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Preface 

From 26-30 September 2004, the "International Conference on Stochastic Fi- 
nance 2004" took place at  INSTITUTO SUPERIOR DE ECONOMIA E GESTAO 
(ISEG) da Universidade TBcnica de Lisboa, in Portugal. The conference was 
one of the biggest international forums for scientists and practitioners working 
in financial mathematics and financial engineering. 

Taking place just before the conference, on 20-24 September 2004 was the 
"Autumn School on Stochastic Finance 2004" hosted by the Universidade de 
Coimbra. The goal of this event was to present instances of the interaction of 
finance and mathematics by means of a coherent combination of five courses 
of introductory lectures, delivered by specialists, in order to stimulate and 
reinforce the understanding of the subject and to provide an opportunity for 
graduate students and researchers to develop some competence in financial 
mathematics and thereby simplify their participation in the conference. 

At both meetings the organizing and scientific committees worked in close 
contact, which was crucial for inviting many leading specialists in finan- 
cial mathematics and financial engineering - eleven plenary lecturers and 
eleven invited speakers. Besides these presentations, the conference included 
more than eighty contributed talks distributed among eight thematic ses- 
sions: Mathematical Finance-Stochastic Models, Derivative Pricing, Interest 
Rate Term Structure Modelling, Portfolio Management, Integrated Risk Man- 
agement, Mathematical Economics, Finance, and Quantitative and Computa- 
tional Models and Methods. 

Stochastic financial mathematics is now one of the most rapidly developing 
fields of mathematics and applied mathematics. It has very close ties with 
economics and is oriented to the solution of problems appearing every day 
in real financial markets. We recall here an extract from the "Editorial" note 
presented in volume 1, issue 1 of the journal Finance and Stochastics that 
Springer-Verlag began publishing in 1997: 



VI Preface 

"Nearly a century ago, Louis Bachelier published his thesis "ThBorie 
de la speculation", Ann. Sci. ~ c o l e  Norm. Sup. 3 (1900), in which he in- 
vented Brownian motion as a tool for the analysis of financial markets. 
A.N. Kolmogorov, in his own landmark work " ~ b e r  die analytischen 
Methoden in der Wahrscheinlichkeitsrechnung" , Math. Annalen 104 
(1931), pp.415-458, credits Bachelier with the first systematic study 
of stochastic processes in continuous time. But in addition, Bache- 
lier's thesis marks the beginning of the theory of option pricing, now 
an integral part of modern finance. Thus the year 1900 may be consid- 
ered as birth date of both Finance and Stochastics. For the first seven 
decades following Bachelier, finance and stochastics followed more or 
less independently. The theory of stochastic processes grew fast and 
incorporating classical calculus became a powerful mathematical tool 
- called stochastic calculus. Finance lay dormant until the middle 
of the twentieth century, and then was resurrected as an offshoot of 
general equilibrium theory in economics. With the work in the late 
1960s and early 1970s of Black, Merton, Samuelson and Scholes, mod- 
elling stock prices as geometric Brownian motion and using this model 
to study equilibrium and arbitrage pricing, the two disciplines were 
reunited. Soon it was discovered how well suited stochastic calculus 
with its rich mathematical structure - martingale theory, It8 calcu- 
lus, stochastic integration and PDE's - was for a rigorous analysis of 
contemporary finance, which would lead one to believe (erroneously) 
that also these tools were invented with the application to finance in 
mind. Since then the interplay of these two disciplines has become an 
ever growing research field with great impact both on the theory and 
practice of financial markets". 

The aims formulated in this text were the leading ideas for our conference. 
Indeed, all talks had, first of all, financial meanings and interpretations. All 
talks used and developed stochastic methods or solutions for real problems. 
Such joint mutual collaboration was useful both for financial economics and 
stochastic theory, and it could bring the mathematical and financial commu- 
nities together. 

In the present volume the reader can find some papers based on the plenary 
and invited lectures and on some contributed talks selected for publication. 

The editorial committee of these proceedings expresses its deep gratitude 
to  those who contributed their work to this volume and those who kindly 
helped us in refereeing them. 

It  is our pleasure to express our thanks to the scientific committee of the 
conference, as well as to plenary and invited lecturers and all the participants 
of Stochastic Finance 2004; their presence and their work formed the main 
contribution to the success of the conference. 
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How Often to Sample a Continuous-Time 
Process in the Presence of Market 
Microstructure Noise* 

Yacine Kit-Sahalia, Per A. Mykland, and Lan Zhang 

Bendheim Center for Finance, Princeton University, Princeton, NJ 08540 and 
NBER 
yacineQprinceton.edu 
Department of Statistics, The University of Chicago, Chicago, IL 60637 
myklandQuchicago.edu 
Department of Statistics, Carnegie Mellon University, Pittsburgh, PA 15213 
lzhangQstat,cmu.edu 

Note: Reprint of: Yacine Kit-Sahalia, Per A. Mykland and Lan Zhang, How 
Often to Sample a Continuous-Time Process in the Presence of Market Mi- 
crostructure Noise, Review of Financial Studies, published in Volume 18 2 
(2005), pages 351-416, Oxford University Press (by permission of Oxford Uni- 
versity Press). 

Summary. In theory, the sum of squares of log returns sampled at high frequency 
estimates their variance. When market microstructure noise is present but unac- 
counted for, however, we show that the optimal sampling frequency is finite and 
derive its closed-form expression. But even with optimal sampling, using say five 
minute returns when transactions are recorded every second, a vast amount of data 
is discarded, in contradiction to basic statistical principles. We demonstrate that 
modelling the noise and using all the data is a better solution, even if one misspec- 
ifies the noise distribution. So the answer is: sample as often as possible. 

Over the past few years, price data  sampled a t  very high frequency have 
become increasingly available, in the form of the Olsen dataset of currency 
exchange rates or the TAQ database of NYSE stocks. If such data  were not 
affected by market microstructure noise, the realized volatility of the process 

* We are grateful for comments and suggestions from the editor, Maureen O'Hara, 
and two anonymous referees, as well as seminar participants at  Berkeley, Harvard, 
NYU, MIT, Stanford, the Econometric Society and the Joint Statistical Meet- 
ings. Financial support from the NSF under grants SBR-0111140 (Aiit-Sahalia), 
DMS-0204639 (Mykland and Zhang) and the NIH under grant R01  AG023141-01 
(Zhang) is also gratefully acknowledged. 
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(i.e., the average sum of squares of log-returns sampled at high frequency) 
would estimate the returns' variance, as is well known. In fact, sampling as 
often as possible would theoretically produce in the limit a perfect estimate 
of that variance. 

We start by asking whether it remains optimal to sample the price process 
a t  very high frequency in the presence of market microstructure noise, con- 
sistently with the basic statistical principle that, ceteris paribus, more data 
is preferred to less. We first show that, if noise is present but unaccounted 
for, then the optimal sampling frequency is finite, and we derive a closed-form 
formula for it. The intuition for this result is as follows. The volatility of the 
underlying efficient price process and the market microstructure noise tend to  
behave differently a t  different frequencies. Thinking in terms of signal-to-noise 
ratio, a log-return observed from transaction prices over a tiny time interval 
is mostly composed of market microstructure noise and brings little informa- 
tion regarding the volatility of the price process since the latter is (at least 
in the Brownian case) proportional to the time interval separating successive 
observations. As the time interval separating the two prices in the log-return 
increases, the amount of market microstructure noise remains constant, since 
each price is measured with error, while the informational content of volatil- 
ity increases. Hence very high frequency data are mostly composed of market 
microstructure noise, while the volatility of the price process is more apparent 
in longer horizon returns. Running counter to this effect is the basic statistical 
principle mentioned above: in an idealized setting where the data are observed 
without error, sampling more frequently cannot hurt. What is the right bal- 
ance to strike? What we show is that these two effects compensate each other 
and result in a finite optimal sampling frequency (in the root mean squared 
error sense) so that some time aggregation of the returns data is advisable. 

By providing a quantitative answer to the question of how often one should 
sample, we hope to reduce the arbitrariness of the choices that have been 
made in the empirical literature using high frequency data: for example, using 
essentially the same Olsen exchange rate series, these somewhat ad hoc choices 
range from 5 minute intervals (e.g., [5] ,  [8] and [19]) to as long as 30 minutes 
(e.g., [6]). When calibrating our analysis to the amount of microstructure noise 
that has been reported in the literature, we demonstrate how the optimal 
sampling interval should be determined: for instance, depending upon the 
amount of microstructure noise relative to the variance of the underlying 
returns, the optimal sampling frequency varies from 4 minutes to 3 hours, if 
1 day's worth of data is used a t  a time. If a longer time period is used in 
the analysis, then the optimal sampling frequency can be considerably longer 
than these values. 

But even if one determines the sampling frequency optimally, it remains 
the case that the empirical researcher is not making use of the full data at 
his/her disposal. For instance, suppose that we have available transaction 
records on a liquid stock, traded once every second. Over a typical 6.5 hour 
day, we therefore start with 23,400 observations. If one decides to sample once 
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every 5 minutes, then -whether or not this is the optimal sampling frequency - 
this amounts to retaining only 78 observations. Said differently, one is throwing 
away 299 out of every 300 transactions. From a statistical perspective, this 
is unlikely to be the optimal solution, even though it is undoubtedly better 
than computing a volatility estimate using noisy squared log-returns sampled 
every second. Somehow, an optimal solution should make use of all the data, 
and this is where our analysis goes next. 

So, if one decides to account for the presence of the noise, how should one 
go about doing it? We show that modelling the noise term explicitly restores 
the first order statistical effect that sampling as often as possible is optimal. 
This will involve an estimator different from the simple sum of squared log- 
returns. Since we work within a fully parametric framework, likelihood is the 
key word. Hence we construct the likelihood function for the observed log- 
returns, which include microstructure noise. To do so, we must postulate a 
model for the noise term. We assume that the noise is Gaussian. In light of 
what we know from the sophisticated theoretical microstructure literature, 
this is likely to be overly simplistic and one may well be concerned about the 
effect(s) of this assumption. Could it do more harm than good? Surprisingly, 
we demonstrate that our likelihood correction, based on Gaussianity of the 
noise, works even if one misspecifies the assumed distribution of the noise 
term. Specifically, if the econometrician assumes that the noise terms are 
normally distributed when in fact they are not, not only is it still optimal to 
sample as often as possible (unlike the result when no allowance is made for 
the presence of noise), but the estimator has the same variance as if the noise 
distribution had been correctly specified. This robustness result is, we think, 
a major argument in favor of incorporating the presence of the noise when 
estimating continuous time models with high frequency financial data, even if 
one is unsure about what is the true distribution of the noise term. 

In other words, the answer to the question we pose in our title is "as 
often as possible", provided one accounts for the presence of the noise when 
designing the estimator (and we suggest maximum likelihood as a means of 
doing so). If one is unwilling to account for the noise, then the answer is to 
rely on the finite optimal sampling frequency we start our analysis with, but 
we stress that while it is optimal if one insists upon using sums of squares of 
log-returns, this is not the best possible approach to estimate volatility given 
the complete high frequency dataset a t  hand. 

In a companion paper ([43]), we study the corresponding nonparametric 
problem, where the volatility of the underlying price is a stochastic process, 
and nothing else is known about it, in particular no parametric structure. 
In that case, the object of interest is the integrated volatility of the process 
over a fixed time interval, such as a day, and we show how to estimate it 
using again all the data available (instead of sparse sampling a t  an arbitrarily 
lower frequency of, say, 5 minutes). Since the model is nonparametric, we 
no longer use a likelihood approach but instead propose a solution based 
on subsampling and averaging, which involves estimators constructed on two 
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different time scales, and demonstrate that this again dominates sampling a t  
a lower frequency, whether arbitrary or optimally determined. 

This paper is organized as follows. We start by describing in Section 1.1 
our reduced form setup and the underlying structural models that support 
it. We then review in Section 1.2 the base case where no noise is present, 
before analyzing in Section 1.3 the situation where the presence of the noise is 
ignored. In Section 1.4, we examine the concrete implications of this result for 
empirical work with high frequency data. Next, we show in Section 1.5 that 
accounting for the presence of the noise through the likelihood restores the 
optimality of high frequency sampling. Our robustness results are presented 
in Section 1.6 and interpreted in Section 1.7. We study the same questions 
when the observations are sampled a t  random time intervals, which are an 
essential feature of transaction-level data, in Section 1.8. We then turn to 
various extensions and relaxation of our assumptions in Section 1.9: we add 
a drift term, then serially correlated and cross-correlated noise respectively. 
Section 1.10 concludes. All proofs are in the Appendix. 

1.1 Setup 

Our basic setup is as follows. We assume that the underlying process of in- 
terest, typically the log-price of a security, is a time-homogenous diffusion on 
the real line 

dXt = p(Xt; 8)dt + adWt , (1.1) 

where Xo = 0, Wt is a Brownian motion, p( . ,  .) is the drift function, a2 
the diffusion coefficient and 8 the drift parameters, 8 E Q and a > 0. The 
parameter space is an open and bounded set. As usual, the restriction that 
a is constant is without loss of generality since in the univariate case a one- 
to-one transformation can always reduce a known specification a (Xt )  to that 
case. Also, as discussed in [4], the properties of parametric estimators in this 
model are quite different depending upon whether we estimate 0 alone, a2 
alone, or both parameters together. When the data are noisy, the main effects 
that we describe are already present in the simpler of these three cases, where 
a2 alone is estimated, and so we focus on that case. Moreover, in the high 
frequency context we have in mind, the diffusive component of (1.1) is of order 
(dt)'l2 while the drift component is of order dt only, so the drift component 
is mathematically negligible a t  high frequencies. This is validated empirically: 
including a drift actually deteriorates the performance of variance estimates 
from high frequency data since the drift is estimated with a large standard 
error. Not centering the log returns for the purpose of variance estimation 
produces more accurate results (see 1381). So we simplify the analysis one step 
further by setting p = 0, which we do until Section 1.9.1, where we then show 
that adding a drift term does not alter our results. In Section 1.9.4, we discuss 
the situation where the instantaneous volatility a is stochastic. 
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But for now, 
Xt = o w t .  (1.2) 

Until Section 1.8, we treat the case where the observations occur a t  equidistant 
time intervals A, in which case the parameter a2  is therefore estimated a t  
time T on the basis of N + 1 discrete observations recorded a t  times TO = 0, 
TI = A, ..., TN = N A  = T. In Section 1.8, we let the sampling intervals be 
themselves random variables, since this feature is an essential characteristic 
of high frequency transaction data. 

The notion that the observed transaction price in high frequency financial 
data is the unobservable efficient price plus some noise component due to the 
imperfections of the trading process is a well established concept in the market 
microstructure literature (see for instance [lo]). So, where we depart from the 
inference setup previously studied in [4] is that we now assume that, instead 
of observing the process X a t  dates ~ i ,  we observe X with error: 

- 
X'Q = xn + uTi , (I*3) 

where the U k s  are i.i.d, noise with mean zero and variance a2 and are inde- 
pendent of the W process. In that context, we view X as the efficient log-price, 
while the observed -% is the transaction log-price. In an efficient market, Xt is 
the log of the expectation of the final value of the security conditional on all 
publicly available information a t  time t .  It  corresponds to the log-price that 
would be in effect in a perfect market with no trading imperfections, frictions, 
or informational effects. The Brownian motion W is the process representing 
the arrival of new information, which in this idealized setting is immediately 
impounded in X. 

By contrast, Ut summarizes the noise generated by the mechanics of the 
trading process. What we have in mind as the source of noise is a diverse ar- 
ray of market microstructure effects, either information or non-information re- 
lated, such as the presence of a bid-ask spread and the corresponding bounces, 
the differences in trade sizes and the corresponding differences in representa- 
tiveness of the prices, the different informational content of price changes due 
to informational asymmetries of traders, the gradual response of prices to a 
block trade, the strategic component of the order flow, inventory control ef- 
fects, the discreteness of price changes in markets that are not decimalized, 
etc., all summarized into the term U. That these phenomena are real are 
important is an accepted fact in the market microstructure literature, both 
theoretical and empirical. One can in fact argue that these phenomena justify 
this literature. 

We view (1.3) as the simplest possible reduced form of structural market 
microstructure models. The efficient price process X is typically modelled as 
a random walk, i.e., the discrete time equivalent of (1.2). Our specification co- 
incides with that of [29], who discusses the theoretical market microstructure 
underpinnings of such a model and argues that the parameter a is a summary 
measure of market quality. Structural market microstructure models do gen- 
erate (1.3). For instance, [39] proposes a model where U is due entirely to 
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the bid-ask spread. [28] notes that in practice there are sources of noise other 
than just the bid-ask spread, and studies their effect on the Roll model and 
its estimators. 

Indeed, a disturbance U can also be generated by adverse selection effects 
as in [20] and 1211, where the spread has two components: one that is due to 
monopoly power, clearing costs, inventory carrying costs, etc., as previously, 
and a second one that arises because of adverse selection whereby the specialist 
is concerned that the investor on the other side of the transaction has superior 
information. When asymmetric information is involved, the disturbance U 
would typically no longer be uncorrelated with the W process and would 
exhibit autocorrelation at  the first order, which would complicate our analysis 
without fundamentally altering it: see Sections 1.9.2 and 1.9.3 where we relax 
the assumptions that the U's are serially uncorrelated and independent of the 
W process, respectively. 

The situation where the measurement error is primarily due to the fact 
that transaction prices are multiples of a tick size (i.e., 2, = mi6 where K 

is the tick size and mi is the integer closest to X,/K) can be modelled as a 
rounding off problem (see [14], [23] and [31]). The specification of the model 
in [27] combines both the rounding and bid-ask effects as the dual sources of 
the noise term U. Finally, structural models, such as that of [35], also give 
rise to reduced forms where the observed transaction price x takes the form 
of an unobserved fundamental value plus error. 

With (1.3) as our basic data generating process, we now turn to the ques- 
tions we address in this paper: how often should one sample a continuous-time 
process when the data are subject to market microstructure noise, what are 
the implications of the noise for the estimation of the parameters of the X 
process, and how should one correct for the presence of the noise, allowing for 
the possibility that the econometrician misspecifies the assumed distribution 
of the noise term, and finally allowing for the sampling to occur at  random 
points in time? We proceed from the simplest to the most complex situation 
by adding one extra layer of complexity at  a time: Figure 1.1 shows the three 
sampling schemes we consider, starting with fixed sampling without market 
microstructure noise, then moving to fixed sampling with noise and concluding 
with an analysis of the situation where transaction prices are not only subject 
to microstructure noise but are also recorded at  random time intervals. 

1.2 The Baseline Case: No Microstructure Noise 

We start by briefly reviewing what would happen in the absence of market 
microstructure noise, that is when a = 0. With X denoting the log-price, 
the first differences of the observations are the log-returns Y, = 2, - 2,-, , 
i = 1, ..., N. The observations Y, = a (w,,,, - WTi) are then i.i.d. N(0, a2A) 
so the likelihood function is 
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where Y = (Yl, ..., YN)'.. The maximum-likelihood estimator of a2 coincides 
with the discrete approximation to the quadratic variation of the process 

which has the following exact small sample moments: 

and the following asymptotic distribution 

where 
-1 

w = ~ ~ ~ ~ ( & 2 ) = ~ ~ [ - l ( a 2 ) ]  = 2 a 4 ~ .  (1.7) 

Thus selecting A as small as possible is optimal for the purpose of estimating 
a2. 

1.3 When the Observations Are Noisy But the Noise Is 
Ignored 

Suppose now that market microstructure noise is present but the presence 
of the U's is ignored when estimating a2. In other words, we use the log- 
likelihood (1.4) even though the true structure of the observed log-returns 
Y,'s is given by an MA(1) process since 

where the E ~ S  are uncorrelated with mean zero and variance y2 (if the U's are 
normally distributed, then the c i s  are i.i.d.). The relationship to the original 
parametrization (a2,  a2) is given by 
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Equivalently, the inverse change of variable is given by 

Two important properties of the log-returns Y,'s emerge from the two 
equations (1.9)-(1.10). First, it is clear from (1.9) that microstructure noise 
leads to spurious variance in observed log-returns, a 2 A  + 2a2 vs, a2A. This 
is consistent with the predictions of theoretical microstructure models. For 
instance, [16] develop a model linking the arrival of information, the timing 
of trades, and the resulting price process. In their model, the transaction 
price will be a biased representation of the efficient price process, with a 
variance that is both overstated and heteroskedastic as a result of the fact 
that transactions (hence the recording of an observation on the process X) 
occur a t  intervals that are time-varying. While our specification is too simple 
to capture the rich joint dynamics of price and sampling times predicted by 
their model, heteroskedasticity of the observed variance will also arise in our 
case once we allow for time variation of the sampling intervals (see Section 1.8 
below). 

In our model, the proportion of the total return variance that is market 
microstructure-induced is 

a t  observation interval A. As A gets smaller, 7r gets closer to 1, so that a 
larger proportion of the variance in the observed log-return is driven by mar- 
ket microstructure frictions, and correspondingly a lesser fraction reflects the 
volatility of the underlying price process X. 

Second, (1.10) implies that -1 < q < 0, so that log-returns are (neg- 
atively) autocorrelated with first order autocorrelation -a2/(a2A + 2a2) = 

-7r/2. It  has been noted that market microstructure noise has the potential 
to explain the empirical autocorrelation of returns. For instance, in the simple 
Roll model, Ut = (s/2)Qt where s is the bid/ask spread and Qt, the order flow 
indicator, is a binomial variable that takes the values +1 and -1 with equal 
probability. Therefore Var[Ut] = a2  = s2/4. Since COV(Y,,K-~) = -a2, the 
bid/ask spread can be recovered in this model as s = 2 6  where p = y2v 
is the first order autocorrelation of returns. [18] proposed to  adjust variance 
estimates to control for such autocorrelation and [28] studied the resulting 
estimators. In [41], U arises because of the strategic trading of institutional 
investors which is then put forward as an explanation for the observed serial 
correlation of returns. [33] show that infrequent trading has implications for 
the variance and autocorrelations of returns. Other empirical patterns in high 
frequency financial data have been documented: leptokurtosis, deterministic 
patterns and volatility clustering. 
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Our first result shows that the optimal sampling frequency is finite when 
noise is present but unaccounted for. The estimator b2 obtained from maxi- 
mizing the misspecified log-likelihood (1.4) is quadratic in the Y,'s : see (1.5). 
In order to  obtain its exact (i.e., small sample) variance, we therefore need to 
calculate the fourth order cumulants of the Y,'s since 

(see e.g., Section 2.3 of [36] for definitions and properties of the cumulants). 
We have: 

Lemma 1. The fourth cumulants of the log-returns are given by 

Cum(y2,y j ,Yk,q  = 

2 Cum4[U] i f i = j = k = l ,  
(-1)3(i3j,k,l) cum4 [u] , if max(i, j ,  k, 1) = min(i, j ,  k, 1) + 1, (1.15) 
0 otherwise, 

where s(i ,  j ,  k, I) denotes the number of indices among (i, j , k, I) that are equal 
to min(i, j ,  k, I)  and U denotes a generic random variable with the common 
distribution of the Uks. Its fourth cumulant is denoted Cum4 [U]. 

Now U has mean zero, so in terms of its moments 

In the special case where U is normally distributed, Cum4 [U] = 0 and as a 
result of (1.14) the fourth cumulants of the log-returns are all 0 (since W is 
normal, the log-returns are also normal in that case). If the distribution of U 
is binomial as in the simple bid/ask model described above, then Cum4 [U] = 
-s4/8; since in general s will be a tiny percentage of the asset price, say 
s = 0.05%, the resulting Cum4 [U] will be very small. 

We can now characterize the root mean squared error 

1 / 2  
RMSE [b2] = ( ( E  [b2] - 02) + Var [b2 ] )  

of the estimator: 

Theorem 1. In small samples (finite T), the bias and variance of the esti- 
mator b2 are given by 
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2 (a4A2 + 4a2Aa2 + 6a4 + 2 Cum4 [ U ] )  
Var [32] = - 

T A  (1.18) 

- 
2 (2a4 + Cum4 [ U ] )  

T2 

Its RMSE has a unique minimum in A which is reached at the optimal sam- 
pling interval 

As T grows, we have 

The trade-off between bias and variance made explicit in (1.17)-(1.19) is 
not unlike the situation in nonparametric estimation with A-I playing the role 
of the bandwidth h. A lower h reduces the bias but increases the variance, 
and the optimal choice of h balances the two effects. 

Note that these are exact small sample expressions, valid for all T. Asymp- 
totically in T, Var [@] -+ 0, and hence the RMSE of the estimator is dom- 
inated by the bias term which is independent of T. And given the form of 
the bias (1.17), one would in fact want to select the largest A possible to 
minimize the bias (as opposed to the smallest one as in the no-noise case of 
Section 1.2). The rate a t  which A* should increase with T is given by (1.20). 
Also, in the limit where the noise disappears (a --+ 0 and Cum4 [U]  -, O), the 
optimal sampling interval A* tends to 0. 

How does a small departure from a normal distribution of the microstruc- 
ture noise affect the optimal sampling frequency? The answer is that a small 
positive (resp. negative) departure of Cum 4 [U]  starting from the normal value 
of 0 leads to an increase (resp. decrease) in A*, since 
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where A,!&,l is the value of A* corresponding to Cum4 [U] = 0. And of 
course the full formula (1.20) can be used to get the exact answer for any 
departure from normality instead of the comparative static one. 

Another interesting asymptotic situation occurs if one attempts to use 
higher and higher frequency data (A -t 0, say sampled every minute) over a 
fixed time period ( T  fixed, say a day). Since the expressions in Theorem 1 are 
exact small sample ones, they can in particular be specialized to analyze this 
situation. With n = T/A, it follows from (1.17)-(1.19) that 

2n (6a4 + 2 Cum4 [U]) 
Var [b2] = 

4nE [u4] 
T2 

+ o(n) = 
T2 

+ o(n) , (1.23) 

so ( ~ / 2 n ) b ~  becomes an estimator of E [u2] = a2 whose asymptotic variance 
is E [U4] . Note in particular that b2 estimates the variance of the noise, which 
is essentially unrelated to the object of interest a2. This type of asymptotics 
is relevant in the stochastic volatility case we analyze in our companion paper 
[43l 

Our results also have implications for the two parallel tracks that have de- 
veloped in the recent financial econometrics literature dealing with discretely 
observed continuous-time processes. One strand of the literature has argued 
that estimation methods should be robust to the potential issues arising in 
the presence of high frequency data and, consequently, be asymptotically valid 
without requiring that the sampling interval A separating successive observa- 
tions tend to zero (see, e.g., [2], [3] and [26]). Another strand of the literature 
has dispensed with that constraint, and the asymptotic validity of these meth- 
ods requires that A tend to zero instead of or in addition to, an increasing 
length of time T over which these observations are recorded (see, e.g., [6], [7] 
and [8]). 

The first strand of literature has been informally warning about the poten- 
tial dangers of using high frequency financial data without accounting for their 
inherent noise (see e.g., page 529 of [2]), and we propose a formal modeliza- 
tion of that phenomenon. The implications of our analysis are most salient 
for the second strand of the literature, which is predicated on the use of high 
frequency data but does not account for the presence of market microstruc- 
ture noise. Our results show that the properties of estimators based on the 
local sample path properties of the process (such as the quadratic variation to 
estimate a 2 )  change dramatically in the presence of noise. Complementary to 
this are the results of [22] which show that the presence of even increasingly 
negligible noise is sufficient to adversely affect the identification of a2. 
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1.4 Concrete Implications for Empirical Work with High 
Frequency Data 

The clear message of Theorem 1 for empirical researchers working with high 
frequency financial data is that it may be optimal to sample less frequently. 
As discussed in the Introduction, authors have reduced their sampling fre- 
quency below that of the actual record of observations in a somewhat ad hoc 
fashion, with typical choices 5 minutes and up. Our analysis provides not only 
a theoretical rationale for sampling less frequently, but also delivers a precise 
answer to the question of "how often one should sample?" For that purpose, 
we need to calibrate the parameters appearing in Theorem 1, namely a ,  a,  
Cum4[U], A and T. We assume in this calibration exercise that the noise is 
Gaussian, in which case Cume[U] = 0. 

1.4.1 Stocks 

We use existing studies in empirical market microstructure to calibrate the 
parameters. One such study is [35], who estimated on the basis of a sample of 
274 NYSE stocks that approximately 60% of the total variance of price changes 
is attributable to market microstructure effects (they report a range of values 
for n from 54% in the first half hour of trading to 65% in the last half hour, see 
their Table 4; they also decompose this total variance into components due to  
discreteness, asymmetric information, transaction costs and the interaction 
between these effects). Given that their sample contains an average of 15 
transactions per hour (their Table I),  we have in our framework 

These values imply from (1.13) that a = 0.16% if we assume a realistic value of 
a = 30% per year. (We do not use their reported volatility number since they 
apparently averaged the variance of price changes over the 274 stocks instead 
of the variance of the returns. Since different stocks have different price levels, 
the price variances across stocks are not directly comparable. This does not 
affect the estimated fraction n however, since the price level scaling factor 
cancels out between the numerator and the denominator). 

The magnitude of the effect is bound to vary by type of security, market 
and time period. [29] estimates the value of a to be 0.33%. Some authors have 
reported even larger effects. Using a sample of NASDAQ stocks, [32] estimate 
that about 50% of the daily variance of returns in due to the bid-ask effect. 
With a = 40% (NASDAQ stocks have higher volatility), the values 

yield the value a = 1.8%. Also on NASDAQ, [12] estimate that 11% of the 
variance of weekly returns (see their Table 4, middle portfolio) is due to  bid- 
ask effects. The values 
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imply that a = 1.4%. 
In Table 1.1, we compute the value of the optimal sampling interval A* 

implied by different combinations of sample length (T) and noise magnitude 
(a). The volatility of the efficient price process is held fixed a t  a = 30% in 
Panel A, which is a realistic value for stocks. The numbers in the table show 
that the optimal sampling frequency can be substantially affected by even 
relatively small quantities of microstructure noise. For instance, using the 
value a = 0.15% calibrated from [35], we find an optimal sampling interval 
of 22 minutes if the sampling length is 1 day; longer sample lengths lead 
to higher optimal sampling intervals. With the higher value of a = 0.3%, 
approximating the estimate from [29], the optimal sampling interval is 57 
minutes. A lower value of the magnitude of the noise translates into a higher 
frequency: for instance, A* = 5 minutes if a = 0.05% and T = 1 day. Figure 
1.2 displays the RMSE of the estimator as a function of A and T, using 
parameter values a = 30% and a = 0.15%. The figure illustrates the fact that 
deviations from the optimal choice of A lead to a substantial increase in the 
RMSE: for example, with T = 1 month, the RMSE more than doubles if, 
instead of the optimal A* = 1 hour, one uses A = 15 minutes. 

1.4.2 Currencies 

Looking now a t  foreign exchange markets, empirical market microstructure 
studies have quantified the magnitude of the bid-ask spread. For example, [9] 
computes the average bid/ask spread s in the wholesale market for different 
currencies and reports values of s = 0.05% for the German mark, and 0.06% 
for the Japanese yen (see Panel B of his Table 2). We calculated the corre- 
sponding numbers for the 1996-2002 period to be 0.04% for the mark (followed 
by the euro) and 0.06% for the yen. Emerging market currencies have higher 
spreads: for instance, s = 0.12% for Korea and 0.10% for Brazil. During the 
same period, the volatility of the exchange rate was a = 10% for the German 
mark, 12% for the Japanese yen, 17% for Brazil and 18% for Korea. In Panel B 
of Table 1.1, we compute A* with a = lo%, a realistic value for the euro and 
yen. As we noted above, if the sole source of the noise were a bidlask spread 
of size s,  then a should be set to s/2. Therefore Panel B reports the values of 
A* for values of a ranging from 0.02% to 0.1%. For example, the dollar/euro 
or dollarlyen exchange rates (calibrated to a = lo%, a = 0.02%) should be 
sampled every A* = 23 minutes if the overall sample length is T = 1 day, and 
every 1.1 hours if T = 1 year. 

Furthermore, using the bid/ask spread alone as a proxy for all microstruc- 
ture frictions will lead, except in unusual circumstances, to  an understatement 
of the parameter a ,  since variances are additive. Thus, since A* is increasing 
in a ,  one should interpret the value of A* read off 1.1 on the row corresponding 
to a = s/2 as a lower bound for the optimal sampling interval. 
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1.4.3 Monte Carlo Evidence 

To validate empirically these results, we perform Monte Carlo simulations. 
We simulate M = 10,000 samples of length T = 1 year of the process X, 
add microstructure noise U to  generate the observations 2 and then the log 
returns Y. We sample the log-returns a t  various intervals A ranging from 5 
minutes to 1 week and calculate the bias and variance of the estimator d2 
over the M simulated paths. We then compare the results to the theoretical 
values given in (1.17)-(1.19) of Theorem 1. The noise distribution is Gaussian, 
a = 30% and a = 0.15% - the values we calibrated to stock returns data above. 
Table 1.2 shows that the theoretical values are in close agreement with the 
results of the Monte Carlo simulations. 

The table also illustrates the magnitude of the bias inherent in sampling at 
too high a frequency. While the value of a2 used to generate the data is 0.09, 
the expected value of the estimator when sampling every 5 minutes is 0.18, 
so on average the estimated quadratic variation is twice as big as it should be 
in this case. 

1.5 Incorporating Market Microstructure Noise 
Explicitly 

So far we have stuck to the sum of squares of log-returns as our estimator 
of volatility. We then showed that, for this estimator, the optimal sampling 
frequency is finite. But this implies that one is discarding a large proportion of 
the high frequency sample (299 out of every 300 observations in the example 
described in the Introduction), in order to mitigate the bias induced by market 
microstructure noise. Next, we show that if we explicitly incorporate the U's 
into the likelihood function, then we are back in the situation where the 
optimal sampling scheme consists in sampling as often as possible - i.e., using 
all the data available. 

Specifying the likelihood function of the log-returns, while recognizing that 
they incorporate noise, requires that we take a stand on the distribution of 
the noise term. Suppose for now that the microstructure noise is normally dis- 
tributed, an assumption whose effect we will investigate below in Section 1.6. 
Under this assumption, the likelihood function for the Y's is given by 

where the covariance matrix for the vector Y = (Yl, ..., YN)' is given by +y2V, 
where 



1 How Often to Sample a Continuous-Time Process ... 17 

Further, 

and, neglecting the end effects, an approximate inverse of V is the matrix 

fl = [wijIi,j=l, ..., N where 

(see [15]). The product Vfl differs from the identity matrix only on the first 
and last rows. The exact inverse is V-l = [vij] i,j=l,, , , , where 

(see [24] and [40]). 
From the perspective of practical implementation, this estimator is nothing 

else than the MLE estimator of an MA(1) process with Gaussian errors: any 
existing computer routines for the MA(1) situation can therefore be applied 
(see e.g., Section 5.4 in [25]). In particular, the likelihood function can be 
expressed in a computationally efficient form by triangularizing the matrix V, 
yielding the equivalent expression: 

where 

and the q s  are obtained recursively as = Yl and for i = 2, ..., N : 

This latter form of the log-likelihood function involves only single sums as 
opposed to double sums if one were to compute Y'V-'Y by brute force using 
the expression of V-' given above. 
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We now compute the distribution of the MLE estimators of a2 and a2,  
which follows by the delta method from the classical result for the MA(1) 
estimators of y and q : 

Proposition 1. When U is  normally distributed, 
tent and its asymptotic variance is given by 

the MLE (d2, ii2) is consis- 

with, 

Since AvAR,,,,,~(~~) is increasing in A, it is optimal to sample as often 
as possible. Further, since 

the loss of efficiency relative to the case where no market microstructure noise 
is present (and AVAR(d2) = 2a4A as given in (1.7) if a2  = 0 is not estimated, 
or AVAR(d2) = 6a4A if a2 = 0 is estimated) is a t  order A'/'. Figure 1.3 
plots the asymptotic variances of d2  as functions of A with and without 
noise (the parameter values are again a = 30% and a = 0.15%). Figure 1.4 
reports histograms of the distributions of d2  and ii2 from 10,000 Monte Carlo 
simulations with the solid curve plotting the asymptotic distribution of the 
estimator from Proposition 1. The sample path is of length T = 1 year, 
the parameter values the same as above, and the process is sampled every 5 
minutes - since we are now accounting explicitly for the presence of noise, 
there is no longer a reason to sample a t  lower frequencies. Indeed, the figure 
documents the absence of bias and the good agreement of the asymptotic 
distribution with the small sample one. 

1.6 The Effect of Misspecifying the Distribution of the 
Microstructure Noise 

We now study the situation where one attempts to incorporate the presence 
of the U's  into the analysis, as in Section 1.5, but mistakenly assumes a mis- 
specified model for them. Specifically, we consider the case where the U's  are 
assumed to be normally distributed when in reality they have a different dis- 
tribution. We still suppose that the U's are i.i.d. with mean zero and variance 
a2. 

Since the econometrician assumes the U's to have a normal distribution, 
inference is still done with the log-likelihood l(a2,  a2) ,  or equivalently l(q, y2) 
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given in (1.25), using (1.9)-(1.10). This means that the scores i,z and iaz, or 
equivalently (C.l) and (C.2), are used as moment functions (or "estimating 
equations"). Since the first order moments of the moment functions only de- 
pend on the second order moment structure of the log-returns (Yl, ..., YN), 
which is unchanged by the absence of normality, the moment functions are 
unbiased under the true distribution of the U's : 

and similarly for i,z and i a z .  Hence the estimator (e2,iL2) based on these 
moment functions is consistent and asymptotically unbiased (even though the 
likelihood function is misspecified.) 

The effect of misspecification therefore lies in the asymptotic variance ma- 
trix. By using the cumulants of the distribution of U, we express the asymp- 
totic variance of these estimators in terms of deviations from normality. But 
as far as computing the actual estimator, nothing has changed relative to Sec- 
tion 1.5: we are still calculating the MLE for an MA(1) process with Gaussian 
errors and can apply exactly the same computational routine. 

However, since the error distribution is potentially misspecified, one could 
expect the asymptotic distribution of the estimator to  be altered. This turns 
out not be the case, as far as e2 is concerned: 

Theorem 2. The estimators (e2, iL2) obtained by maximizing the possibly mis- 
specijied log-likelihood (1.25) are consistent and their asymptotic variance is 
given by 

where AVARnOma1(b2, iL2) is the asymptotic variance i n  the case where the 
distribution of U is normal, that is, the expression given in  Proposition 1. 

In other words, the asymptotic variance of b2 is identical to its expression 
if the U's had been normal. Therefore the correction we proposed for the 
presence of market microstructure noise relying on the assumption that the 
noise is Gaussian is robust to misspecification of the error distribution. 

Documenting the presence of the correction term through simulations 
presents a challenge. At the parameter values calibrated to  be realistic, the 
order of magnitude of a is a few basis points, say a = 0.10% = But if U 
is of order Cum4[U] which is of the same order as U4, is of order 10-12. 
In other words, with a typical noise distribution, the correction term in (1.33) 
will not be visible. 

To nevertheless make it discernible, we use a distribution for U with the 
same calibrated standard deviation a as before, but a disproportionately large 
fourth cumulant. Such a distribution can be constructed by letting U = wT, 


