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Preface

The primary biostatistical tools in modern medical research are single-outcome,
multiple-predictor methods: multiple linear regression for continuous out-
comes, logistic regression for binary outcomes, and the Cox proportional haz-
ards model for time-to-event outcomes. More recently, generalized linear mod-
els and regression methods for repeated outcomes have come into widespread
use in the medical research literature. Applying these methods and interpret-
ing the results requires some introduction. However, introductory statistics
courses have no time to spend on such topics and hence they are often rel-
egated to a third or fourth course in a sequence. Books tend to have either
very brief coverage or to be treatments of a single topic and more theoretical
than the typical researcher wants or needs.

Our goal in writing this book was to provide an accessible introduction
to multipredictor methods, emphasizing their proper use and interpretation.
We feel strongly that this can only be accomplished by illustrating the tech-
niques using a variety of real datasets. We have incorporated as little theory
as feasible. Further, we have tried to keep the book relatively short and to
the point. Our hope in doing so is that the important issues and similarities
between the methods, rather than their differences, will come through. We
hope this book will be attractive to medical researchers needing familiarity
with these methods and to students studying statistics who would like to see
them applied to real data. The methods we describe are, of course, the same
as those used in a variety of fields, so non-medical readers will find this book
useful if they can extrapolate from the predominantly medical examples.

A prerequisite for the book is a good first course in statistics or biostatistics
or an understanding of the basic tools: paired and independent samples t-tests,
simple linear regression and one-way ANOVA, contingency tables and χ2 (chi-
square) analyses, Kaplan–Meier curves, and the logrank test.

We also think it is important for researchers to know how to interpret the
output of a modern statistical package. Accordingly, we illustrate a number
of the analyses with output from the Stata statistics package. There are a
number of other packages that can perform these analyses, but we have chosen
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this one because of its accessibility and widespread use in biostatistics and
epidemiology.

This book grew out of our teaching a two-quarter sequence to post-
graduate physicians training for a research career. We thank them for their
feedback and patience. Partial support for this came from a K30 grant from
the National Institutes of Health awarded to Stephen Hulley, for which we are
grateful.

We begin the book with a chapter introducing our viewpoint and style
of presentation and the big picture as to the use of multipredictor methods.
Chapter 2 presents descriptive numerical and graphical techniques for multi-
predictor settings and emphasizes choice of technique based on the nature of
the variables. Chapter 3 briefly reviews the statistical methods we consider
prerequisites for the book.

We then make the transition in Chapter 4 to multipredictor regression
methods, beginning with the linear regression model. This chapter also covers
confounding, mediation, interaction, and model checking in the most detail.
Chapter 5 deals with predictor selection, an issue common to all the multi-
predictor models covered. In Chapter 6 we turn to binary outcomes and the
logistic model, noting the similarities to the linear model. Ties to simpler, con-
tingency table methods are also noted. Chapter 7 covers survival outcomes,
giving clear indications as to why such techniques are necessary, but again em-
phasizing similarities in model building and interpretation with the previous
chapters. Chapter 8 looks at the accommodation of correlated data in both
linear and logistic models. Chapter 9 extends Chapter 6, giving an overview
of generalized linear models. Finally, Chapter 10 is a brief introduction to the
analysis of complex surveys.

The text closes with a summary, Chapter 11, attempting to put each of
the previous chapters in context. Too often it is hard to see the “forest” for
the “trees” of each of the individual methods. Our goal in this final chapter
is to provide guidance as to how to choose among the methods presented in
the book and also to realize when they will not suffice and other techniques
need to be considered.

San Francisco, CA Eric Vittinghoff
October, 2004 David V. Glidden

Stephen C. Shiboski
Charles E. McCulloch
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1

Introduction

The book describes a family of statistical techniques that we call multipredic-
tor regression modeling. This family is useful in situations where there are
multiple measured factors (also called predictors, covariates, or independent
variables) to be related to a single outcome (also called the response or de-
pendent variable). The applications of these techniques are diverse, including
those where we are interested in prediction, isolating the effect of a single
predictor, or understanding multiple predictors. We begin with an example.

1.1 Example: Treatment of Back Pain

Korff et al. (1994) studied the success of various approaches to treatment for
back pain. Some physicians treat back pain more aggressively, with prescrip-
tion pain medication and extended bed rest, while others recommend an earlier
resumption of activity and manage pain with over-the-counter medications.
The investigators classified the aggressiveness of a sample of 44 physicians in
treating back pain as low, medium, or high, and then followed 1,071 of their
back pain patients for two years. In the analysis, the classification of treat-
ment aggressiveness was related to patient outcomes, including cost, activity
limitation, pain intensity, and time to resumption of full activity,

The primary focus of the study was on a single categorical predictor, the
aggressiveness of treatment. Thus for a continuous outcome like cost we might
think of an analysis of variance, while for a categorical outcome we might
consider a contingency table analysis and a χ2-test. However, these simple
analyses would be incorrect at the very least because they would fail to recog-
nize that multiple patients were clustered within physician practice and that
there were repeated outcome measures on patients.

Looking beyond the clustering and repeated measures (which are covered
in Chap. 8), what if physicians with more aggressive approaches to back pain
also tended to have older patients? If older patients recover more slowly (re-
gardless of treatment), then even if differences in treatment aggressiveness



2 1 Introduction

have no effect, the age imbalance would nonetheless make for poorer out-
comes in the patients of physicians in the high-aggressiveness category. Hence,
it would be misleading to judge the effect of treatment aggressiveness without
correcting for the imbalances between the physician groups in patient age and,
potentially, other prognostic factors – that is, to judge without controlling for
confounding. This can be accomplished using a model which relates study
outcomes to age and other prognostic factors as well as the aggressiveness of
treatment. In a sense, multipredictor regression analysis allows us to examine
the effect of treatment aggressiveness while holding the other factors constant.

1.2 The Family of Multipredictor Regression Methods

Multipredictor regression modeling is a family of methods for relating multiple
predictors to an outcome, with each member of the family suitable for a
different type of outcome. The cost outcome, for example, is a numerical
measure and for our purposes can be taken as continuous. This outcome could
be analyzed using the linear regression model, though we also show in Chapter
9 why a generalized linear model might be a better choice.

Perhaps the simplest outcome in the back pain study is the yes/no indica-
tor of moderate-to-severe activity limitation; a subject’s activities are limited
by back pain or not. Such a categorical variable is termed binary because
it can only take on two values. This type of outcome is analyzed using the
logistic regression model.

In contrast, pain intensity was measured on a scale of ten equally spaced
values. The variable is numerical and could be treated as continuous, although
there were many tied values. Alternatively it could be analyzed as a categor-
ical variable, with the different values treated as ordered categories, using
extensions of the logistic model.

Another potential outcome might be time to resumption of full activity.
This variable is also continuous, but what if a patient had not yet resumed
full activity at the end of the follow-up period of two years? Then the time to
resumption of full activity would only be known to exceed two years. When
outcomes are known only to be greater than a given value (like two years), the
variable is said to be right-censored – a common feature of time-to-event data.
This type of outcome can be analyzed using the Cox proportional hazards
model.

Furthermore, in the back pain example, study outcomes were measured
on groups, or clusters, of patients with the same physician, and on multiple
occasions for each patient. To analyze such hierarchical or longitudinal out-
comes, we need to use extensions of the basic family of regression modeling
techniques suitable for repeated measures data. Related extensions are also
required to analyze data from complex surveys.

The various regression modeling approaches, while differing in important
statistical details, also share important similarities. Numeric, binary, and cat-
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egorical predictors are accommodated by all members of the family, and are
handled in a similar way: on some scale, the systematic part of the outcome
is modeled as a linear function of the predictor values and corresponding
regression coefficients. The different techniques all yield estimates of these
coefficients that summarize the results of the analysis and have important
statistical properties in common. This leads to unified methods for selecting
predictors and modeling their effects, as well as for making inferences to the
population represented in the sample. Finally, all the models can be applied
to the same broad classes of practical questions involving multiple predictors.

1.3 Motivation for Multipredictor Regression

Multipredictor regression can be a powerful tool for addressing three impor-
tant practical questions. These include prediction, isolating the effect of a
single predictor, and understanding multiple predictors.

1.3.1 Prediction

How can we identify which patients with back pain will have moderate-to-
severe limitation of activity? Multipredictor regression is a powerful and gen-
eral tool for using multiple measured predictors to make useful predictions
for future observations. In this example, the outcome is binary and thus a
multipredictor logistic regression model could be used to estimate the pre-
dicted probability of limitation for any possible combination of the observed
predictors. These estimates could then be used to classify patients as likely
to experience limitation or not. Similarly, if our interest was future costs, a
continuous variable, we could use a linear regression model to predict the
costs associated with new observations characterized by various values of the
predictors.

1.3.2 Isolating the Effect of a Single Predictor

In settings where multiple, related predictors contribute to study outcomes, it
will be important to consider multiple predictors even when a single predictor
is of interest. In the von Korff study the primary predictor of interest was
how aggressively a physician treated back pain. But incorporation of other
predictors was necessary for the clearest interpretation of the effects of the
aggressiveness of treatment.

1.3.3 Understanding Multiple Predictors

Multipredictor regression can also be used when our aim is to identify mul-
tiple independent predictors of a study outcome – independent in the sense
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that they appear to have an effect over and above other measured variables.
Especially in this context, we may need to consider other complexities of how
predictors jointly influence the outcome. For example, the effect of injuries on
activity limitation may in part operate through their effect on pain; in this
view, pain mediates the effect of injury and should not be adjusted for, at least
initially. Alternatively, suppose that among patients with mild or moderate
pain, younger age predicts more rapid recovery, but among those with severe
pain, age makes little difference. The effects of both age and pain severity
will both potentially be misrepresented if this interaction is not taken into
account. Fortunately, all the multipredictor regression methods discussed in
this book easily handle interactions, as well as mediation and confounding,
using essentially identical techniques. Though certainly not foolproof, multi-
predictor models are well suited to examining the complexities of how multiple
predictors are associated with an outcome of interest.

1.4 Guide to the Book

This text attempts to provide practical guidance for regression analysis. We
interweave real data examples from the biomedical literature in the hope of
capturing the reader’s interest and making the statistics as easy to grasp
as possible. Theoretical details are kept to a minimum, since it is usually
not necessary to understand the theory to use these methods appropriately.
We avoid formulas and keep mathematical notation to a minimum, instead
emphasizing selection of appropriate methods and careful interpretation of
the results.

This book grew out a two-quarter sequence in multipredictor methods for
physicians beginning a career in clinical research, with a focus on techniques
appropriate to their research projects. For these students, mathematical ex-
plication is an ineffective way to teach these methods. Hence our reliance on
real-world examples and heuristic explanations.

Our students take the course in the second quarter of their research train-
ing. A beginning course in biostatistics is assumed and some understanding
of epidemiologic concepts is clearly helpful. However, Chapter 3 presents a
review of topics from a first biostatistics course, and we explain epidemiologic
concepts in some detail throughout the book.

Although theoretical details are minimized, we do discuss techniques of
practical utility that some would consider advanced. We treat extensions of
basic multipredictor methods for repeated measures and hierarchical data, for
data arising from complex surveys, and for the broader class of generalized
linear models, of which logistic regression is the most familiar example. We
address model checking as well as model selection in considerable detail.

The orientation of this book is to parametric methods, in which the sys-
tematic part of the model is a simple function of the predictors, and sub-
stantial assumptions are made about the distribution of the outcome. In our
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view parametric methods are usually flexible and robust enough, and we show
how model adequacy can be checked. The Cox proportional hazards model
covered in Chapter 7 is a semi-parametric method which makes few assump-
tions about an important component of the systematic part of the model,
but retains most of the efficiency and many of the advantages of fully para-
metric models. Generalized additive models, briefly reviewed in Chapter 6, go
an additional step in this direction. However, fully nonparametric regression
methods in our view entail losses in efficiency and ease of interpretation which
make them less useful to researchers. We do recommend a popular bivariate
nonparametric regression method, LOWESS, but only for exploratory data
analysis.

Our approach is also to encourage exploratory data analysis as well as
thoughtful interpretation of results. We discourage focusing solely on P -values,
which have an important place in statistics but also important limitations. In
particular, P -values measure the strength of the evidence for an effect, but
not its size. In our view, data analysis profits from considering the estimated
effects, using confidence intervals to quantify their precision.

We recommend that readers begin with Chapter 2, on exploratory meth-
ods. Since Chapter 3 is largely a review, students may want to focus only
on unfamiliar material. Chapter 4, on multipredictor regression methods for
continuous outcomes, introduces most of the important themes of the book,
which are then revisited in later chapters, and so is essential reading. Sim-
ilarly, Chapter 5 covers predictor selection, which is common to the entire
family of regression techniques. Chapters 6 and 7 cover regression methods
specialized for binary and time-to-event outcomes, while Chapters 8–10 cover
extensions of these methods for repeated measures, counts and other special
types of outcomes, and complex surveys. Readers may want to study these
chapters as the need arises. Finally, Chapter 11 reprises the themes considered
in the earlier chapters and is recommended for all readers.

For interested readers, Stata code and selected data sets used in examples
and problems, plus errata, are posted on the website for this book:

http://www.biostat.ucsf.edu/vgsm
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Exploratory and Descriptive Methods

Before beginning any sort of statistical analysis, it is imperative to take a
preliminary look at the data with three main goals in mind: first, to check
for errors and anomalies; second, to understand the distribution of each of
the variables on its own; and third, to begin to understand the nature and
strength of relationships among variables. Errors should, of course, be cor-
rected, since even a small percentage of erroneous data values can drasti-
cally influence the results. Understanding the distribution of the variables,
especially the outcomes, is crucial to choosing the appropriate multipredictor
regression method. Finally, understanding the nature and strength of relation-
ships is the first step in building a more formal statistical model from which
to draw conclusions.

2.1 Data Checking

Procedures for data checking should be implemented before data entry begins,
to head off future headaches. Many data entry programs have the capability
to screen for egregious errors, including values that are out the expected range
or of the wrong “type.” If this is not possible, then we recommend regular
checking for data problems as the database is constructed.

Here are two examples we have encountered recently. First, some values of
a variable defined as a proportion were inadvertently entered as percentages
(i.e., 100 times larger than they should have been). Although they made up less
than 3% of the values, the analysis was completely invalidated. Fortunately,
this simple error was easily corrected once discovered. A second example in-
volved patients with a heart anomaly. Those whose diagnostic score was poor
enough (i.e., exceeded a numerical threshold) were to be classified according
to type of anomaly. Data checks revealed missing classifications for patients
whose diagnostic score exceeded the threshold, as well as classifications for pa-
tients whose score did not, complicating planned analyses. Had the data been
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screened as they were collected, this problem with study procedures could
have been avoided.

2.2 Types Of Data

The proper description of data depends on the nature of the measurement. The
key distinction for statistical analysis is between numerical and categorical
variables. The number of diagnostic tests ordered is a numerical variable, while
the gender of a person is categorical. Systolic blood pressure is numerical,
whereas the type of surgery is categorical.

A secondary but sometimes important distinction within numerical vari-
ables is whether the variable can take on a whole continuum or just a discrete
set of values. So systolic blood pressure would be continuous, while number
of diagnostic tests ordered would be discrete. Cost of a hospitalization would
be continuous, whereas number of mice able to successfully navigate a maze
would be discrete. More generally,

Definition: A numerical variable taking on a continuum of values is
called continuous and one that only takes on a discrete set of values
is called discrete.

A secondary distinction sometimes made with regard to categorical vari-
ables is whether the categories are ordered or unordered. So, for example,
categories of annual household income (<$20,000, $20,000–$40,000, $40,000–
$100,000, >$100,000) would be ordered, while marital status (single, married,
divorced, widowed) would be unordered. More exactly,

Definition: A categorical variable is ordinal if the categories can be
logically ordered from smallest to largest in a sense meaningful for the
question at hand (we need to rule out silly orders like alphabetical);
otherwise it is unordered or nominal.

Some overlap between types is possible. For example, we may break a nu-
merical variable (such as exact annual income in dollars and cents) into ranges
or categories. Conversely, we may treat a categorical variable as a numerical
score, for example, by assigning values one to five to the ordinal responses
Poor, Fair, Good, Very Good, and Excellent. In the following sections, we
present each of the descriptive and exploratory methods according to the
types of variables involved.

2.3 One-Variable Descriptions

We begin by describing techniques useful for examining a single variable at a
time. These are useful for uncovering mistakes or extreme values in the data
and for assessing distributional shape.
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2.3.1 Numerical Variables

We can describe the distribution of numerical variables using either numerical
or graphical techniques.

Example: Systolic Blood Pressure

The Western Collaborative Group Study (WCGS) was a large epidemiological
study designed to investigate the association between the “type A” behavior
pattern and coronary heart disease (Rosenman et al., 1964). We will revisit
this study later in the book, focusing on the primary outcome, but for now
we want to explore the distribution of systolic blood pressure (SBP).

Numerical Description

As a first step we obtain basic descriptive statistics for SBP. Table 2.1 gives de-
tailed summary statistics for the systolic blood pressure variable, sbp. Several

Table 2.1. Numerical Description of Systolic Blood Pressure
. summarize sbp, detail

systolic BP
-------------------------------------------------------------

Percentiles Smallest
1% 104 98
5% 110 100

10% 112 100 Obs 3154
25% 120 100 Sum of Wgt. 3154

50% 126 Mean 128.6328
Largest Std. Dev. 15.11773

75% 136 210
90% 148 210 Variance 228.5458
95% 156 212 Skewness 1.204397
99% 176 230 Kurtosis 5.792465

features of the output are worth consideration. The largest and smallest val-
ues should be scanned for outlying or incorrect values, and the mean (or
median) and standard deviation should be assessed as general measures of
the location and spread of the data. Secondary features are the skewness and
kurtosis, though these are usually more easily assessed by the graphical means
described in the next section. Another assessment of skewness is a large dif-
ference between the mean and median. In right-skewed data the mean is quite
a bit larger than the median, while in left-skewed data the mean is much
smaller than the median. Of note: in this data set, the largest observation is
more than six standard deviations above the mean!
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Graphical Description

Graphs are often the quickest and most effective way to get a sense of the
data. For numerical data, three basic graphs are most useful: the histogram,
boxplot, and normal quantile-quantile (or Q-Q) plot. Each is useful for differ-
ent purposes. The histogram easily conveys information about the location,
spread, and shape of the frequency distribution of the data. The boxplot is
a schematic identifying key features of the distribution. Finally, the normal
quantile-quantile (Q-Q) plot facilitates comparison of the shape of the distri-
bution of the data to a normal (or bell-shaped) distribution.

The histogram displays the frequency of data points falling into various
ranges as a bar chart. Fig. 2.1 shows a histogram of the SBP data from WCGS.
Generated using an earlier version of Stata, the default histogram uses five
intervals and labels axes with the minimum and maximum values only. In this
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Fig. 2.1. Histogram of the Systolic Blood Pressure Data

figure, we can see that most of the measurements are in the range of about 100
to 150, with a few extreme values around 200. The percentage of observations
in the first interval is about 47.4%.

However, this is not a particularly well-constructed histogram. With over
3,000 data points, we can use more intervals to increase the definition of the
histogram and avoid grouping the data so coarsely. Using only five intervals,
the first two including almost all the data, makes for a loss of information,
since we only know the value of the data in those large “bins” to the limits



2.3 One-Variable Descriptions 11

of the interval (in the case of the first bin, between 98 and 125), and learn
nothing about how the data are distributed within those intervals. Also, our
preference is to provide more interpretable axis labeling. Fig. 2.2 shows a
modified histogram generated using the current version of Stata that provides
much better definition as to the shape of the frequency distribution of SBP.
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Fig. 2.2. Histogram of the Systolic Blood Pressure Data Using 15 Intervals

The key with a histogram is to use a sufficient number of intervals to
define the shape of the distribution clearly and not lose much information,
without using so many as to leave gaps, give the histogram a ragged shape,
and defeat the goal of summarization. With 3,000 data points, we can afford
quite a few bins. A rough rule of thumb is to choose the number of bins to
be about 1 + 3.3 log10(n), (Sturges, 1926) where n is the sample size (so this
would suggest 12 or 13 bins for the WCGS data). More than 20 or so are rarely
needed. Fig. 2.2 uses 15 bins and provides a clear definition of the shape as
well as a fair bit of detail.

A boxplot represents a compromise between a histogram and a numeri-
cal summary. The boxplot in Fig. 2.3 graphically displays information from
the summary in Table 2.1, specifically the minimum, maximum, and 25th,
50th (median), and 75th percentiles. This retains many of the advantages of
a graphical display while still providing fairly precise numerical summaries.
The “box” displays the 25th and 75th percentiles (the lower and upper edges
of the box) and the median (the line across the middle of the box). Extend-
ing from the box are the “whiskers” (this colorful terminology is due to the
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Fig. 2.3. Boxplot of the Systolic Blood Pressure Data

legendary statistician John Tukey, who liked to coin new terms). The bottom
whisker extends to the minimum data value, 98, but the maximum is above
the upper whisker. This is because Stata uses an algorithm to try to deter-
mine if observations are “outliers,” that is, values a large distance away from
the main portion of the data. Data points considered outliers (they can be
in either the upper or lower range of the data) are plotted with symbols and
the whisker only extends to the most extreme observation not considered an
outlier.

Boxplots convey a wealth of information about the distribution of the
variable:

• location, as measured by the median
• spread, as measured by the height of the box (this is called the

interquartile range or IQR)
• range of the observations
• presence of outliers
• some information about shape.

This last point bears further explanation. If the median is located to-
ward the bottom of the box, then the data are right-skewed toward larger
values. That is, the distance between the median and the 75th percentile
is greater than that between the median and the 25th percentile. Likewise,
right-skewness will be indicated if the upper whisker is longer than the lower
whisker or if there are more outliers in the upper range. Both the boxplot
and the histogram show evidence for right-skewness in the SBP data. If the
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direction of the inequality is reversed (more outliers on the lower end, longer
lower whisker, median toward the top of the box), then the distribution is
left-skewed.

Our final graphical technique, the normal Q-Q plot, is useful for comparing
the frequency distribution of the data to a normal distribution. Since it is easy
to distinguish lines that are straight from ones that are not, a normal Q-Q
plot is constructed so that the data points fall along an approximately straight
line when the data are from a normal distribution, and deviate systematically
from a straight line when the data are from other distributions. Fig. 2.4 shows
the Q-Q plot for the SBP data. The line of the data points shows a distinct
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Fig. 2.4. Normal Q-Q Plot of the Systolic Blood Pressure Data

curvature, indicating the data are from a non-normal distribution.
The shape and direction of the curvature can be used to diagnose the

deviation from normality. Upward curvature, as in Fig. 2.4, is indicative of
right-skewness, while downward curvature is indicative of left-skewness. The
other two common patterns are S-shaped. An S-shape as in Fig. 2.5 indicates
a heavy-tailed distribution, while an S-shape like that in Fig. 2.6 is indicative
of a light-tailed distribution.

Heavy- and light-tailed are always in reference to a hypothetical normal
distribution with the same spread. A heavy-tailed distribution has more ob-
servations in the middle of the distribution and way out in the tails, and fewer
a modest way from the middle (simply having more in the tails would just
mean a larger spread). Light-tailed means the reverse: fewer in the middle and
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Fig. 2.5. Normal Q-Q Plot of Data From a Heavy-Tailed Distribution
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Fig. 2.6. Normal Q-Q plot of Data From a Light-Tailed Distribution
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far out tails and more in the mid-range. Heavy-tailed distributions are gen-
erally more worrisome than light-tailed since they are more likely to include
outliers.

Transformations of Data

A number of the techniques we describe in this book require the assumption
of approximate normality or, at least, work better when the data are not
highly skewed or heavy-tailed, and do not include extreme outliers. A common
method for dealing with these problems is to transform such variables. For
example, instead of the measured values of SBP, we might instead use the
logarithm of SBP. We first consider why this works and then some of the
advantages and disadvantages of transformations.

Transformations affect the distribution of values of a variable because they
emphasize differences in a certain range of the data, while de-emphasizing
differences in others. Consider a table of transformed values, as displayed in
Table 2.2. On the original scale the difference between .01 and .1 is .09, but

Table 2.2. Effect of a log10 Transformation

Value Difference log10 value Difference

0.01 0.09 -2 1
0.1 0.9 -1 1
1 9 0 1
10 90 1 1
100 900 2 1
1000 – 3 –

on the log10 scale, the difference is 1. In contrast, the difference between 100
and 1,000 on the original scale is 900, but this difference is also 1 on the log10
scale. So a log transformation de-emphasizes differences at the upper end of
the scale and emphasizes those at the lower end. This holds for the natural
log as well as log10 transformation. The effect can readily be seen in Fig. 2.7,
which displays histograms of SBP on the original scale and after natural log
transformation. The log-transformed data is distinctly less right-skewed, even
though some skewness is still evident. Essentially, we are viewing the data on
a different scale of measurement.

There are a couple of other reasons to consider transforming variables,
as we will see in later sections and chapters: transformations can simplify
the relationships between variables (e.g., by making a curvilinear relationship
linear), can remove interactions, and can equalize variances across subgroups
that previously had unequal variances.

A primary objection to the use of transformations is that they make the
data less interpretable. After all, who thinks about medical costs in log dol-
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Fig. 2.7. Histograms of Systolic Blood Pressure and Its Natural Logarithm

lars? In situations where there is good reason to stay with the original scale
of measurement (e.g., dollars) we may prefer alternatives to transformation
including generalized linear models and weighted analyses. Or we may appeal
to the robustness of normality-based techniques: many perform extremely well
even when used with data exhibiting fairly serious violations of the assump-
tions.

In other situations, with a bit of work, it is straightforward to express the
results on the original scale when the analysis has been conducted on a trans-
formed scale. For example, Sect. 4.7.5 gives the details for log transformations
in linear regression.

A compromise when the goal is, for example, to test for differences be-
tween two arms in a clinical trial is to plan ahead to present basic descriptive
statistics in the original scale, but perform tests on a transformed scale more
appropriate for statistical analysis. After all, a difference on the transformed
scale is still a difference between the two arms.

Finally we remind the reader that different scales of measurement just take
a bit of getting used to: consider pH.

2.3.2 Categorical Variables

Categorical variables require a different approach, since they are less amenable
to graphical analyses and because common statistical summaries, such as
mean and standard deviation, are inapplicable. Instead we use tabular de-
scriptions. Table 2.3 gives the frequencies, percents, and cumulative percents
for each of the behavior pattern categories for the WCGS data. Note that
cumulative percentages are really only useful with ordinal categorical data
(why?).

When tables are generated by the computer, there is usually little latitude
in the details. However, when tables are constructed by hand, thought should
be given to their layout; Ehrenberg (1981) is recommended reading. Three
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Table 2.3. Frequencies of Behavior Patterns
behavioral |
pattern (4 |

level) | Freq. Percent Cum.
------------+-----------------------------------

A1 | 264 8.37 8.37
A2 | 1325 42.01 50.38
B3 | 1216 38.55 88.93
B4 | 349 11.07 100.00

------------+-----------------------------------
Total | 3154 100.00

easy-to-follow suggestions from that article are to arrange the categories in
a meaningful way (e.g., not alphabetically), report numbers to two effective
digits, and to leave a gap every three or four rows to make it easier to read
across the table. Table 2.4 illustrates these concepts. With the table arranged

Table 2.4. Characteristics of Top Medical Schools

School Rank NIH research Tuition Average
($10 millions) ($thousands) MCAT

Harvard 1 68 30 11.1
Johns Hopkins 2 31 29 11.2
Duke 3 16 31 11.6

Penn 4(tie) 33 32 11.7
Washington U. 4(tie) 25 33 12.0
Columbia 6 24 33 11.7

UCSF 7 24 20 11.4
Yale 8 22 30 11.1
Stanford 9(tie) 19 30 11.1
Michigan 9(tie) 20 29 11.0

Source: US News and World Report (http://www.usnews.com, 12/6/01)

in order of the rankings, it is easy to see values that do not follow the pattern
predicted by rank, for example, out-of-state tuition.

2.4 Two-Variable Descriptions

Most of the rest of this book is about the relationships among variables. An
example from the WCGS is whether behavior pattern is related to systolic
blood pressure. In investigating the relationships between variables, it is often
useful to distinguish the role that the variables play in an analysis.



18 2 Exploratory and Descriptive Methods

2.4.1 Outcome Versus Predictor Variables

A key distinction is whether a variable is being predicted by the remaining
variables, or whether it is being used to make the prediction. The variable
singled out to be predicted from the remaining variables we will call the out-
come variable; alternate and interchangeable names are response variable or
dependent variable. The variables used to make the prediction will be called
predictor variables. Alternate and equivalent terms are covariates and in-
dependent variables. We slightly prefer the outcome/predictor combination,
since the term response conveys a cause-and-effect interpretation, which may
be inappropriate, and dependent/independent is confusing with regard to the
notion of statistical independence. (“Independent variables do not have to be
independent” is a true statement!)

In the WCGS example, we might hypothesize that change in behavior
pattern (which is potentially modifiable) might cause change in SBP. This
would lead us to consider SBP as the outcome and behavior pattern as the
predictor.

2.4.2 Continuous Outcome Variable

As before, it is useful to consider the nature of the outcome and predictor
variables in order to choose the appropriate descriptive technique. We begin
with continuous outcome variables, first with a continuous predictor and then
with a categorical predictor.

Continuous Predictor

When both the predictor and outcome variables are continuous, the typical
numerical description is a correlation coefficient and its graphical counterpart
is a scatterplot. Again considering the WCGS study, we will investigate the
relationship between SBP and weight.

Table 2.5 shows the Stata command and output for the correlation coef-
ficient, while Fig. 2.8 shows a scatterplot. Both the graph and the numerical
summary confirm the same thing: there is a weak association between the

Table 2.5. Correlation Coefficient for Systolic Blood Pressure and Weight
. correlate sbp weight (obs=3154)

| sbp weight
-------------+------------------

sbp | 1.0000
weight | 0.2532 1.0000

two variables, as measured by the correlation of 0.25. The graph conveys im-
portant additional information. In particular, there are quite a few outliers,


