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The software for the Functional Data Analysis module was originally 
written by Jim Ramsay, Department of Psychology, McGill 
University, and Bernard Silverman, Department of Mathematics, 
University of Bristol. We have contributed enhancements and 
extensions, and attempted to reflect their zeal for the analysis of 
functional data.   We have benefited from contributions by James 
Schimert, and comments by Tim Hesterberg at Insightful 
Corporation. Our efforts were funded by NIH SBIR grants 
1R43CA86539-01 and 2R44CA86539-02 entitled: An S-Plus 
Functional Data Analysis Module.
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The book is intended as a guide to the functional data analysis 
software in the S+FDA library. It gives a general overview, and treats 
each topic through illustrative examples. The code for the examples 
can be found in the script files provided with the software, which also 
include additional examples. Users can learn to use the S+FDA 
library by executing the example scripts while reading. Details on the 
functions and their arguments, as well as further examples, can be 
found in the associated help files. 
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Functional data arise in many fields of research.  Measurements are 
often best thought of as functions, even in cases where the data is 
gathered at a relatively small number of points.   Examples include  
weather changes,  stock prices,  bone shapes,  growth rates,  health 
status indicators, and tumor size.   

For time-dependent data, observations may be viewed as realizations 
of a smooth function  of time that have been measured (with 
error) at specific  time points , but which could have been measured 

at any time. Spatial functional data is also common, e.g., the length of 
a bone along an axis, the concentration of a drug in a tissue as a 
function of depth, yearly mean temperature as a function of location.

Historically, functional data have been analyzed using multivariate or 
time-series methods at discrete measurement points.   Analyzing 
functional data instead as functions has several advantages:

• Functions, unlike raw data, can be evaluated at any “time” 
point. This is important because it allows the use of statistical 
methods requiring evenly-spaced measurements and allows 
extrapolation for use in predictions or treatment decisions. 

• Functional methods (e.g., functional principal components, 
functional canonical correlation) apply even when the data 
have been gathered at irregular intervals, or at different times 
on different subjects, when multivariate analogues of these 
methods are either inappropriate or unavailable.

• Derivatives and integrals of functions may provide important 
information about the underlying process. For example, 
knowledge of the direction and rate of change of a patient’s 
temperature may be more important than knowledge of the 
patient’s current temperature.

Functional methods can also be used when the parameters to be 
estimated are functions. Ramsay and Silverman (1997) use smoothing 
spline methods for density estimation, and to estimate the link 
function in generalized linear models. Another example is regression 
splines for fitting time-dependent hazard regression models 
(Kooperberg and Clarkson, 1997). 
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3

S+FDA integrates functional data analysis methods into S-PLUS. It 
includes a complete commercial implementation of the exploratory 
methods of Ramsay and Silverman (1997, 2002), featuring: 

• methods for transforming observed data to a smoothed 
functional form, 

• predicting a functional or nonfunctional variable  as a 
function of one or more functional or nonfunctional variables, 

• finding and rotating the functional ‘‘principal components’’ of 
a functional variable, 

• finding the canonical correlations between two functional 
variables, and 

• performing a ‘‘principal differential analysis’’.

S+FDA also incorporates more recent innovations and extensions, 
such as allowing the use of functions with arbitrary bases, and 
providing methods for functional generalized linear models and 
functional cluster analysis. 

Installation To install the software:

• Go to the website: http://www.insightful.com/
downloads/libraries/default.asp

• Follow the on-screen Setup instructions; default settings are 
recommended.

Object-
oriented
Programming

S+FDA makes use of the object-oriented capabilities of the S-PLUS 
language. In object-oriented programming, constructor functions 
create structured data “objects” that are assigned a class (which 
typically has the same name as the constructor). The object-oriented 
paradigm allows users to apply generic functions (such as plot) to 
these classed objects, the details of which are handled transparently 
through class-specific functions or “methods”. This simplifies 
programming by avoiding the need to explicitly invoke different 
functions or to have additional function arguments when generic 
operations are applied to objects of different structures.

y t
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 INTRODUCTORY TUTORIAL (HEIGHT DATA)

We illustrate some exploratory functional data analysis methods using 
the Berkeley height data (Tuddenham and Snyder, 1954). The 
corresponding data frame, heightData, is included in the S+FDA 
library. This data contains the heights of 54 female (columns 2 to 55) 
and 39 male (columns 56 to 94) children observed at 31 times from 
age 1 to age 18. The times of measurement are included as the 
variable age (column 1). We first inspect the data graphically by 
plotting the height curves as follows:

#Set up the plot and label
> plot(heightData$age, heightData[,2], type="n",
       ylim=range(unlist(heightData[,2:55])),
       xlab="Age (years)", ylab="Height (cm)", 
       main="Female Height Data")
#draw the height curves
> matlines(heightData$age,as.matrix(heightData[,2:55]))

The result is shown in Figure 1.1.

Figure 1.1: Female height data.
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5

Although the data appear as smooth curves, only 31 discrete values of 
height were measured. The curves are produced by connecting these 
discrete points with straight lines.

As a functional data analysis application, we fit a function to each 
height curve using linear least squares. The function is represented as 
a linear combination of basis functions  and coefficients  that 

vary from one height function to the next:

There are a variety of choices for the basis functions, e.g., B-splines, 
Fourier series, and exponential series. Once the basis is chosen, the 
coefficients are estimated based on the observed data. In Figure 1.1, a 
polygonal basis of connected line segments is used to draw the curves.

 Although the functional representation almost always differs from the 
data at the points of observation, these differences are assumed to be 
small in the sense that the coefficients  capture the information 

contained in the discretized curve. In most analyses, the raw data is 
ignored once the  have been estimated because it is simpler to 

work with the functional form. The assumption is that the within-
subject variance in the  estimates is small compared to the 

between-subject variance. 

Warning When the number of observations for estimating the  is small to 

moderate or when the within-subject variance of the  estimates is 

large, a mixed-effects model may be preferred so that information 
may be combined across subjects.

Selecting the 
Basis
Functions

To perform a functional data analysis, we must first choose an 
appropriate set of basis functions. In the example above, 16 B-spline 
basis functions of order 6 were used. Since the order of a polynomial 
basis is the degree plus one, this basis consists of 16 piecewise 
polynomial splines of degree 5. By default, the interior knots for the 16 
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basis functions are equally spaced over the range of the independent 
variable (the two exterior knots are placed at the endpoints of the 
function domain). Since height is being viewed as a function of age, 
the appropriate domain for the basis functions is the age span of the 
data. The following forms an object of class “bsplineBasis” for the 
height data:

> heightBasis <- bsplineBasis(fDomain
              =range(heightData$age), nbasis=16,norder=6)

The basis functions, displayed in Figure 1.2, are equally spaced over 
the domain:

> plot(heightBasis, main="B-spline Basis Functions")

Now that we have defined a basis, we need to calculate the 
coefficients for each height curve. Since there are 93 subjects in this 
dataset, there should be 93 sets of coefficients (one set for each 
function). The S+FDA function fVector takes the basis, the data 
matrix, and the independent variable, and returns an object of class 
“fVector” containing the linear least-squares estimates of the 
coefficients. An “fVector” object has two additional attributes: 

Figure 1.2: A set of 16 B-spline basis functions.
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“basis”, which stores the basis used in the fit, and “fNames”, which 
stores labeling information for the data. In the code below, we also 
specify names for the independent variable (age), the subjects (child), 
and the units of the response (height). These names are used in the 
plotting and printing functions.

> fHgt <- fVector(object=heightBasis, y=heightData[,2:94],
               fArgs=heightData$age, 
               fNames=list(age=heightData$age, 
                child=names(heightData)[2:94], height='cm'))

Extract the estimated coefficients, basis functions, and function names 
from fHgt using the commands getCoef(fHgt), getBasis(fHgt), and 
getNames(fHgt), respectively.

Smoothing Although the basis functions smooth the curves, additional smoothing 
may be beneficial. The S-PLUS functions for creating functional data 
objects allow specification of a smoothing  penalty in the least-squares 
objective. The penalty also requires a smoothing parameter, lambda.
You may estimate an optimal lambda by minimizing a generalized 
cross validation statistic.  See section Generalized Cross Validation on 
page 82 for more details. 

Smoothing techniques are largely exploratory in nature, and are 
discussed in more detail in Chapter 4 of this manual, as well as in 
Chapter 4 of Ramsay and Silverman (1997). We will have occasion to 
use smoothing techniques for most of the functional data analysis 
methods provided in S+FDA.

As an example, penalize the squared second derivative with a penalty 
parameter lambda=0.001:

> fHgt2 <- fVector(object=heightBasis, 
             y=heightData[, 2:94], fArgs=heightData$age,
             penalty=list(lambda=0.001, linDop=fDop(2)),
             fNames=list(age=heightData$age,
             child=names(heightData)[2:94], height='cm'))

Compare with the original data of Figure 1.1 to see how closely the 
smoothed functions fit the data. The S-PLUS function fEval evaluates 
an object of class “fVector” at any point in the domain of the basis. 
Here, we evaluate the 54 spline curves for the females at the original 
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age values (heightData$age), calculate the difference between 
predicted and observed heights, and then plot the curve differences at 
the given ages:

> hgtFemale<-fEval(fHgt2[1:54], heightData$age)

> plot(heightData$age, hgtFemale[,1], type="n",
        ylim=range(hgtFemale-as.matrix(heightData[,2:55])), 
       xlab="Age (years)", ylab="Height Difference (cm)", 
       main="Female Height Differences with Splines")
> matpoints(heightData$age,
       hgtFemale-as.matrix(heightData[, 2:55]), pch="o")

The resulting plot is given in Figure 1.3.

The maximum deviation between the spline approximation and the 
true heights is about 1.5 cm compared with height values of 80 cm or 
more (see Figure 1.1). These differences are small enough that we 
consider the smoothed functions to be acceptable for subsequent 
analysis. 

Figure 1.3: Difference between predicted and actual female height data when using 
cubic B-splines for function representation.
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Given a representation of the data as an fVector object, it is easy to 
conduct several kinds of exploratory analyses with S+FDA. Here, we 
compute the first two derivatives of height with respect to time. We 
begin with the first derivative:

> plot(fVector(fHgt2[1:54], linDop = fDop(1)), 
       xlab="age (years)", 
       ylab="First Derivative of Height (cm/year)",
       main="Female Height, First Derivative")

The result is displayed in Figure 1.4.

Despite the large number of curves in Figure 1.4, some general trends 
are apparent: there appears to be an acceleration in growth around 
age 4, with a second acceleration after age 10. Further exploratory 
analysis, such as plotting the mean of the 54 derivative functions, may 
help reveal more structure. 

The plot of the second derivatives is produced in a similar fashion: 

Figure 1.4: First derivatives of the functional representation of the female height 
data. The second derivative was penalized for smoothing, with penalty parameter 
0.001.
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> plot(fVector(fHgt2[1:54], linDop=fDop(2)), 
       xlab="Age (years)",
       ylab="Second Derivative of Height (cm/year^2)",
       main="Female Height, Second Derivative")

The result is displayed in Figure 1.5. 

The large function values near the endpoints in both derivative plots 
are due to lack of information concerning values outside the interval. 
Smoothing by penalizing a higher derivative would reduce the 
variation at the endpoints, although possibly at the risk of 
oversmoothing the function. Such considerations are discussed in 
more detail in the chapter on smoothing. 

Because we use splines of degree five (order 6) when fitting the 
functions, the second derivatives are smooth, cubic splines. Had we fit 
the raw data with cubic splines (order 4), the second derivative curves 
would have been piecewise linear. In general, if an analysis requires a 

Figure 1.5: Second derivatives of the functional representation of the female height 
data. The second derivative was penalized for smoothing, with penalty parameter 
0.001. 
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smooth kth derivative, and smoothness in higher derivatives is 
unimportant, splines of degree k+3 (order k+4) should be used to fit 
the functions so that the kth derivative will be a cubic spline.

The ease with which you can examine the derivatives is a direct 
consequence of the functional approach, and one of its main 
advantages. By regarding the height measurements for each person as 
a smooth curve, you are no longer constrained by discrete 
observation times. 
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A LINEAR MODEL FOR THE HEIGHT DATA

Now consider a functional linear model for predicting sex in terms of 
the growth rate, the first derivative of the height curve. Since the 
dependent variable is binary, this model can also be considered a 
discriminant function for predicting sex in terms of the growth rate. 

For the height data, fit a functional linear model as follows:

> predLm <- fLM(sex~-1+fVector(fHgt, linDop=fDop(1)), 
                data.frame(fHgt=fHgt,
                sex=c(rep(1,54), rep(0,39))))

Here the -1 in the model formula eliminates the intercept, which is 
already contained in the B-splines. The coefficients in the resulting 
model are functional. The first coefficient estimate may be plotted as 
follows:

> plot(predLm$coef[[1]], xlab="age", ylab="beta",
       main="Coefficient Function")

The resulting plot is shown in Figure 1.6. 

Figure 1.6: The function of coefficients predicting sex in terms of the height function.
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