differential equation in a 
smooth domain, the operator D may be some trace operator on the boundary 
of the domain, a restriction operator to some subdomain, a partial differential 
operator of lower order, or the like. 

A general form for the mappings 0, .JI occurring in (1.2.1) is obtained using 
integral functionals having convex integrands. To introduce such functionals, 
let S1 c Rd, d E N, be (Lebesgue) measurable, and suppose that g : R x Rm + 
] - co, +m], m E N, satisfies the following conditions: 

(i) g(x, .) is proper, convex, and lower semicontinuous for a.e. x E 0 .  

(ii) g is measurable with respect to the a-field of S1 x Rm generated by the 
product of the Lebesgue a-field in a and the Bore1 a-field in R m .  

Such mappings g are called normal convex integrands (see Rockafellar [1970], 
Ioffe and Tikhomirov [1974], Levin [1985]). They have the basic property that 
the function x + g(x, y(x)) is measurable on S1 for any measurable function 
y : Ci -t Rm (cf. Appendix 1, Proposition Al . l ) .  Conditions (i), (ii) generalize 
the classical Carathkodory condition that g(. , .) be finite and measurable in 
the first variable and continuous in the second. 

For y E Lp(i2)m, p 2 1, we then define the integral cost functional 0 on 
V = P(S1)m by 

Under appropriate conditions, 0 turns out to be proper, convex, and lower 
semicontinuous (cf. Appendix I) .  For the mapping .JI occurring in (1.2.1), we 
can proceed in a similar way. Also, one may consider the case that y is replaced 
by some Dy in (1.2.1)'. 

Finally, let us point out a simple trick that is very useful in the numerical 
solution of optimal control problems. Suppose that [yo, uO] is an admissible 
pair for (P),  i.e., satisfies (1.1.1), (1.1.3), (1.1.4). Then, we may slightly modify 
the form of (1.2.4) by setting 

The advantage of this form is that [yo, uo] is obviously a global minimum (even 
when A is nonlinear and the corresponding J (u )  = E(y(u), u) is nonconvex) 
for the control problem (P) defined by (1.1.1), (1.1.4), (1.1.3), (1.2.4)', with the 
optimal value equal to zero. Moreover, (P) has a structure that is very similar 
to that of (P). This a priori knowledge is helpful if one wants to test numerical 
code for the solution of (P). In particular, this idea is simple to apply when 
no state constraint (1.1.4) is imposed (C = H). Otherwise, even the question 
of finding an admissible pair [yo, uo] may be very difficult due to the implicit 
character of (1.1.4). 
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1.2.2 Partial Differential Equations Setting 

Here, we formulate several examples of elliptic state systems and related opti- 
mization problems that are among the objectives of this monograph. To this 
end, let a bounded domain O C Rd with smooth boundary r = 80 be given, 
and let aij E LM(R), i ,  j = 1,. . . , d l  define a (possibly nonsymmetric) coeffi- 
cients matrix that satisfies with some fixed a > 0 the ellipticity condition 

d d 

aij(x)&Ej 2 a x [ :  for all 6 E R~ and a.e. x E R. (1.2.5) 
i,j=l i=l 

Example 1.2.1 Define the linear and bounded operator A : V = H i ( n )  -+ 
V* = H-l(O) by 

where ao E LM(0)  with a. 2 0 a.e. in R is given, and where the derivatives are 
understood in the sense of distributions. Let U = L2(C2), and let B : L2(0) -t 
H-l(O) be the canonical injection operator, Bu = iu = u, for any u E L2(R). 
Then the state system (1.1.1) becomes a boundary value problem of Dirichlet 
type: 

a 
- C - - ( a , g ) + a o y  j-l dxi = u+f i n n ,  

, - 

where f E L2(0)  is fixed, and where (1.2.7), (1.2.8) have to be understood in 
the weak sense (see Appendix 2, Example A2.6), i.e., 

We say that we have a distributed control (or action) since u is defined in the 
domain Cl. A related situation is obtained if w is a measurable subset of O and 
B : L2(n)  -+ Hp1(R) is given by Bu  = UX,, with X, being the characteristic 
function of w in 0. Then the control action is again distributed, namely in w ,  
and (1.2.7) becomes 

We indicate some possible choices for the cost functional (1.2.4) that are 
appropriate in this situation. If W = L2(R) and D : Hh(R) + L2(0)  is the 
canonical injection, then 
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and we have a distributed observation. If Dy = Dy, we have a distributed 
observation of the gradient of the solution: 

The domain Cl in (1.2.10), (1.2.11) may be replaced by some measurable subsets 
of R, a t  least in one of the integrals. 

Let us assume now that the coefficients aij, ao, i, j = 1,. . . , d, are sufficiently 
regular to guarantee that the solution y of (1.2.7), (1.2.8) belongs to H2(S1) 
(i.e., is a strong solution, cf. Appendix 2). Then, by virtue of the trace theorem 
(Appendix 2, Theorem A2.1), the outer conormal derivative 

on r (n is the outer unit normal to I?) satisfies 2 E ~ ' / ' ( r ) .  Taking some 
(relatively) open part ro c I?, we may then choose as cost functional 

a 8~ 2 P L(y, u) = - 1 I-- - 6 ,  (g) do + - 1 u2(x) dx, Cd t ~ ' ( r o ) .  (1.2.13) 
2 ro d n ~  2 n 

In this case, we say that we have a boundary observation (while the control 
remains distributed in 0 ) .  

To complete the definition of the control problem (P) for this example, let us 
discuss some instances of possible constraints. The simplest case is of course 
the unconstrained one when UQd = U = L2(R), C = H = L2(R). One rough 
classification of the constraints is to distinguish between local and global ones. 
Pointwise constraints like 

(r., = {u E L2(R) :  -1 < u(x) 5 1 for a.e. x t a ) ,  (1.2.14) 

U,, = {u E L2(R) : u ( r )  > [(x) for a.e. x E R, l! t L2(S1) given} , (1.2.15) 

c = {y E H1(R) : lvy(x)IRi < 1 for a . e  x E R ) ,  (1.2.16) 

are of local type. Standard examples for constraints of global type are integral 
constraints like 

A simple example of mixed pointwise constraints is given by 
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Let us briefly return to the control constraint (1.2.14). In this case, it is 
possible to introduce a new control w E L2(R) satisfying 

Making corresponding substitutions, the optimal control problem (P) can be 
transformed into a control problem without constraints for w. The price to 
be paid for this simplification is that in (1.1.1) the dependence of the state on 
the new control variable w (more precisely, the operator corresponding to B) 
becomes nonlinear and that the convexity is lost. However, such simple tricks 
may be very effective in applications. For further details, we refer to Banichuk 
[1983, Chapter I]. 

We conclude this example with the remark that the above discussion of cost 
functionals and of constraints applies to any type of elliptic control problem. In 
the subsequent examples we will therefore focus our attention on the analysis 
of the state equation and control action. 

Example 1.2.2 Let us now concentrate on boundary control problems. We 
begin with control action via Neumann boundary conditions, by considering 
the state system 

where A is given by (1.2.6), and where we assume that ao(x) > p > 0 a.e. 
in 0 .  The variational (weak) formulation of (1.2.20), (1.2.21) is obtained using 
Green's formula: 

d y d v  
~ ~ i j - - d x + ~ a o y u d x = ~ f v d x + ~ ~ u v d ~  V V E H ' ( R ) .  

Q i,j=1 dxi ax j  

To recover the abstract setting (1.1.1), we fix some f E L2(R) and put V = 
H1(R) and U = H ~ ' / ~ ( d f l ) .  Moreover, A : V -+ V* is generated by the 
left-hand side of (1.2.22) (cf. Appendix 2, Theorem A2.3), while B : U + V* 
is defined by 

Obviously, the restriction of A to HA (R) coincides with (1.2.6). Notice that 
also the choice U = L2(dR) is possible with the same definition (1.2.23) of B .  

Next, we turn our attention to control action via Dirichlet boundary condi- 
tions. It is known that the inhomogeneous Dirichlet boundary value problem 
does not admit a purely variational (weak) formulation and that a suitable 



1.2.2. Partial Differential Equations Setting 9 

translation has to be employed first in order to reduce the problem to the ho- 
mogeneous case (KEiiek and Neittaanmaki [1990]). In the setting of control 
problems the corresponding translation operator may be, roughly speaking, in- 
terpreted as the operator B. If the state system is described by (1.2.20) and 

then we may fix B : H-'I2(dR) + L2(R) by Bu = y,, where y, satisfies 
(1.2.24) and 

A y ,  = 0 in R. (1.2.25) 

We refer at  this place to Appendix 2, Example A2.7, for the definition of a very 
weak solution of (1.2.24), (l.2.25), using the transposition method. We choose 
V = V* = L2 (R), U = ~ - l / ' ( d R ) ,  define a new operator A : V + V*, zy = y ,  
and a new f E L2(R), given by 

If we write the abstract equation (1.1.1) in the form Ay = Bu + f ,  then it is 
equivalent to (1.2.20), (1.2.24). 

The operator B is called the Dirichlet mapping and plays an essential role 
in this formulation. 

Example 1.2.3 Let us also address the pointwise control of linear systems. We 
take V = Ht(R) ,  k > f ,  with d being the dimension of 0. By virtue of the 
Sobolev embedding theorem (Appendix 2, Theorem A2.2), we have V c C@), 
and the Dirac functional S,, : V -t R ,  S,,(v) = v(zo), with some given zo E a, 
is linear and continuous on V, that is, S,, E V*. 

Let us put U = R, and let B : U + V* be given by Bu = u &,, which is a 
linear and bounded operator. We assume A : V + V* in the form 

where the multi-index a = ( a l , .  . . , a d )  E Ngd, N O  = N U (01, and Ial = 

+ . . . + a d  is its length, the derivatives are taken in the distributional sense, 
and the coercivity condition 

with some c > 0, is assumed to hold. Then the state equation (1.1.1) becomes 
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According to Appendix 2, this system admits a unique weak solution. Owing 
to the definition of B ,  the control u is concentrated in the point xo E R. 

Example 1.2.4 We now examine nonlinear elliptic boundary value problems 
as state equations. We start with the semilinear case. Let A be defined as 
in (1.2.6) and consider a continuous mapping cp : R x R x R + R having 
a continuous derivative cp, with respect to its second argument variable, and 
the property that for any u E L8(R), s 2 max(2, :) (d = dimension of a ) ,  
the mapping cp(. , . , u(.)) is of Carathkodory type. Moreover, the following 
conditions are assumed: 

with a function M E LS(R), a constant c > 0, and a nondecreasing function 
77 : R+ + R+. The state equation has the form 

If aij E C1(n), then (1.2.31), (1.2.32) has a unique strong solution y E 
W2J(R) n Ht(Q) n Lm(R); see Theorem A2.10 in Appendix 2 and the remark 
following it. In (1.2.31), (1.2.32), the control variable u appears implicitly. In 
order to fit this system into the formalism from Section 1.1, we put B = 0, 
and we allow A = A(u), u E U = LS(a ) ,  to depend directly on the control 
parameter. One possible way to achieve this is to include the semilinear term 
p(x, ., u) in the definition of A(u) as a superposition (Nemytskii) operator (cf. 
Pascali and Sburlan [1978]). 

One particular situation of interest is the control in the coeficients case. 
For instance, for p(x, y, u) = /uIy all the above assumptions are obviously 
fulfilled. The partial differential equation (1.2.31) then becomes linear with 
respect to y, but the dependence u H y ,  induced by it,  is highly nonlinear. 
As a consequence, the associated optimization problems are nonconvex, and 
since they may have many local minima, they are stiff and hence difficult to 
solve numerically. An important application of this type arises in optimal shape 
design theory in connection with the so-called mapping method. For details, we 
refer to Pironneau [1984], Haslinger and Neittaanmaki [1988], as well as to the 
problems studied below in (1.2.51) and in 55.3.1. 

Another important class of applications that may be described by control in 
the coefficients problems is given by the so-called identification problems to be 
discussed in Example 1.2.6 below. 

Example 1.2.5 Let us assume for the moment that the symmetry condition 
a , .  23 - - a , .  3%) i ,  j = 1 ,2 , .  . . , d, is fulfilled. Then the Dirichlet principle shows that 
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the solution y E V = HA(C2) to (1.2.7), (1.2.8) (or, equivalently, to the weak 
formulation (1.2.9)) admits the alternative variational characterization 

Now let us consider the minimization problem when in (1.2.33) the full space V 
is replaced by a (nonempty) convex and closed set S C V. Again, there exists 
a unique minimizer y s  E S since the quadratic form in (1.2.33) is coercive and 
strictly convex (see Appendix 1). A straightforward computation shows that 
ys  is the unique solution to 

for all z E S. Since, in turn, any solution to (1.2.34) is also a solution to the 
minimization problem, then (1.2.33) (with V replaced by S )  and (1.2.34) are in 
fact equivalent problems. Relation (1.2.34) is called a variational inequality as- 
sociated with the closed and convex set S .  Notice that the symmetry condition 
is not essential for the existence of a unique solution to the variational inequal- 
ity (1.2.34), as follows from the Lions-Stampacchia theorem (see Appendix 2, 
Theorem A2.3), which is a generalization of the classical Lax-Milgram lemma. 

Now let I s  : V +] - m, +co] denote the (proper, convex, and lower semi- 
continuous) indicator function of S in V. Then (1.2.34) may be reformulated 
in the form 

More generally, let us consider for any proper, convex, and lower semicontin- 
uous mapping A : V +] - co, +m] the variational inequality 

Then it follows directly from the theory of maximal monotone operators (cf. 
Appendix 1, Theorem A1.7) that (1.2.35) admits a unique solution y E dom(A). 
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Moreover, using the subdifferential dA of A, we may rewrite (1.2.35) as a 
semilinear elliptic inclusion, namely as 

Generally speaking, (1.2.35) or (1.2.35)' may be viewed as extensions of the 
semilinear problem (1.2.31), (1.2.32) in the sense that the mapping p is replaced 
by the nonsmooth and discontinuous (multivalued) subdifferential mapping aA. 

In what follows, we give some important examples for possible sets S. We 
begin with the so-called obstacle problem: 

where p E H2(C2) is a given function (called the obstacle) having the property 
that plan 5 0 ,  which ensures that S is nonempty. 

Formally, the solution y of the obstacle problem (1.2.34), (1.2.36) will satisfy 

The "surface" aRi  \ dR separating C2+ from 0 \ 2' is a priori unknown and 
is called the free boundary of the obstacle problem. The region R \ R+, where 
ys is equal to the obstacle, is called the coincidence set. 

Next, we consider the set S in (1.2.34) that characterizes the so-called elasto- 
plastic torsion problem, 

Again, we may (formally) define two subregions of R, 

the plastic region RI = {z  E R : (Vys(x) ( = I) ,  

the elastic region R2 = {x E R : Vys(x) 1 < 11, 

such that (1.2.34) becomes an equality in one of the subregions (namely in R2). 
Let us mention that for choice p(x) = d(x,aR) the two problems (1.2.36), 

(1.2.37) are in fact equivalent (cf. BrCzis and Sibony [1971]). 
We also notice that the solution ys of the variational inequality (1.2.34) satis- 

fies ys E S, obviously. But this should be distinguished from a state constraint 
(although here the form is similar to (1.2.16)), since it is automatically fulfilled. 
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Indeed, it follows from the Lions-Stampacchia theorem mentioned above that 
a unique solution ys E S c V exists for any u E U = L2(R). 

Unilateral problems, that is, problems involving inequalities in place of equa- 
tions, may also be formulated on aR. For instance, consider the set 

In this case, the (formal) interpretation of (1.2.34) can be deduced from the 
following chain of formal calculations: first, we insert z = ys + v E S for all 
v E V(R) in (1.2.34). Then we obtain 

Next, multiplying (1.2.39) by any z E S and applying (formally) Green's for- 
mula, we find that 

Then, we replace z in (1.2.34) by z + ys, which is possible in view of (1.2.38), 
and use (1.2.40), to find that 

Moreover, 

which follows by using z = ys as test function in (1.2.39), (1.2.40), and by 
comparing with (1.2.34), where we put z = 0 .  Such boundary conditions are 
known as the Signorina problem and describe an elastic body R subject to 
volume forces u + f and in contact with a rigid support body. This is an 
example of unilateral conditions on the boundary. 

More generally, let A : V = H1(R) +] - ca, +m]  be defined by 

Jan j (y) do Vy E V with j(y) E L1(dR), 
N Y )  = 

otherwise , 

where j : R +] - ca, +GO] is a proper, convex, and lower semicontinuous 
mapping. Then the variational inequality (1.2.35) (or, equivalently, the ellip- 
tic problem (1.2.35)') has a unique solution y E V (see Barbu [1984]) that 
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(formally) satisfies 

We remark that all the above formal arguments can be made rigorous pro- 
vided that the solution ys belongs to H2(R) (strong solution). Boundary con- 
trol action u may be studied as well. 

1.2.3 Applications 

We devote this paragraph to a first examination of some physically oriented 
applications. Further details and solutions of the problems will be provided 
later. 

Example 1.2.6 We begin with a problem arising in the confinement of plasma 
in a tokamak machine. Let S1 be a smooth and bounded domain in R2 rep- 
resenting the cross section of the void chamber of a tokamak machine, and 
let D C R denote its (unknown) subdomain occupied by the confined plasma. 
Within the void region R \ D the (unknown) poloidal flux $J satisfies (cf. Blum 
11989, Chapter V]) 

a i a +  a i d *  
i n R \ D ,  

dx x d x  dy x d y  

which is a nonsingular second-order linear elliptic equation since the natural 
choice of coordinates, based on the symmetry of the torus representing the 
tokamak in R3, yields x > c > 0 in R for some constant c (see Figure 2.1). The 
boundary d D  of the plasma region is an unknown of the problem and represents 
a free boundary. It is characterized as a level set by the relation 

M E d D  if and only if $ ( M )  = sup $(x), 
x E F  

where F (see Figure 2.1) represents physical devices called limitators that may 
have various shapes. 

The only available data are the measurements on the outer boundary dn: 

-- ' a* = g on an. 
x dn  
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Figure 2.1. Schematic representation of the void chamber. 

Thus, the problem to identify the subdomain D occupied by the plasma leads 
to an elliptic Cauchy problem ((1.2.41)-(1.2.43)) and is as such ill-posed. A 
fictitious domain approach to this problem consists in fixing some (artificial) 
smooth closed curve r C D (see Figure 2.1), and defining the least squares 
boundary control problem in the domain Ro limited by r and dR, 

1 l d $  2 
Min { ~ ( u )  = - 1 -  - g l  

U E L ~ ( ~ )  2 x d n   an) 

subject to 

In view of the lack of coercivity in (1.2.44), a Tikhonov regularization technique 
may be used. We choose some regularization parameter E > 0 and replace the 
minimization problem (1.2.44) by 

subject to (1.2.41)', (1.2.42)', and (1.2.45). This results in a standard boundary 
control problem with boundary observation and a linear state system. The 
convergence analysis for e \ 0 was performed in Neittaanmaki and Tiba [1995], 
Neittaanmaki, Raisanen, and Tiba [1994]; see 55.2.3.1. 

While the regularized problem (1.2.46) appears to be easy to solve, the sen- 
sitivity to measurement errors, which is intrinsic to all ill-posed problems, re- 
mains an important problem, and the interpretation of the results in terms of 
the original problem turns out to be a difficult task (see Falk [1990]). 
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Another category of problems that may be handled via control methods are 
the so-called identijkation problems. Suppose that some physical system (for 
instance, the equilibrium position of a clamped membrane) is described by the 
following mathematical model: 

where S1 C Rd is a smooth bounded domain and where the assumption (1.2.5) 
is fulfilled. In many applications it turns out to be difficult to measure or to 
have precise a priori knowledge of all the coefficient functions, which usually 
depend on the physical properties of the membrane or other parameters. On 
the other hand, it is natural to assume that some observation of the real state 
(the deflection of the membrane) c of the system, denoted by Dc,  is available 
via measurements. 
Suppose that a0 E Lm(S1), a0 > 0, is the unknown coefficient. Then the least 
squares approach to its determination leads to the problem 

1 
Min { J ( ~ ) = ~ D ~ -  

Q o E L ~ ( ~ +  

subject to (1.2.7)', (1.2.8)', and where W is the associated observation space, 
i.e., D : H:(Cl) + W is linear and continuous. We obtain a control in the 
coefficients problem (compare with Example 1.2.4), and one clear difficulty is 
its nonconvexity; in addition, it is also noncoercive. Therefore, a Tikhonov 
regularization technique is indicated also in this situation. 

The above examples are special cases of inverse problems, an area of appli- 
cations in which the optimal control approach is a standard method. 

Example 1.2.7 Next, we describe some optimization problems involving geo- 
metric parameters, generally called optimal shape design problems. One such 
case, called the optimal layout of materials, is introduced as follows, start- 
ing from (1.2.7)11, (1.2.8)" (in Example 1.2.6) and (1.2.47). We assume that 
aij(x) = Gija(x) ( Gij is the Kronecker symbol) and ao(x) = 1 in 0. The coef- 
ficient a can be interpreted as the thermal conductivity of the body given by 
0 .  We assume that the body consists of different materials having the thermal 
conductivities ki, i = Gm, that is, 

where xi is the characteristic function in Cl of the region occupied by the 
material indexed by i . 

We then may ask the following question: If a fixed heat source f is given, 
what is the optimal distribution of the materials that maximizes the temperature 
y in a given subdomain w c S1 (or on some open part r0 c a n ,  etc.)? 



1.2.3. Applications 

To solve this problem, we may take one of the cost functionals 

The minimization parameters are the subsets of fl occupied by the various 
materials. Equivalently, one can use the characteristic functions xi, i = z, 
as control unknowns. Apparently, we can interpret the problem as a control 
into coefficients problem, where 0 and 1 are the only admissible values for 
the controls. For a detailed discussion, we refer the reader to Tartar [1975], 
Pironneau [1984, $8.41, and $2.3.4, $5.2.2.1. 

Let us now briefly comment on a stationary variant of the so-called electro- 
chemical machining process. To this end, we consider the bounded domains 
C C E C D C 0 in R3 where D is variable (see Figure 2.2). In D \ C ,  we 
consider the obstacle problem (compare with (l.2.34), (1.2.36)) 

Figure 2.2. The electrochemical machining process. 

The connection with the electrochemical machining process is the following: 
D c fl represents the machine that contains a given core C (a hole, for in- 
stance) that cannot be influenced by the process. The sets d C  and d D  represent 
the electrodes, and the boundary condition y = 1 on the boundary d D  indi- 
cates that some fixed constant voltage is applied. If ij is the extension of y 
by 0 inside C ,  then the condition on d D  in (1.2.49) should be understood in 
the sense 5 - 1 E HA(D). The desired shape for the metallic workpiece to be 


