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Preface

Statistics and demography share important common roots, yet as academic dis-
ciplines they have grown apart. Even a casual survey of leading journals shows
that cross-references are rare. This is unfortunate, because many social problems
call for a multi-disciplinary approach. Both statistics and demography are neces-
sary ingredients in any serious analysis of the sustainability of pension or health
care systems in the aging societies, in the assessment of potential inequities of
formula-based allocations to local governments, in the estimation of the size of
elusive populations such as drug users, in the investigation of the consequences
of social ills such as unemployment, and so forth. This book was written to bring
together much of the basic statistical theory and methodology for estimating and
forecasting population growth and its components of births, deaths, and migration.
Although relatively simple mathematical methods have traditionally been used to
assess demographic trends and their role in the society, use of modern statistical
methods offers significant advantages for more accurately measuring population
and vital rates, for forecasting the future, and for assessing the uncertainty of the
demographic estimates and forecasts.

For statisticians the book provides a unique introduction to demographic prob-
lems in a familiar language. For demographers, actuaries, epidemiologists, and
professionals in related fields the book presents a unified statistical outlook on
both classical methods of demography and recent developments. The book pro-
vides a self-contained introduction to the statistical theory of demographic rates
(births, deaths, migration) in a multi-state setting. The book has a dual character.
On the one hand, it is a monograph that can be consumed by a lone reader. There
are many results that have appeared in journals or working papers only. Some
appear here for the first time. The book is also useful as a classroom text, and
includes exercises and complements to explore special topics in detail without
interrupting the flow of the text. More than half of the book is readily accessible
to undergraduates, but to fully benefit from the complete text may require more
maturity.

Joensuu, Finland Juha M. Alho
Evanston, Illinois, USA Bruce D. Spencer
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1
Introduction

1. Role of Statistical Demography

The world population exceeded six billion (6,000,000,000) in 1999. According
to current United Nations projections, in 2050 the population is expected to be
9.3 billion, although under plausible scenarios it might be as low as 7.7 billion
or as high as 10.9 billion. In all cases, the increase will intensify competition for
arable land, clean water, and raw materials. Soil erosion and deforestation will
continue in many parts of the world. The increased production of food, housing,
and consumer goods will increase the production of greenhouse gases and, thus,
contribute to climate change.

Underneath the global trends there is a great diversity. In the middle of the
19th century, European women gave birth to five children or more, on average. A
newborn was expected to live 40 years or less. In a matter of a century the average
number of children dropped to two and life expectancy rose to over 60 years.
Many developing countries (notably China) have later followed a similar path, but
a key factor in the uncertainty regarding global trends is whether all developing
countries will go through a similar transition, and if so, at what pace.

Even within the industrialized world a great diversity persists. The average
number of children per woman (as measured by the total fertility rate) varies
from 1.2 children per woman in Italy and Spain, to 2.0 in the United States. The
U.S. value is over 50% higher than that of the primarily catholic Mediterranean
countries that have had a history of relatively high fertility! Yet, all values are
below the level (approximately 2.1) that is needed for population replacement.
Although births currently exceed deaths, this is a temporary phenomenon caused
by an age-distribution that still has relatively many people in the child-bearing
ages. In the near future the situation will change, and the age-distributions of the
industrialized countries will be older than in any national population ever before
on earth. This will put stress on the health care and retirement systems, a stress
whose magnitude is not fully appreciated by decision makers, yet.

The “graying” of the industrialized populations will be accentuated by two
factors. First, the large baby-boom cohorts born after World War II will be retiring
in 2010–2020. This may prove to be a one time phenomenon, but no-one can say

1
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for certain that fertility fluctuations would have come to an end. The second factor
is the continuing increase in longevity. Forecasters have repeatedly assumed that
the decline in mortality cannot continue for more than a decade or two, only to
have been proved wrong by the subsequent development.

Interestingly, populations can be quite heterogeneous with respect to life ex-
pectancy, as well. Women live longer than men, the rich and the well-educated
live longer than the poor and the less-educated, and those in marriage live longer
than those divorced, for example. The elderly are in many ways disadvantaged in
the current industrialized societies. A happier future may lay ahead, if only by se-
lection: it is possible that we will see a well-educated, healthy and wealthy retired
population that is capable of exercising political power for its own benefit.

Since the rate of population growth in the developing countries far exceeds that
of the industrialized countries, the geographic distribution of the world population
will change. For example, the combined population of Europe and North America
is currently 17% of the world population, but since the combined population is
not expected to change by 2050, its share is expected to drop to 11%. A key
social policy issue is to what extent the declining trend is counterbalanced by
immigration from the less developed regions. An influx of immigrants would
probably be advantageous to the elderly, since the immigrants could keep the
economies growing and the “pay-as-you-go” retirement systems solvent. However,
those in working age may reasonably see immigrants as competing in the same
labor market, so racism and xenophobia may also gain ground.

Apart from global issues, demographics has an important role in the day-to-day
decision making of national and local governments. Ever since the biblical times
demographic data have served as a basis of taxation, military conscription, ap-
portionment of political representation, and allocation of funds. Systematic biases
in data may cause inequities across ethnic domains or geographic regions. When
small areas are considered, random variations may cause inequalities in treatment.
Lack of timeliness is always a potential source of systematic bias, but the remedy
of frequent adjustments adds an element of unpredictability in the planning by
local units.

Relatively simple mathematical methods have traditionally been used to assess
demographic trends and their role in the society. The methods have typically
been based on the measurement of demographic rates by age and sex. Summary
measures, such as total fertility rate and life expectancy can then be calculated.
A substantive line of research tries to explain variation in the rates across social
groups, regions, or time, in terms of sociological or economic concepts. Another,
less ambitious line of research tries to elucidate the long-term implications of the
current rates. Classical methods from matrix algebra and differential and integral
equations are used in the latter.

Simple methods have served and, undoubtedly, will continue to serve demogra-
phy well. However, there are three reasons for expanding a demographer’s toolkit
into a statistical direction. First, as noted above, there is considerable interest in
exploring variations in demographic rates in ever finer subpopulations. For ex-
ample, if we find that young widows have an elevated risk of death but numbers
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are small, how can we know that this is not due to chance? Or, if the duration
of unemployment is associated with mortality, how can this be evaluated? Cross
tabulations are a classical, but clumsy, way to study such issues. In epidemiology,
cross tabulations have largely been replaced by statistical relative risk regression
techniques. We believe the same will happen in demography. Apart from simply
adding new techniques to a demographer’s toolkit, a methodological consequence
is that principles of statistical inference, in particular the assessment of estimation
error, should become a standard part of demographic analysis.

Second, many of the issues mentioned above involve forecasting in one way or
another. In econometrics, the standard way to handle forecasting problems is to
use statistical time-series techniques. We believe demographers can also benefit
from the time-series toolkit provided that it is judiciously applied, in a manner that
respects the demographic context. Demographic forecasts can then be made using
data driven techniques, in addition to the judgmental methods that are currently
favored. A methodological consequence of the adaptation of such techniques is
that forecast uncertainty can be handled probabilistically. For example, instead
of merely saying that it is plausible that world population is between 7.7 and
10.9 billion in 2050, we may say that it is within such an interval with a specific
probability. Empirical analyses based on the accuracy of earlier U.N. forecasts
suggest that in this case the probability is roughly 95%.

Third, even though the quality of basic demographic data on population size
is likely to continue to improve, more elusive populations have become of con-
cern. For example, we need information on the spread of drug use to assess its
cost to the society and to determine the success anti-drug policies. Direct enu-
meration is, clearly, out of the question. Or, we need estimates of populations by
health status to anticipate future demands on institutional care and housing that
are accessible to those physically impaired. Such populations present us with com-
plex definitional challenges, and information concerning them must derived via
statistical techniques that may suffer both from biases and sampling error.

After these remarks we are reminded of two characterizations of the demo-
graphic profession. Jim Vaupel has defined a demographer as “someone who
knows Lexis”. Earlier Joel Cohen defined a demographer as “someone who fore-
casts population wrong”, and a mathematical demographer as “someone who uses
mathematics to forecast population wrong”. Perhaps we could define a statistical
demographer as “someone who knows Lexis, forecasts population wrong, but can
at least quantify the uncertainty”.

We have written this book with two types of readers in mind. First, we have
thought of a mathematically oriented demographer, who is interested in learning
the statistical outlook on the familiar problems. We have tried to define all relevant
concepts in the book. However, the exposition is necessarily brief, so previous,
familiarity with basic mathematical statistics, regression analysis, and time-series
analysis is probably necessary for a full understanding of many of the arguments.
Second, we have thought of a statistician, who is interested in working with demo-
graphic problems. We have tried to present the central demographic concepts in
the context of statistical models, and indicate conditions under which the classical
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demographic procedures are optimal. Empirical examples are provided to give a
flavor of what makes demography interesting. In addition to demographers and
statisticians, we have thought of, for example, economists interested in pension and
health care problems, epidemiologists interested in risk assessment, and actuaries
and public health people interested in gerontology as potential readers of the book.

The application of statistical models in demography is not always straight for-
ward, however. Along the way we try to indicate how a blind application of statistics
can lead to unacceptable results. In fact, a central virtue of demographic teach-
ing is a kind of “source criticism”, in which one examines, much like a historian
does, the mechanisms that have produced the data being analyzed. The most fash-
ionable statistical analysis is not worth much if it is applied to data that are not
what they seem. The book points out such issues, so it may be of a more general
methodological interest to statistical readers.

2. Guide for the Reader

The book was originally conceived as a monograph intended for a lone reader.
There are many results that have appeared in journals or working papers only. Some
appear here for the first time. Yet, we have included exercises and complements
to permit the use of the book in classroom. Some of the technical material is
useful for reference (e.g., formulas for estimators and variances), and may be
skipped on a first reading. Guidance is provided throughout the book. Parts of the
earlier versions of the book have been used at the Universities of Joensuu and
Jyväskylä, Finland; Örebro University, Sweden; Max Planck Institute at Rostock,
Germany; and Northwestern University, U.S.A., to teach advanced undergraduate
and graduate students in statistics and demography. For a statistical audience,
additional discussion of the demographic issues has often proved useful. For a
demographic audience, we have spent more time on the basics of statistics.

At least three threads of thought can be distinguished within the book:

* Chapters 2 and 4–6 provide an introduction to Statistical Demography; a shorter
course that might be called Biometrics is obtained from Chapters 2 and 4;

* Chapters 2–4, 10 and 12 provide an introduction the Demographic Data Sources
and their Quality;

* Chapters 4, 6–9 and 11 provide an introduction to Demographic Forecasting; a
shorter course concentrating on Demographics of Pensions and Public Finances
is obtained from sections of Chapters 4, 8–9, and 11.

In each case, other chapters provide supporting material.

3. Statistical Notation and Preliminaries

The remainder of this chapter introduces some notation for random variables and
their distributions emphasizing vector and matrix formulations. We also give a
heuristic review of basic results from maximum likelihood estimation that we
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assume as known in the sequel. Additional reminders/results will appear inter-
spersed in the text, where needed. Some references for this material, at the same
general mathematical level of the text, include Rice (1995), DeGroot (1987), Lind-
sey (1996), Azzalini (1996) and, at a more advanced mathematical level, Rao
(1973), Severini (2000), Bickel and Doksum (2001), and Williams (2001).

The probability of an event A will be denoted by P(A). If X is a random variable
(i.e., a function whose value is determined by a random experiment), its distribu-
tion function or cumulative distribution function (c.d.f.) is F(x) = P(X ≤ x). The
probability that X exactly equals x is P(X = x) = F(x) − limh↘0 F(x − h). Note
that whenever F(.) is continuous this probability is zero. If F(.) is differentiable,
then F ′(.) = f (.) is the density function of X .

Example 3.1. Normal (Gaussian) Distributions. The standard normal distri-
bution N (0, 1) has the expectation 0 and variance 1. Its density is f (x) =
(2π )−

1/2 exp(−x2/2). Suppose X has this distribution, or X ∼ N (0, 1), then
Y = µ + σ X has the normal (Gaussian) distribution N (µ, σ 2) with mean µ and
variance σ 2. The density of Y is f (y) = (2π )−

1/2σ−1 exp(−(y − µ)2/(2σ 2)). ♦

Example 3.2. Bernoulli Distribution. If X takes the value 1 with probability p
and 0 with probability 1 − p, then X has a Bernoulli distribution with parameter
p, or X ∼ Ber(p). In this case P(X = x) = px (1 − p)1−x , where 0 ≤ p ≤ 1 and
x ∈ {0, 1}. ♦

In mathematical demography one typically considers X ≥ 0 and it is often more
convenient to work with survival probabilities p(x) = P(X > x) than with c.d.f.’s.
If p(.) is differentiable, then f (x) = −p′(x).

The joint probability of events A1, . . . , An is P(A1 ∩ . . . ∩ An), but we some-
times write P(A1, . . . , An) for short. The conditional probability of one event
given another is defined as P(A1|A2) = P(A1 ∩ A2)/P(A2), when P(A2) >

0. If X1, . . . , Xn are random variables, their joint distribution function is
F(x1, x2, . . , xn) = P(X1 ≤ x1, X2 ≤ x2, . . , Xn ≤ xn). Writing column vectors
x = (x1, . . . , xn)T and X = (X1, . . . , Xn)T , with T denoting transpose, we may
also write F(x) = P(X ≤ x) where the inequality holds for each component.

The expectation of X is denoted by E[X ]. If X has density f (.), or if X takes
discrete values x1, x2, . . . , then

E[X ] =
∞∫

−∞
x f (x) dx or E[X ] =

∑
i

xi P(Xi = xi ), (3.1)

respectively. If X and Y are random variables and a and b are scalars, then we
have the linearity property E[aX + bY ] = aE[X ] + bE[Y ]. The variance of X
is defined as Var(X ) = E[(X − E[X ])2]. It has the property Var(a + bX ) = b2

Var(X ).
The expectation of a random vector X is defined componentwise, E[X] =

(E[X1], . . . , E[Xn])T . If a is a vector and B is a matrix such that a + BX is
well-defined, then E[a + BX] = a + BE[X]. The covariance between X1 and
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X2 is defined as Cov(X1, X2) = E[(X1 − E[X1])(X2 − E[X2])]. The covariance
matrix of X = (X1, . . . , Xn)T is an n × n matrix Cov(X) whose (i, j) element is
Cov(Xi , X j ). Using vector notation we may write Cov(X) = E[(X − E[X])(X −
E[X])T ]. It has the property Cov(a + BX) = BCov(X)BT.

The conditional expectation of X1 given X2 is denoted by E[X1|X2].
It has the linearity property of the usual expectation. It may be shown
that, when the moments exist, E[X1] = E[E[X1|X2]]. The conditional vari-
ance is Var(X1|X2) = E[X2

1|X2] − E[X1|X2]2. It has the property, Var(X1) =
E[Var(X1|X2)] + Var(E[X1|X2]). Similarly, the conditional covariance is defined
as Cov(X1, X2|X3) = E[X1 X2|X3] − E[X1|X3]E[X2|X3] and has the property
Cov(X1, X2) = E[Cov(X1, X2|X3)] + Cov(E[X1|X3], E[X2|X3]).

Example 3.3. Multivariate Normal Distribution. Suppose a k × 1 vector X
has E[X] = µ and Cov(X) = Σ. It has a multivariate normal distribution,
X ∼ N (µ,Σ), if aT X ∼ N (aTµ, aT Σa) for any k × 1 vector a. If µ = 0 and
Σ = I, the identity matrix, then XT X ∼ χ2 distribution with k ≥ 1 degrees of
freedom. ♦

The multivariate normal distribution is an example of a parametric family of
distributions. Consider n independent observations Xi coming from densities
fi (xi ; �), i = 1, . . . , n, where � is, say, a k × 1 vector of parameters belonging to
some set Θ ⊂ R

k . We do not assume here that the observations are necessarily
identically distributed, because in regression applications of interest they typically
are not. For example, in normal theory regression, if Xi would be the dependent
variable and zi would be a vector of explanatory variables, we would have the
density fi (xi ; �) = (2π )−

1/2σ−1 exp(−(xi − zT
i �)2/(2σ 2)), where � = (�T , σ 2)T.

When viewed as a function of � the probability of the observed data is called
the likelihood function, L(�) = f1(x1; �) · · · fn(xn; �). The natural logarithm of
the likelihood function is the loglikelihood function �(�) = log L(�). The prin-
ciple of maximum likelihood means that we try to determine a value of �
that maximizes L(�), or equivalently �(�). The maximizing value (if one ex-
ists) is called a maximum likelihood estimator (MLE). Define a k × 1 vector of
partial derivatives Si (�) = ∂/∂� log( fi (xi ; �)) for each i = 1, . . . , n. Their sum
S(�) = S1(�) + · · · + Sn(�) is called the score (e.g., Rao 1973, 367), and the
MLE solves the system of k equations S(�) = 0.

Before the observations Xi = xi have been made, the score is a random vari-
able, because its components are random: Si (�) = ∂/∂� log( fi (Xi ; �)). Assuming
that the order of differentiation and integration can be changed, we have that
E[Si (�)] = ∂/∂� ∫ fi (xi ; �) dxi = 0. The latter equality holds because the inte-
gral equals 1 for all �. Therefore, the expectation of the score is E[S(�)] = 0. Write
Cov(Si (�)) = I i (�), i = 1, . . . , n, and define I(�) = I1(�) + · · · + In(�). It
follows that Cov(S(�)) = I(�), because the observations are independent. This is
one form of the so-called Fisher information of the sample. Subject to regularity
conditions on densities fi (xi ; �) (that may involve conditions on both the range of
values of possible explanatory variables and on the tails of the density), none of
components of the score Si (�) take too large a share of the variance of the score,
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so one can appeal to the central limit theorem to assert the asymptotic normality
of the score. Therefore, we have that S(�) ∼ N (0, I(�)) asymptotically.

Example 3.4. Score tests. Consider a hypothesis H0 : � = �0. Under the null hy-
pothesis, aT S(�0) ∼ N (0, aT I(�0)a) for any k × 1 vector a, so depending on the
alternative hypothesis, a large number of the so-called score tests can be con-
structed. ♦

Define a k × k matrix Hi (�) = ∂2/∂�∂�T log( fi (Xi ; �)), for each i = 1, . . . , n.
I.e., this is a matrix whose (r, s) element is ∂2/∂�r∂�s log( fi (Xi ; �)). Their sum
H(�) = H1(�) + · · · + Hn(�) is called the Hessian. By a direct calculation one
can show that E[Hi (�)] = ∂2/∂�∂�T ∫ fi (xi ; �) dxi − E[Si (�)Si (�)T ]. As in the
case of the score, the first term on the right hand side is zero. Using the re-
sult, E[Si (�)Si (�)T ] = Cov(Si (�)) = I i (�), we find an alternative expression for
Fisher information, −E[H(�)] = I(�).

Example 3.5. Fisher Information for Normal Distribution. Consider the normal
distribution N (µ, σ 2). Let � = (µ, σ 2)T . The Fisher information I(�) is given by
the matrix [

1/ σ 2 0
0 1/(2 σ 4)

]
. (3.2)

If instead we take � = (µ, σ )T then the lower diagonal entry of I(�) changes to
2/σ 2. ♦

Suppose �̂ is the MLE. By Taylor’s theorem there is vector �′ between the MLE
and the true value � such that S(�̂) = S(�) + H(�′)(�̂ − �). We get from this that
�̂ − � = −H(�′ )−1 S(�) provided that the inverse exists. Subject to regularity
conditions S(�)/n → 0,1 as n → ∞, and H(�)/n has a limit H*(�) that is a
continuous function of � at least in the neighborhood of the true parameter value. In
this case the MLE also converges to �, so it is consistent. Being essentially a linear
function of the score, the MLE inherits the multivariate normal distribution from
the score and asymptotically Cov(�̂) = I(�)−1. For practical inferential purposes
we may assume, for large n, that �̂ ∼ N (�, −H(�̂ )−1 ). This leads to the so-called
Wald tests.

There is yet a third type of test that naturally arises from the above theory. Con-
sider a hypothesis H0 : � = �0. Using a second order Taylor series development
for �(�) around �̂ and noting that S(�̂) = 0, we get that

2(�(�̂ − �(�0)) = −(�̂ − �0 )T H(�′)(�̂ − �0), (3.3)

where �′ is a point between � and �̂. The asymptotic result given for the Wald tests
shows that the right hand side has a approximate χ2 distribution with k degrees of
freedom. This is one form of the so-called likelihood ratio test. The three tests are

1 This can mean either convergence in probability or almost sure convergence (Rice 1995,
164).
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asymptotically equivalent, but their small sample characteristics may differ (Rao
1973, 415–418).

We conclude with definition of o(.) and O(.) notation. Let {an}∞n=1 and {bn}∞n=1
be two sequences of numbers. We say that an is o(bn) if limn |an/bn| = 0, and
an = O(bn) if |an/bn| is bounded when n is large. To allow continuous arguments
we say that a(x) is o(b(x)) or O(b(x)) as x → L if a(xn) is o(b(xn)) or O(b(xn))
for any sequence {xn}∞n=1 with xn → L . For example, 6x4 is O(x4) and o(x5) as
x → ∞, and 6x4 is O(x4) and o(x3) as x → 0.
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2
Sources of Demographic Data

1. Populations: Open and Closed

We can think of a population size as a process. At any given time t a set of individ-
uals satisfy the membership criterion of the population. In the case of a geographic
area, for example, the criterion is “being in the area”. The population can increase
via births and in-migration. It can decrease via deaths and out-migration.1 Thus,
births, deaths, and migration form the relevant vital processes.

Traditionally, the term vital event is used for births, deaths, marriages and di-
vorces but not for migration (cf., Shryock and Siegel 1976, 20). Although this
usage has an origin in civil registration, the distinction is not useful in statistical
demography and we consider vital processes to include migration. Changes of
marital status can be vital processes, if the population of interest has been defined
in terms of marital status, but so can be such processes as getting a job or becoming
unemployed, if the population is defined in terms of employment status.

In a limiting case we define a population as closed if it has no vital processes. A
closed population is simply a set of individuals. (In demography it is common to call
a population closed even if it experiences births and deaths. We take here a broader
view.) In most demographic applications a population is open in some respects.
For example, in a follow-up study of a fixed set of individuals, the population is
closed with respect to births and in-migration, but it is open with respect to deaths.
Annoyingly from the researcher’s point of view, such a population may, in practice,
be open to out-migration and other forms of attrition or loss from follow-up, as
well.

As discussed below, the distinction between closed and open populations is
important in the design of the data collection for demographic studies. However,
in most parts of this book we have the prototype of national population in mind.
National populations are open to births, deaths, migration etc.

1 A population can also change when its definition changes, e.g., when a country, state, or city
annexes or de-annexes an area. Such changes do not involve vital processes, and analysis
of past data on population change should make allowance for any significant boundary
changes that occurred.
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