Mechanical Engineering Series

P. Basu, C. Kefa, and L. Jestin, *Boilers and Burners: Design and Theory*

J.M. Berthelot, *Composite Materials: Mechanical Behavior and Structural Analysis*

I.J. Busch-Vishniac, *Electromechanical Sensors and Actuators*

J. Chakrabarty, *Applied Plasticity*

K.K. Choi and N.H. Kim, *Structural Sensitivity Analysis and Optimization 1: Linear Systems*

G. Chryssolouris, *Laser Machining: Theory and Practice*

V.N. Constantinescu, *Laminar Viscous Flow*

M.S. Darlow, *Balancing of High-Speed Machinery*

W. R. DeVries, *Analysis of Material Removal Processes*

J.F. Doyle, *Nonlinear Analysis of Thin-Walled Structures: Statics, Dynamics, and Stability*

P.A. Engel, *Structural Analysis of Printed Circuit Board Systems*

A.C. Fischer-Cripps, *Introduction to Contact Mechanics*

A.C. Fischer-Cripps, *Nanoindentations, 2nd ed.*

J. García de Jalón and E. Bayo, *Kinematic and Dynamic Simulation of Multibody Systems: The Real-Time Challenge*

W.K. Gawronksi, *Advanced Structural Dynamics and Active Control of Structures*

W.K. Gawronski, *Dynamics and Control of Structures: A Modal Approach*

(continued after index)
Vehicle Dynamics and Control
For Priya
The Mechanical Engineering Series features graduate texts and research monographs to address the need for information in contemporary mechanical engineering, including areas of concentration of applied mechanics, biomechanics, computational mechanics, dynamical systems and control, energetics, mechanics of materials, processing, production systems, thermal science, and tribology.

Advisory Board/Series Editors

<table>
<thead>
<tr>
<th>Area</th>
<th>Editors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Applied Mechanics</td>
<td>F.A. Leckie</td>
</tr>
<tr>
<td></td>
<td>University of California, Santa Barbara</td>
</tr>
<tr>
<td></td>
<td>D. Gross</td>
</tr>
<tr>
<td></td>
<td>Technical University of Darmstadt</td>
</tr>
<tr>
<td>Biomechanics</td>
<td>V.C. Mow</td>
</tr>
<tr>
<td></td>
<td>Columbia University</td>
</tr>
<tr>
<td>Computational Mechanics</td>
<td>H.T. Yang</td>
</tr>
<tr>
<td></td>
<td>University of California, Santa Barbara</td>
</tr>
<tr>
<td>Dynamic Systems and Control/</td>
<td>D. Bryant</td>
</tr>
<tr>
<td>Mechatronics</td>
<td>University of Texas at Austin</td>
</tr>
<tr>
<td>Energetics</td>
<td>J.R. Welty</td>
</tr>
<tr>
<td></td>
<td>University of Oregon, Eugene</td>
</tr>
<tr>
<td>Mechanics of Materials</td>
<td>I. Finnie</td>
</tr>
<tr>
<td></td>
<td>University of California, Berkeley</td>
</tr>
<tr>
<td>Processing</td>
<td>K.K. Wang</td>
</tr>
<tr>
<td></td>
<td>Cornell University</td>
</tr>
<tr>
<td>Production Systems</td>
<td>G.-A. Klutke</td>
</tr>
<tr>
<td></td>
<td>Texas A&M University</td>
</tr>
<tr>
<td>Thermal Science</td>
<td>A.E. Bergles</td>
</tr>
<tr>
<td></td>
<td>Rensselaer Polytechnic Institute</td>
</tr>
<tr>
<td>Tribology</td>
<td>W.O. Winer</td>
</tr>
<tr>
<td></td>
<td>Georgia Institute of Technology</td>
</tr>
</tbody>
</table>
Series Preface

Mechanical engineering, and engineering discipline born of the needs of the industrial revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a series featuring graduate texts and research monographs intended to address the need for information in contemporary areas of mechanical engineering.

The series is conceived as a comprehensive one that covers a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consulting editors are listed on page vi of this volume. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology.
As a research advisor to graduate students working on automotive projects, I have frequently felt the need for a textbook that summarizes common vehicle control systems and the dynamic models used in the development of these control systems. While a few different textbooks on ground vehicle dynamics are already available in the market, they do not satisfy all the needs of a control systems engineer. A controls engineer needs models that are both simple enough to use for control system design but at the same time rich enough to capture all the essential features of the dynamics. This book attempts to present such models and actual automotive control systems from literature developed using these models.

The control system topics covered in the book include cruise control, adaptive cruise control, anti-lock brake systems, automated lane keeping, automated highway systems, yaw stability control, engine control, passive, active and semi-active suspensions, tire models and tire-road friction estimation. A special effort has been made to explain the several different tire models commonly used in literature and to interpret them physically.

As the worldwide use of automobiles increases rapidly, it has become ever more important to develop vehicles that optimize the use of highway and fuel resources, provide safe and comfortable transportation and at the same time have minimal impact on the environment. To meet these diverse and often conflicting requirements, automobiles are increasingly relying on electromechanical systems that employ sensors, actuators and feedback control. It is hoped that this textbook will serve as a useful resource to researchers who work on the development of such control systems, both in
the automotive industry and at universities. The book can also serve as a
textbook for a graduate level course on Vehicle Dynamics and Control.

An up-to-date errata for typographic and other errors found in the book
after it has been published will be maintained at the following web-site:
http://www.menet.umn.edu/~rajamani/vdc.html
I will be grateful for reports of such errors from readers.

Rajesh Rajamani
Minneapolis, Minnesota
May 2005
Contents

Dedication v
Preface ix
Acknowledgments xxv

1. INTRODUCTION 1

1.1 Driver Assistance Systems 2
1.2 Active Stability Control Systems 2
1.3 Ride Quality 4
1.4 Technologies for Addressing Traffic Congestion 5

1.4.1 Automated highway systems 6
1.4.2 Traffic friendly adaptive cruise control 6
1.4.3 Narrow tilt-controlled commuter vehicles 7

1.5 Emissions and Fuel Economy 9

1.5.1 Hybrid electric vehicles 10
1.5.2 Fuel cell vehicles 11
References 11

2. LATERAL VEHICLE DYNAMICS 15

2.1 Lateral Systems Under Commercial Development 15

2.1.1 Lane departure warning 16

2.1.2 Lane keeping systems 17

2.1.3 Yaw stability control systems 18

2.2 Kinematic Model of Lateral Vehicle Motion 20

2.3 Bicycle Model of Lateral Vehicle Dynamics 27

2.4 Motion of Particle Relative to a rotating Frame 33

2.5 Dynamic Model in Terms of Error with Respect to Road 35

2.6 Dynamic Model in Terms of Yaw Rate and Slip Angle 39

2.7 From Body-Fixed to Global Coordinates 41

2.8 Road Model 43

2.9 Chapter Summary 46

Nomenclature 47

References 48

3. STEERING CONTROL FOR AUTOMATED LANE KEEPING 51

3.1 State Feedback 51

3.2 Steady State Error from Dynamic Equations 55

3.3 Understanding Steady State Cornering 59

3.3.1 Steering angle for steady state cornering 59

3.3.2 Can the yaw angle error be zero? 64
Contents

3.3.3 Is non-zero yaw error a concern? 65

3.4 Consideration of Varying Longitudinal Velocity 66

3.5 Output Feedback 68

3.6 Unity feedback Loop System 70

3.7 Loop Analysis with a Proportional Controller 72

3.8 Loop Analysis with a Lead Compensator 79

3.9 Simulation of Performance with Lead Compensator 83

3.10 Analysis if Closed-Loop Performance 84

3.10.1 Performance variation with vehicle speed 84

3.10.2 Performance variation with sensor location 86

3.11 Compensator Design with Look-Ahead Sensor Measurement 88

3.12 Chapter Summary 90

Nomenclature 90

References 92

4. LONGITUDINAL VEHICLE DYNAMICS 95

4.1 Longitudinal Vehicle Dynamics 95

4.1.1 Aerodynamic drag force 97

4.1.2 Longitudinal tire force 99

4.1.3 Why does longitudinal tire force depend on slip? 101

4.1.4 Rolling resistance 104

4.1.5 Calculation of normal tire forces 106

4.1.6 Calculation of effective tire radius 108
4.2 Driveline Dynamics

4.2.1 Torque converter

4.2.2 Transmission dynamics

4.2.3 Engine dynamics

4.2.4 Wheel dynamics

4.3 Chapter Summary

Nomenclature

References

5. INTRODUCTION TO LONGITUDINAL CONTROL

5.1 Introduction

5.1.1 Adaptive cruise control

5.1.2 Collision avoidance

5.1.3 Automated highway systems

5.2 Benefits of Longitudinal Automation

5.3 Cruise Control

5.4 Upper Level Controller for Cruise Control

5.5 Lower Level for Cruise Control

5.5.1 Engine torque calculation for desired acceleration

5.5.2 Engine control

5.6 Anti-Lock Brake Systems

5.6.1 Motivation

5.6.2 ABS functions
Appendix 6.A

7. LONGITUDINAL CONTROL FOR VEHICLE PLATOONS

7.1 Automated Highway Systems

7.2 Vehicle Control on Automated Highway Systems

7.3 Longitudinal Control Architecture

7.4 Vehicle Following Specifications

7.5 Background on Norms of Signals and Systems

7.5.1 Norms of signals

7.5.2 System norms

7.5.3 Use of system norms to study signal amplification

7.6 Design Approach for Ensuring String Stability

7.7 Constant Spacing with Autonomous Control

7.8 Constant Spacing with Wireless Communication

7.9 Experimental Results

7.10 Lower Level Controller

7.11 Adaptive Controller for Unknown Vehicle Parameters

7.11.1 Redefined notation

7.11.2 Adaptive controller

7.12 Chapter Summary

Nomenclature

References

Appendix 7.A
8. ELECTRONIC STABILITY CONTROL 221

8.1 Introduction 221

8.1.1 The functioning of a stability control system 221
8.1.2 Systems developed by automotive manufacturers 223
8.1.3 Types of stability control systems 223

8.2 Differential Braking Systems 224

8.2.1 Vehicle model 224
8.2.2 Control architecture 229
8.2.3 Desired yaw rate 230
8.2.4 Desired side-slip angle 231
8.2.5 Upper bounded values of target yaw rate and slip angle 233
8.2.6 Upper controller design 235
8.2.7 Lower Controller design 238

8.3 Steer-By-Wire Systems 240

8.3.1 Introduction 240
8.3.2 Choice of output for decoupling 241
8.3.3 Controller design 244

8.4 Independent All Wheel Drive Torque Distribution 247

8.4.1 Traditional four wheel drive systems 247
8.4.2 Torque transfer between left and right wheels 248
8.4.3 Active control of torque transfer to all wheels 249

8.5 Chapter Summary 251
9. MEAN VALUE MODELING OF SI AND DIESEL ENGINES

9.1 SI Engine Model Using Parametric Equations

9.1.1 Engine rotational dynamics

9.1.2 Indicated combustion torque

9.1.3 Friction and pumping losses

9.1.4 Manifold pressure equation

9.1.5 Outflow rate from intake manifold

9.1.6 Inflow rate into intake manifold

9.2 SI Engine Model Using Look-Up Maps

9.2.1 Introduction to engine maps

9.2.2 Second order engine model using engine maps

9.2.3 First order engine model using engine maps

9.3 Introduction to Turbocharged Diesel Engine Maps

9.4 Mean Value Modeling of Turbocharged Diesel Engines

9.4.1 Intake manifold dynamics

9.4.2 Exhaust manifold dynamics

9.4.3 Turbocharger dynamics

9.4.4 Engine crankshaft dynamics

9.4.5 Control system objectives

9.5 Lower Level Controller with SI Engines
10. DESIGN AND ANALYSIS OF PASSIVE AUTOMOTIVE SUSPENSIONS

10.1 Introduction to Automotive Suspensions

10.1.1 Full, half and quarter car suspension models

10.1.2 Suspension functions

10.1.3 Dependent and independent suspensions

10.2 Modal Decoupling

10.3 Performance Variables for a Quarter Car Suspension

10.4 Natural Frequencies and Mode Shapes for the Quarter Car

10.5 Approximate Transfer Functions Using Decoupling

10.6 Analysis of Vibrations in the Sprung Mass Mode

10.7 Analysis of Vibrations in the Unsprung Mass Mode

10.8 Verification Using the Complete Quarter Model

10.8.1 Verification of the influence of suspension stiffness

10.8.2 Verification of the influence of suspension damping

10.8.3 Verification of the influence of tire stiffness

10.9 Half-Car and Full-Car Suspension Models

10.10 Chapter Summary

Nomenclature

References
11. ACTIVE AUTOMOTIVE SUSPENSIONS 325

11.1 Introduction 325

11.2 Active Control: Trade-Offs and Limitations 328

11.2.1 Transfer functions of interest 328

11.2.2 Use of the LQR Formulation and its relation to H_2 Optimal Control 328

11.2.3 LQR formulation for active suspension design 330

11.2.4 Performance studies of the LQR controller 332

11.3 Active System Asymptotes 339

11.4 Invariant Points and Their Influence on the Suspension Problem 341

11.5 Analysis of Trade-Offs Using Invariant Points 343

11.5.1 Ride quality/road holding trade-offs 344

11.5.2 Ride quality/rattle space trade-offs 345

11.6 Conclusions on Achievable Active System Performance 346

11.7 Performance of a Simple Velocity Feedback Controller 348

11.8 Hydraulic Actuators for Active Suspensions 350

11.9 Chapter Summary 352

Nomenclature 353

References 354

12. SEMI-ACTIVE SUSPENSIONS 357

12.1 Introduction 357

12.2 Semi-Active Suspension Model 359
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.3 Theoretical Results: Optimal Semi-Active Suspensions</td>
<td>362</td>
</tr>
<tr>
<td>12.3.1 Problem formulation</td>
<td>362</td>
</tr>
<tr>
<td>12.3.2 Problem definition</td>
<td>364</td>
</tr>
<tr>
<td>12.3.3 Optimal solution with no constraints on damping</td>
<td>365</td>
</tr>
<tr>
<td>12.3.4 Optimal solution in the presence of constraints</td>
<td>368</td>
</tr>
<tr>
<td>12.4 Interpretation of the Optimal Semi-Active Control Law</td>
<td>369</td>
</tr>
<tr>
<td>12.5 Simulation Results</td>
<td>372</td>
</tr>
<tr>
<td>12.6 Calculation of Transfer Function Plots with Semi-Active Suspensions</td>
<td>375</td>
</tr>
<tr>
<td>12.7 Performance of Semi-Active Suspension Systems</td>
<td>378</td>
</tr>
<tr>
<td>12.7.1 Moderately weighted ride quality</td>
<td>378</td>
</tr>
<tr>
<td>12.7.2 Sky hook damping</td>
<td>380</td>
</tr>
<tr>
<td>12.8 Chapter Summary</td>
<td>383</td>
</tr>
<tr>
<td>Nomenclature</td>
<td>383</td>
</tr>
<tr>
<td>References</td>
<td>384</td>
</tr>
<tr>
<td>13. LATERAL AND LONGITUDINAL TIRE FORCES</td>
<td>387</td>
</tr>
<tr>
<td>13.1 Tire Forces</td>
<td>387</td>
</tr>
<tr>
<td>13.2 Tire Structure</td>
<td>390</td>
</tr>
<tr>
<td>13.3 Longitudinal Tire Force at Small Slip Ratios</td>
<td>391</td>
</tr>
<tr>
<td>13.4 Lateral Tire Force at Small Slip Angles</td>
<td>395</td>
</tr>
<tr>
<td>13.5 Introduction to the Magic Formula Tire Model</td>
<td>398</td>
</tr>
<tr>
<td>13.6 Development of Lateral Tire Model for Uniform Normal Force</td>
<td>400</td>
</tr>
</tbody>
</table>
13.6.1 Lateral forces at small slip angles 402
13.6.2 Lateral forces at large slip angles 405
13.7 Development of Lateral Tire Model for Parabolic Normal Pressure Distribution 409
13.8 Combined Lateral and Longitudinal Tire Force Generation 417
13.9 The Magic Formula Tire Model 421
13.10 Dugoff’s Tire Model 425
 13.10.1 Introduction 425
 13.10.2 Model equations 426
 13.10.3 Friction Circle Interpretation of Dugoff’s Model 427
13.11 Dynamic Tire Model 429
13.12 Chapter Summary 430
Nomenclature 430
References 432

14. TIRE-ROAD FRICTION MEASUREMENT ON HIGHWAY VEHICLES 433
14.1 Introduction 433
 14.1.1 Definition of tire-road friction coefficient 433
 14.1.2 Benefits of tire-road friction estimation 434
 14.1.3 Review of results on tire-road friction coefficient estimation 435
 14.1.4 Review of results on slip-slope based approach to friction estimation 436
14.2 Longitudinal Vehicle Dynamics and Tire Model for Friction Estimation 438
Acknowledgments

I am deeply grateful to Professor Karl Hedrick for introducing me to the field of Vehicle Dynamics and Control and for being my mentor when I started working in this field. My initial research with him during my doctoral studies has continued to influence my work. I am also grateful to Professor Max Donath at the University of Minnesota for his immense contribution in helping me establish a strong research program in this field.

I would also like to express my gratitude to my dear friend Professor Darbha Swaroop. The chapters on longitudinal control in this book are strongly influenced by his research results. I have had innumerable discussions with him over the years and have benefited greatly from his generosity and willingness to share his knowledge.

Several people have played a key role in making this book a reality. I am grateful to Serdar Sezen for highly improving many of my earlier drawings for this book and making them so much more clearer and professional. I would also like to thank Vibhor Bageshwar, Jin-Oh Hahn and Neng Piyabongkarn for reviewing several chapters of this book and offering their comments. I am grateful to Lee Alexander who has worked with me on several research projects in the field of vehicle dynamics and contributed to my learning.

I would like to thank my parents Vanaja and Ramamurty Rajamani for their love and confidence in me. Finally, I would like to thank my wife Priya. But for her persistent encouragement and insistence, I might never have returned from a job in industry to a life in academics and this book would probably have never been written.

Rajesh Rajamani
Minneapolis, Minnesota
May 2005
Chapter 1

INTRODUCTION

The use of automobiles is increasing worldwide. In 1970, 30 million vehicles were produced and 246 million vehicles were registered worldwide. By 2005, 65 million vehicles are expected to be produced and more than 800 million vehicles could be registered (Powers and Nicastri, 2000).

The increasing worldwide use of automobiles has motivated the need to develop vehicles that optimize the use of highway and fuel resources, provide safe and comfortable transportation and at the same time have minimal impact on the environment. It is a great challenge to develop vehicles that can satisfy these diverse and often conflicting requirements. To meet this challenge, automobiles are increasingly relying on electromechanical sub-systems that employ sensors, actuators and feedback control. Advances in solid state electronics, sensors, computer technology and control systems during the last two decades have also played an enabling role in promoting this trend.

This chapter provides an overview of some of the major electromechanical feedback control systems under development in the automotive industry and in research laboratories. The following sections in the chapter describe developments related to each of the following five topics:

a) driver assistance systems
b) active stability control systems
c) ride quality improvement
d) traffic congestion solutions and
e) fuel economy and vehicle emissions
1.1 DRIVER ASSISTANCE SYSTEMS

On average, one person dies every minute somewhere in the world due to a car crash (Powers and Nicastri, 2000). In addition to the emotional toll of car crashes, their actual costs in damages equaled 3% of the world GDP and totaled nearly one trillion dollars in 2000. Data from the National Highway Safety Transportation Safety Association (NHTSA) show that 6.335 million accidents (with 37,081 fatalities) occurred on US highways in 1998 (NHTSA, 1999). Data also indicates that, while a variety of factors contribute to accidents, human error accounts for over 90% of all accidents (United States DOT Report, 1992).

A variety of driver assistance systems are being developed by automotive manufacturers to automate mundane driving operations, reduce driver burden and thus reduce highway accidents. Examples of such driver assistance systems under development include

a) collision avoidance systems which automatically detect slower moving preceding vehicles and provide warning and brake assist to the driver
b) adaptive cruise control (ACC) systems which are enhanced cruise control systems and enable preceding vehicles to be followed automatically at a safe distance
c) lane departure warning systems
d) lane keeping systems which automate steering on straight roads
e) vision enhancement/ night vision systems
f) driver condition monitoring systems which detect and provide warning for driver drowsiness, as well as for obstacles and pedestrians
g) safety event recorders and automatic collision and severity notification systems

These technologies will help reduce driver burden and make drivers less likely to be involved in accidents. This can also help reduce the resultant traffic congestion that accidents tend to cause.

Collision avoidance and adaptive cruise control systems are discussed in great depth in Chapters 5 and 6 of this book. Lane keeping systems are discussed in great detail in Chapter 3.

1.2 ACTIVE STABILITY CONTROL SYSTEMS

Vehicle stability control systems that prevent vehicles from spinning, drifting out and rolling over have been developed and recently
I. Introduction

commercialized by several automotive manufacturers. Stability control systems that prevent vehicles from skidding and spinning out are often referred to as yaw stability control systems and are the topic of detailed description in Chapter 8 of this book. Stability control systems that prevent roll over are referred to as active roll stability control systems. An integrated stability control system can incorporate both yaw stability and roll over stability control.

![Diagram illustrating the functioning of a yaw stability control system](image)

Figure 1-1. The functioning of a yaw stability control system

Figure 1-1 schematically shows the function of a yaw stability control system. In this figure, the lower curve shows the trajectory that the vehicle would follow in response to a steering input from the driver if the road were dry and had a high tire-road friction coefficient. In this case the high friction coefficient is able to provide the lateral force required by the vehicle to negotiate the curved road. If the coefficient of friction were small or if the vehicle speed were too high, then the vehicle would be unable to follow the nominal motion required by the driver – it would instead travel on a trajectory of larger radius (smaller curvature), as shown in the upper curve of Figure 1-1. The function of the yaw control system is to restore the yaw velocity of the vehicle as much as possible to the nominal motion expected
by the driver. If the friction coefficient is very small, it might not be possible to entirely achieve the nominal yaw rate motion that would be achieved by the driver on a high friction coefficient road surface. In this case, the yaw control system would partially succeed by making the vehicle's yaw rate closer to the expected nominal yaw rate, as shown by the middle curve in Figure 1-1.

Examples of yaw stability control systems that have been commercialized on production vehicles include the BMW DSC3 (Leffler, et. al., 1998) and the Mercedes ESP, which were introduced in 1995, the Cadillac Stabilitrak system (Jost, 1996) introduced in 1996 and the Chevrolet C5 Corvette Active Handling system in 1997 (Hoffman, et. al., 1998).

While most of the commercialized systems are differential-braking based systems, there is considerable ongoing research on two other types of yaw stability control systems: steer-by-wire and active torque distribution control. All three types of yaw stability control systems are discussed in detail in Chapter 8 of this book.

A yaw stability control system contributes to rollover stability just by helping keep the vehicle on its intended path and thus preventing the need for erratic driver steering actions. There is also considerable work being done directly on the development of active rollover prevention systems, especially for sport utility vehicles (SUVs) and trucks. Some systems such as Freightliner's Roll Stability Advisor and Volvo's Roll Stability Control systems utilize sensors on the vehicle to detect if a rollover is imminent and a corrective action is required. If corrective action is required, differential braking is used both to slow the vehicle down and to induce an understeer that contributes to reduction in the roll angle rate of the vehicle. Other types of rollover prevention technologies include Active Stabilizer Bar systems developed by Delphi and BMW (Strassberger and Guldner, 2004). In this case the forces from a stabilizer bar in the suspension are adjusted to help reduce roll while cornering.

1.3 RIDE QUALITY

The notion of using active actuators in the suspension of a vehicle to provide significantly improved ride quality, better handling and improved traction has been pursued in various forms for a long time by research engineers (Hrovat, 1997, Strassberger and Guldner, 2004). Fully active suspension systems have been implemented on Formula One racing cars, for example, the suspension system developed by Lotus Engineering (Wright and Williams, 1984). For the more regular passenger car market, semi-
active suspensions are now available on some production vehicles in the market. Delphi’s semi-active MagneRide system first debuted in 2002 on the Cadillac Seville STS and is now available as an option on all Corvette models. The MagneRide system utilizes a magnetorheological fluid based shock absorber whose damping and stiffness properties can be varied rapidly in real-time. A semi-active feedback control system varies the shock absorber properties to provide enhanced ride quality and reduce the handling/ride quality trade-off.

Most semi-active and active suspension systems in the market have been designed to provide improved handling by reducing roll during cornering. Active stabilizer bar systems have been developed, for example, by BMW and Delphi and are designed to reduce roll during cornering without any deterioration in the ride quality experienced during normal travel (Strassberger and Guldner, 2004).

The RoadMaster system is a different type of active suspension system designed to specifically balance heavy static loads (www.activesuspension.com). It is available as an after-market option for trucks, vans and SUVs. It consists of two variable rated coil springs that fit onto the rear leaf springs and balance static forces, thus enabling vehicles to carry maximum loads without bottoming through.

The design of passive, active and semi-active suspensions is discussed in great depth in Chapters 6, 7 and 8 of this book.

1.4 TECHNOLOGIES FOR ADDRESSING TRAFFIC CONGESTION

Traffic congestion is growing in urban areas of every size and is expected to double in the next ten years. Over 5 billion hours are spent annually waiting on freeways (Texas Transportation Institute, 1999). Building adequate highways and streets to stop congestion from growing further is prohibitively expensive. A review of 68 urban areas conducted in 1999 by the Texas Transportation Institute concluded that 1800 new lane miles of freeway and 2500 new lane miles of streets would have to be added to keep congestion from growing between 1998 and 1999! This level of construction appears unlikely to happen for the foreseeable future. Data shows that the traffic volume capacity added every year by construction lags the annual increase in traffic volume demanded, thus making traffic congestion increasingly worse. The promotion of public transit systems has been difficult and ineffective. Constructing a public transit system of sufficient density so as to provide point to point access for all people remains very difficult in the USA. Personal transportation vehicles will
therefore continue to be the transportation mode of choice even when traffic jams seem to compromise the apparent freedom of motion of automobiles.

While the traffic congestion issue is not being directly addressed by automotive manufacturers, there is significant vehicle-related research being conducted in various universities with the objective of alleviating highway congestion. Examples include the development of automated highway systems, the development of "traffic friendly" adaptive cruise control systems and the development of tilt controlled narrow commuter vehicles. These are discussed in the following sub-sections.

1.4.1 Automated highway systems

A significant amount of research has been conducted at California PATH on the development of automated highway systems. In an automated highway system (AHS), vehicles are fully automated and travel together in tightly packed platoons (Hedrick, Tomizuka and Varaiya, 1994, Varaiya, 1993, Rajamani, Tan, et. al., 2000). A traffic capacity that is up to three times the capacity on today's manually driven highways can be obtained. Vehicles have to be specially instrumented before they can travel on an AHS. However, once instrumented, such vehicles can travel both on regular roads as well as on an AHS. A driver with an instrumented vehicle can take a local road from home, reach an automated highway that bypasses congested downtown highway traffic, travel on the automated highway, travel on a subsequent regular highway and reach the final destination, all without leaving his/her vehicle. Thus an AHS provides point to point personal transportation suitable for the low density population in the United States.

The design of vehicle control systems for AHS is an interesting and challenging problem. Longitudinal control of vehicles for travel in platoons on an AHS is discussed in great detail in Chapter 7 of this book. Lateral control of vehicles for automated steering control on an AHS is discussed in Chapter 3.

1.4.2 "Traffic-friendly" adaptive cruise control

As discussed in section 1.1, adaptive cruise control (ACC) systems have been developed by automotive manufacturers and are an extension of the standard cruise control system. ACC systems use radar to automatically detect preceding vehicles traveling in the same lane on the highway. In the case of a slower moving preceding vehicle, an ACC system automatically switches from speed control to spacing control and follows the preceding
vehicle at a safe distance using automated throttle control. Figure 1-2 shows a schematic of an adaptive cruise control system.

![Schematic of Adaptive Cruise Control System](image)

Figure 1-2. Adaptive cruise control

ACC systems are already available on production vehicles and can operate on today’s highways. They are being developed by automotive manufacturers as a driver assistance tool that improves driver convenience and also contributes to safety. However, as the penetration of ACC vehicles as a percentage of total vehicles on the road increases, ACC vehicles can also significantly influence the traffic flow on a highway.

The influence of adaptive cruise control systems on highway traffic is being studied by several research groups with the objective of designing ACC systems to promote smoother and higher traffic flow (Liang and Peng, 1999, Swaroop, 1999, Swaroop 1998, Rajamani, 2003). Important issues being addressed in the research include

a) the influence of inter-vehicle spacing policies and control algorithms on traffic flow stability

b) the development of ACC algorithms to maximize traffic flow capacity while ensuring safe operation

c) the advantages of using roadside infrastructure and communication systems to help improve ACC operation.

The design of ACC systems is the focus of detailed discussion in Chapter 6 of this book.

1.4.3 Narrow tilt-controlled commuter vehicles

A different type of research activity being pursued is the development of special types of vehicles to promote better highway traffic. A research