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Preface 

The pursuit of knowledge and discovery ebbs and flows. Peaks of innovation and discov­
ery are often followed by periods of calm that invite reflection and reassessment, which in 
turn motivate renewed efforts towards further advancement. It is our view that the study 
of photocatalytic reaction engineering is in a phase of reassessment. The very principles 
of reaction engineering are under review at this time when environmental pressures and 
social concerns are changing the way we perceive and use technology. The application 
of photocatalytic reaction technology holds great promise in these changing times. 

It is our aspiration to offer with this book a coherent and comprehensive treatment 
of the subject with thoroughly integrated contributions of the three co-authors. 

Chapter I examines the basic principles involved in modeling photocatalytic reac­
tion rates. Clarification in this area is needed as it is often lacking and is required for 
proceeding with the design, the simulation and the scale-up of the photocatalytic reactor 
units. Once these concepts are established. Chapter II describes various novel photocat­
alytic reactors designed by research groups around the world including the Photo-CREC 
reactors, developed in the context of the authors' research activities at the Chemical Re­
actor Engineering Centre (CREC), the University of Western Ontario in London, Canada 
and at the Universidad Autonoma de Zacatecas, Mexico. This chapter provides insight 
on the opportunities to extend the application of this technology through innovation in 
chemical reactor engineering. 

Chapter III addresses the need of reviewing various types of photocatalysts, power 
sources and auxiliary equipment available for photocatalytic studies. Description of 
these matters is of essential importance for establishing radiation source power spectra, 
their lifetime and their power decay, for describing the available tools for macroscopic 
radiation balances and for effective kinetic and reaction rate modeling. 

Chapter IV elucidates the methodology to develop a macroscopic radiation balance. 
This methodology allows the effective assessment of absorbed irradiation and irradiation 
transmission involving apparent extinction coefficients. The focus is put on demonstrat­
ing the applicability of these relatively simple functions to make the prediction of photon 
transfer and photon absorption a tractable mathematical problem. Thus, this chapter pro­
vides valuable tools from the perspective of the photocatalytic reactor designer. 

Chapter V addresses the important task of accounting for the complex network 
of photochemical reactions, establishing viable kinetic modeling. This modeling is 
essentially based on a series-parallel model of the photocatalytic reaction network. 
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Examples are given to demonstrate the extent of applicability of this approach to the 
photoconversion of phenol. 

Furthermore, the extensive applicability of photocatalysis has essentially become 
a problem of energy efficiency. As a result, the quantification of these energy efficiency 
factors is a major issue. Thus, Chapter VI considers these factors from two perspectives: 
quantum efficiencies and Photochemical Thermodynamic Efficiency Factor (PTEF), the 
latter being a new efficiency factor introduced by the authors. 

Chapter VII addresses the need to account for both physical and chemical pheno­
mena, reaction and adsorption. In fact, consideration of these combined phenomena 
is, in the view of the authors, essential to provide effective kinetic and rate modeling 
for the photo conversion of organic and inorganic pollutants. Cases with several organic 
species are presented including methylene blue, phenol, chloro-phenol, di-chloro-phenol, 
catechol, and pyrogallol. 

Air decontamination is another potential innovative application of photocatalysis. 
Chapter VIII focuses on air decontamination using Photo-CREC reactors. Several exam­
ples are provided by examining the photoconversion of acetone, iso-propanol, and ac-
etaldehyde. Special attention is paid to the quantum efficiencies for air decontamination, 
exceeding 100% in many cases, which demonstrates the distinctive chain mechanism 
character of the photoconversion of organic pollutants in air. 

Finally, Chapter IX, discusses recent research on the concurrent oxidation-reduction 
of organic and inorganic compounds and on the inactivation of model microorganisms. 
These two applications of photocatalysis have the potential of significantly improving 
the prospects for this novel technology. 

In summary, our book contains an up-to-date discussion of photocatalytic reaction 
engineering and the application of these principles. Altogether it is an invitation to reflect 
on the possibilities of photocatalysis as a new and unique technique with great potential 
for air and water treatment. We offer our book as a contribution to the development of 
reaction engineering in photocatalysis as well as to the extensive potential for application 
of this technology. 

We would like to express our appreciation to the University of Western Ontario, 
Canada, the Universidad Autonoma de Zacatecas, Mexico and the Instituto de Investi-
gaciones Electricas, Mexico for their onthusiastic support of this project. 
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would also like to express our appreciation to Mr. Martin de Lasa who designed the book 
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this cover. Finally, we are indebted to Mr. Kenneth Howell Senior Editor for Chemistry, 
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1 
Establishing Photocatalytic 
Kinetic Rate Equations: Basic 
Principles and Parameters 

1.1. INTRODUCTION 

Heterogeneous photocatalysis is a promising new alternative method for the removal of 
organic pollutants in water (Carey, 1976). The degradation of organic pollutants in water, 
using irradiated dispersions of titanium dioxide, is a growing area of both fundamental 
and applied research. 

This chapter reviews the basic principles involved in modeling the rates of pho­
tocatalytic reactions. These matters require clarification in order to proceed with the 
successful design, simulation and scale-up of photo catalytic reactor units. 

1.2. THE PHOTOCATALYTIC REACTION AND THE INITIATION STEP 

Three components must be present in order for the heterogeneous photocatalytic 
reaction to take place: an emitted photon (in the appropriate wavelength), a catalyst 
surface (usually a semi-conductor material) and a strong oxidizing agent (in most cases 
oxygen). Pasquali et al., (1996) indicated that absorbed photons should be considered 
to be a nonmaterial reactant, which, like other reacting species, must be present for the 
reaction to occur. 

The heterogeneous photocatalytic process is initiated when a photon with energy 
equal to or greater than the band gap energy {Ehg) of the photocatalyst reaches the 
photocatalyst surface, resulting in molecular excitation. Ei,g is defined as the difference 
between the filled valence band and the empty conduction band of the photocatalyst, in 
the order of a few electron volts. 

This molecular excitation results in the generation of mobile electrons in the higher 
energy conduction band {Ed,) and positive holes in the lower energy valence band {Eyh) 
of the catalyst, according to equation 1-1 and the reaction illustrated in Figure 1.1. 

photocatalyst —> e^ +/?+ (1-1) 
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FIGURE 1.1. Schematics of the electron-hole generation in a photocatalyst particle and some of the mech­
anisms involved: a) Ray promotes the formation of the electron-hole and electron, b) electron-hole is used 
in the formation of the OH* groups promoting oxidation processes, c) the electron is utilized in a number of 
reduction processes, d) electron and electron-hole can recombine contributing to process inefficiency. 

The photocatalytic reaction proceeds via a series of chemical events, following the 
initiation step of pair electron-hole formation. This leads to the utilization of both the 
electron-hole /z+ for oxidation processes and eventually to the capture of the e~ electron 
for reduction processes, as well as the potential formation of super oxides anions and 
hydrogen peroxide from oxygen. 

Unfortunately, there is a competing electron and electron-hole recombination step 
(the reverse of equation (1 -1)), and this result in process inefficiencies and the waste of 
the energy supplied by the photon. The electron-hole recombination can be considered 
as one of the major factors limiting the efficiency of the photocatalytic processes. 

Every effort to prevent electron and electron-hole recombination will improve the ef­
ficiency of heterogeneous photocatalytic processes and will considerably help to achieve 
the application of this technique for water and air purification. 

1.3. THE PHOTOCATALYTIC REACTION 

The heterogeneous photocatalytic reaction can be represented as a number of mech­
anistic steps (Legrini et. al., 1993; Hoffman et. al., 1995; Turchi and QUis, 1990). 

A photo-excited Ti02 generates an electron and an electron-hole. 

Ti02-^e-+h+ (1-2) 

Electron transfer from the adsorbed substrate {RXad), adsorbed water or the OH ad 
ion, to the electron-hole. 

h+ + RXad -^ RX+a (1-3) 

h+ + H20ads -^ OHla^ + H+ (1-4) 

h^ + OH-.^OHl, (1-5) 
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The third step is of great importance, mostly because of the high concentrations of 
OH , given water dissociation into ions. 

H20^0H-^ + H+ (1-6) 

Molecular oxygen acts as an acceptor species in the electron-transfer reaction. 

e- + 02^ O^ (1-7) 

Super-oxide anions, (equation 1-7), can subsequently be involved in the following 
reactions. 

O2 + H+^ HOI (1-8) 

H+ + O2 + H0\ -^ H2O2+ Oi (1-9) 

Photoconversion of hydrogen peroxide gives more OH' free radical groups. 

H202 + h^^20H' (1-10) 

Finally, OH' radicals oxidize organic adsorbed pollutants (RXad) onto the surface 
of the titanium dioxide particles. 

^^d + R^ad -^ Intermediate (1-11) 

The OH' radicals, as described by equation (1-11), are very reactive and attack the 
pollutant molecule to degrade it into mineral acids including carbon dioxide and water 
(Al-Ekabiefa/., 1993). 

There are two possible explanations of photocatalytic reactions. While some authors 
suggest an indirect oxidation via a surface-bound hydroxyl radical (refer to equations 
(1-5) and (1-11)) (Mills and Hoffmann, 1993; Terzian et al, 1991; Turchi and OUis, 
1990), another group argues in favor of a direct oxidation via the valence-band hole 
(equation (1-3) (Draper and Fox, 1990). 

In support of the argument for the surface-bound hydroxyl radical mechanism, 
there is an intermediate presence of hydroxylated structures during the photocatalytic 
degradation of halogenated aromatics. These hydroxylated intermediates are also found 
when similar aromatics react with a known source of hydroxyl radicals. Furthermore, 
ESR studies confirm the existence of hydroxyl and hydro-peroxy radicals in aqueous 
solutions of illuminated Ti02 (Hoffman et al., 1995; Linsebigler et al., 1995). 

1.4. MODELING PHOTOCATALYTIC REACTION RATES 

The modeling of photocatalytic reaction rates is essentially based on a number 
of mathematical statements, which can be expressed by a set of ordinary differential 
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equations. Each of these equations is established for the key chemical species and there­
fore species' balances in photocatalytic reactors can be typically described as follows: 

dCi 
V—-

dt X! ̂ '.* *̂ (1-12) 

with y being the total reactor volume in L, C, being the concentration of the (' chemical 
species in g L^ \ ? being the time in s, v, /; being a dimensionless stochiometric coefficient 
for i species involved in reaction step k and Rk being the rate of photoconversion of step 
k based on the unit weight of irradiated catalyst, Wtrr, in mole (gcat s)~'. 

This equation involves a number of important assumptions satisfied by most pho­
tocatalytic reactor units, either in the case of reactors with suspended Ti02 or in reactors 
with immobilized Ti02. 

(a) The photocatalytic reactor unit is operated in the batch mode. This condition is 
typically required because of the relatively low photocatalytic reaction rates. 

(b) Wirr, the weight of irradiated catalyst is known. 
(c) Mixing and fluid recirculation are high enough so that a quasi constant reaction 

rate can be defined in the irradiated reactor section. 

Equation (1-12) can be rearranged and simplified in some situations; such as in the 
case of model pollutant consumption. The rate of photoconversion can then be expressed 
in terms of measurable parameters and variables 

V dCx ^^ 

'•' = ^ 7 r = ?'̂ -̂ ^ ^'-''^ 
with ;' = 1 and " 1 " representing the model compound. 

The consideration of equations (1-12) and/or (1-13) leads to the advancement of 
photocatalytic conversion rate models, such as the series-parallel model proposed by 
Salaices et al. (2004) where the derived kinetic parameters are based on the irradiated 
weight of catalyst. As such, these can be considered as intrinsic parameters with phe-
nomenological meaning pertinent to the photocatalytic reaction. 

— - = '•—• (1-14) 
dt '^ 

1 + E KjCj 
; = i 

with /:, representing the kinetic constants for the (' species in ŝ ^ and Kj is the adsorption 
constant for the species j (any of the species present) in L mole"'. 

A similar approach to that used in equation (1-13) can be adopted by referring 
the rate of model pollutant photoconversion to Ai„-, the external area of irradiated 
catalyst, 

V dCi ^r-^ 
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Another possible approach is the use of less meaningful "apparent" rates of photo-
conversion employing a different basis, such as in the case of V,>r, the irradiated reactor 
volume. Thus, the basic balance, as described in equation (1-12), becomes 

dCi 
V—-

dt Y^ Vi.k R'k (1-16) 

with V being the total reactor volume in L, Q being the concentration of the ;' chemical 
species in g L^^ f being the time in s, Vj^t: being a dimensionless stochiometric coefficient 
for i species involved in reaction step k and RI being the rate of photoconversion of k 
step, based in the unit irradiated reactor volume, V/„-, in mole (L s)~'. 

Thus, for the case of a model pollutant photoconversion equation (1-16) can be 
expressed as follows. 

V dC, _ -I (1-17) 

" 
' l -

V dCi 

Virr dt 

(Virr + Vd) dC, 

Virr dt 

Virr dt 

with (' = 1 and 1 being the model compound. 
The definition of the rate of photoconversion then becomes: 

(1-18) 

with y, the system reactor volume, being the combined irradiated volume V,>r and non-
irradiated volume (dark reactor volume section) V .̂ 

During the process of calculating the rates of photoconversion, frequently re­
searchers make no distinction between the total reactor volume, V, and the irradiated 
reactor volume. It should be stressed that only under very special conditions and designs 
one can adopt the V = Virr assumption and consider an apparent rate of photoconversion 
directly obtained from the change in concentration of an (' chemical pollutant species. 

d C I X—^ '" 

^=E^u^ . (1-19) 
k 

or 

dCi 
r, = — (1-20) 

with (' = 1 for the model pollutant. 
In summary, one can establish for a model pollutant the following, 

„V- A- W-
'" " " irr , J^irr '' irr , , ^ . , 

r, = r, = r, = r\ (1-21) 
'- '- V V V 

Thus, when relating the observed changes in concentration of chemical species in a 
given reactor geometry with the rate of photodegradation, the irradiated catalyst weight 
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(Wirr) or the irradiated reactor volume (Vtrr) should be carefully considered as two key 
parameters. This makes photocatalytic rate definition and kinetic parameter calculations 
phenomenologically sound and meaningful. 

The kinetic parameters obtained should otherwise be subjected to corrections using 
factors suggested by Salaices et al. (2002). For a first order decomposition, apparent 
reaction parameters should be corrected as follows: 

„V- A- W-
k =k:^ = k[^ = k , ^ (1-22) 

1 1 y 1 y I y V ^ 

1.5. EFFECT OF THE LAMP IRRADIATION AND CATALYST LOADING 
ON THE PHOTOCATALYTIC RATE 

Both lamp irradiation and catalyst concentration play very important roles in pho­
tocatalytic processes. The effect of the irradiation parameter on the overall (apparent) 
rate of photoconversion can be represented by a power varying between 0.5 and 1. The 
influence of the photocatalyst weight can also be considered using a generic function of 
the irradiated catalyst. 

The overall (apparent) initial reaction rate can be represented as the product of 
several functionalities, which include a function dependent on the (' chemical species 
concentration defined at the initial condition /i(C,-,,„), a function dependent on the cat­
alyst concentration /2(Cc) or the catalyst weight, and a function dependant on the rate 
of absorbed photons fsiPa)-

ru, = MCun)f2(Cc)f3(Pa) (1-23) 

In order to clarify the dependence of the initial photoconversion rate with f^iPa), 
Salaices et al. (2001) developed experiments with phenol with a changing incident 
absorbed radiation. As suggested by a number of authors (Okamoto et al., 1985; Ollis, 
1991; Pelizzetti et al., 1993; Trillas et al., 1996, 1992; Wei et al., 1994), it is proven 
that at low levels of absorbed incident radiation there is a linear relationship between 
the initial photoconversion rate of phenol and the incident absorbed radiation, r, ^̂  = 
m^fsiPa) = rtiT,P^, with 5 = 1 and MT, = f\(C\ in)f2(Cc) as the proportionality factor 
in II mole L^^ einstein^^ (refer to Figure 1.2). 

This dependence of the photoconversion rate with the incident radiation is estab­
lished in a Photo-CREC-Water II unit using removable glass tubes and meshes having 
different openings (for additional details refer to Chapter IV). 

The effect of catalyst loading over Degussa P25, fiiCc), on the overall initial 
photoconversion rate is illustrated in Figure 1.3. The catalyst concentration changes 
from zero to 0.35 g L^ \ corresponding to 100 and 0.005 % radiation transmission, 
respectively. It is observed that a minimum amount of catalyst is required to start the 
photodegradation, C^^. It is also noticed that the overall reaction rate increases with 
catalyst loading until it reaches a r̂  ;„ maximum value of approximately 7.0 /x mole-C 
(L min)^^ at catalyst concentrations higher than 0.14 g L^^. 
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P Q 10 , einstein s 

FIGURE 1.2. Initial phenol photoconversion rate (r^ •^) versus incident radiation intensity. (•) Removable 
3.2-cm diameter glass inner tube, (o) Removable 5.6-cm diameter glass inner tube. (Reprinted with permission 
from Ind. Eng. Chem. Res., 40(23), M. Salaices, B. Serrano and H.I. de Lasa, Photocatalytic conversion of 
organic pollutants: Extinction coefficients and quantum efficiencies, 545.5-5464. Copyright 2001 American 
Chemical Society). 

0.15 0.2 0.25 0.3 0.35 

FIGURE 1.3. Initial reaction rate as a function of the catalyst loading. Catalyst: Degussa P25 (Reprinted 
with permission from Ind. Eng. Chem. Res., 40(23), M. Salaices, B. Serrano and H.I. de Lasa, Photocatalytic 
conversion of organic pollutants: Extinction coefficients and quantum efficiencies, 5455-5464. Copyright 2001 
American Chemical Society). 
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These results can be explained as follows: 

''i./n = "Ja/aCCc) = m2Pi |cc^o[l - exp(-aCc)] (1-24) 

Given f,- |c„^o = Pi — Pbs (refer to Chapter IV), then, 

'•|,m = m2Pi{\ - exp(-aCc)] - nijPbsU - exp(-aCc)] (1-25) 

where Cc is the catalyst concentration in g L^^; m2 = f\ (C\jn)f^(Pa) is the proportion­
ality constant, /z mole L^^ einstein^^; P,- is the rate of photons reaching the inner reactor 
surface, einstein s~'; Ph^ is the rate of backscattered photons exiting the system, einstein 
s~' and a is the effective extinction coefficient of the Ti02 suspension, L g~'. 

It is postulated that the backscattering (refer to Chapter IV) is completed at very low 
catalyst concentrations, therefore the term mjPbsU — exp(—aCc)] can be approximated 
to a constant value, mjPbs, and equation (1-25) is reduced. 

\An ac[\ - exp(-a Cc)] - be (1-26) 

with ac = ni2Pi and be = ni2Pbs in M mole-C (L s ) " \ a the apparent extinction coef­
ficient in L g^\ Cc the Degussa P25 catalyst concentration in g L^^. 

Salaices et al. (2001) fitted the ac, a and be parameters to the experimental data 
reported in Figure 1.3 using a non-linear, least squares method. These parameters can 
also be calculated independently by using the values for f,-, Phs, a, and m2 (refer to 
Chapter IV). These results are summarized in Table 1.1. As noted, the calculated and 
regressed values are statistically similar, validating the applicability of the proposed 
model for the prediction of the /2(Cc) functionality. 

Concerning the physical interpretation of C„f in Figure 1.3, this represents the wall 
fouling catalyst concentration, or the minimum catalyst concentration necessary to start 
the reaction. It is postulated that, at very low concentrations, the catalyst particles tend 
to adhere to the system walls, including to some non-illuminated sections. Additionally, 
a fraction of the irradiated catalyst found close to the reactor walls does not produce 
any significant photodegradation due to its poor contact with the fluid. It is not until a 
minimum catalyst loading value is reached that the irradiated catalyst becomes available 
for the photoconversion reaction. The calculated value of C^^ was 0.014 g L~'. 

Results of Figures 1.3 and 1.4 show that for Wtrr < Win-, max all the catalyst avail­
able contribute to the photocatalytic conversion. Beyond this W,>r.max value, additional 
catalyst does not influence the rate of photoconversion. Thus, one should consider, as sug­
gested in equation (1-12) and shown in Figures 1.4 and 1.5, a photocatalytic reaction rate 

TABLE 1.1. Parameter values for the rj";̂  as a function of Cc (equation. (1-26)) 

Parameter Value +/-a Calculated +/-a 

ac 11.988 2.2032 9.388 1.18 
a 38.450 9.012 41.1 3.451 
be 4.992 2.2488 1.77816 0.7776 
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FIGURE 1.4. Change of ;•!,•„, the initial reaction rate per unit weight of irradiated catalyst with catalyst 
loading. 

based on the irradiated weiglit of catalyst for properly expressing the photoconversion 
using a phenomenologically based rate parameter. 

These results highlight: a) Photodegradation reaction rates should be defined on 
the basis of phenomenologically meaningful parameters, case of W,>r, b) Reaction rate 
evaluation is a task that should be developed carefully, accounting for possible non-
idealities in the photocatalytic reactor such as particle wall fouling. 

.6. MODELING PHOTOCONVERSION OE POLLUTANTS: THE 
PARALLEL-SERIES REACTION MODEL 

The functionality of the initial reaction rate on the i chemical species concentration 
defined at the initial condition /i(Ci_/„) is illustrated in Figures 1.5 and 1.6. 

The ordinates show the phenol concentration (Figure 1.5) and Total Organic Carbon 
(TOC) (Figure 1.6) changes with reaction time. These results were obtained for different 
initial phenol concentrations, under the conditions reported by Salaices et al. (2001). 

The examination of these experimental data, expanded details are reported in Chap­
ter V, illustrates the basic parallel-series mechanism for photocatalytic reactions includ­
ing the possible influence of the distribution of photocatalytic site activity. 

The model pollutant, phenol, is photo-converted via a first order or pseudo-first 
order reaction consistent with equation(l-14) considering in this manner all possible 
sources of phenol consumption. 

TOC changes, describing the overall degradation of organic species, follow a near-
zero order reaction rate. This shows that some fractions of phenol are fully photo-
converted and mineralized into CO2 at the very early stages of the photocatalytic con-


