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Preface

Hidden Markov models—most often abbreviated to the acronym “HMMs”—
are one of the most successful statistical modelling ideas that have came up in
the last forty years: the use of hidden (or unobservable) states makes the model
generic enough to handle a variety of complex real-world time series, while the
relatively simple prior dependence structure (the “Markov” bit) still allows
for the use of efficient computational procedures. Our goal with this book is to
present a reasonably complete picture of statistical inference for HMMs, from
the simplest finite-valued models, which were already studied in the 1960’s,
to recent topics like computational aspects of models with continuous state
space, asymptotics of maximum likelihood, Bayesian computation and model
selection, and all this illustrated with relevant running examples. We want
to stress at this point that by using the term hidden Markov model we do
not limit ourselves to models with finite state space (for the hidden Markov
chain), but also include models with continuous state space; such models are
often referred to as state-space models in the literature.

We build on the considerable developments that have taken place dur-
ing the past ten years, both at the foundational level (asymptotics of maxi-
mum likelihood estimates, order estimation, etc.) and at the computational
level (variable dimension simulation, simulation-based optimization, etc.), to
present an up-to-date picture of the field that is self-contained from a theoret-
ical point of view and self-sufficient from a methodological point of view. We
therefore expect that the book will appeal to academic researchers in the field
of HMMs, in particular PhD students working on related topics, by summing
up the results obtained so far and presenting some new ideas. We hope that it
will similarly interest practitioners and researchers from other fields by lead-
ing them through the computational steps required for making inference in
HMMs and/or providing them with the relevant underlying statistical theory.

The book starts with an introductory chapter which explains, in simple
terms, what an HMM is, and it contains many examples of the use of HMMs
in fields ranging from biology to telecommunications and finance. This chap-
ter also describes various extension of HMMs, like models with autoregression
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or hierarchical HMMs. Chapter 2 defines some basic concepts like transi-
tion kernels and Markov chains. The remainder of the book is divided into
three parts: State Inference, Parameter Inference and Background and Com-
plements; there are also three appendices.

Part I of the book covers inference for the unobserved state process. We
start in Chapter 3 by defining smoothing, filtering and predictive distributions
and describe the forward-backward decomposition and the corresponding re-
cursions. We do this in a general framework with no assumption on finiteness
of the hidden state space. The special cases of HMMs with finite state space
and Gaussian linear state-space models are detailed in Chapter 5. Chapter 3
also introduces the idea that the conditional distribution of the hidden Markov
chain, given the observations, is Markov too, although non-homogeneous, for
both ordinary and time-reversed index orderings. As a result, two alternative
algorithms for smoothing are obtained. A major theme of Part I is simulation-
based methods for state inference; Chapter 6 is a brief introduction to Monte
Carlo simulation, and to Markov chain Monte Carlo and its applications to
HMMs in particular, while Chapters 7 and 8 describe, starting from scratch,
so-called sequential Monte Carlo (SMC) methods for approximating filtering
and smoothing distributions in HMMs with continuous state space. Chapter 9
is devoted to asymptotic analysis of SMC algorithms. More specialized top-
ics of Part I include recursive computation of expectations of functions with
respect to smoothed distributions of the hidden chain (Section 4.1), SMC ap-
proximations of such expectations (Section 8.3) and mixing properties of the
conditional distribution of the hidden chain (Section 4.3). Variants of the ba-
sic HMM structure like models with autoregression and hierarchical HMMs
are considered in Sections 4.2, 6.3.2 and 8.2.

Part II of the book deals with inference for model parameters, mostly
from the maximum likelihood and Bayesian points of views. Chapter 10 de-
scribes the expectation-maximization (EM) algorithm in detail, as well as
its implementation for HMMs with finite state space and Gaussian linear
state-space models. This chapter also discusses likelihood maximization us-
ing gradient-based optimization routines. HMMs with continuous state space
do not generally admit exact implementation of EM, but require simulation-
based methods. Chapter 11 covers various Monte Carlo algorithms like Monte
Carlo EM, stochastic gradient algorithms and stochastic approximation EM.
In addition to providing the algorithms and illustrative examples, it also con-
tains an in-depth analysis of their convergence properties. Chapter 12 gives
an overview of the framework for asymptotic analysis of the maximum like-
lihood estimator, with some applications like asymptotics of likelihood-based
tests. Chapter 13 is about Bayesian inference for HMMs, with the focus being
on models with finite state space. It covers so-called reversible jump MCMC
algorithms for choosing between models of different dimensionality, and con-
tains detailed examples illustrating these as well as simpler algorithms. It also
contains a section on multiple imputation algorithms for global maximization
of the posterior density.
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Part III of the book contains a chapter on discrete and general Markov
chains, summarizing some of the most important concepts and results and
applying them to HMMs. The other chapter of this part focuses on order
estimation for HMMs with both finite state space and finite output alphabet;
in particular it describes how concepts from information theory are useful for
elaborating on this subject.

Various parts of the book require different amounts of, and also different
kinds of, prior knowledge from the reader. Generally we assume familiarity
with probability and statistical estimation at the levels of Feller (1971) and
Bickel and Doksum (1977), respectively. Some prior knowledge of Markov
chains (discrete and/or general) is very helpful, although Part III does con-
tain a primer on the topic; this chapter should however be considered more
a brush-up than a comprehensive treatise of the subject. A reader with that
knowledge will be able to understand most parts of the book. Chapter 13 on
Bayesian estimation features a brief introduction to the subject in general but,
again, some previous experience with Bayesian statistics will undoubtedly be
of great help. The more theoretical parts of the book (Section 4.3, Chapter 9,
Sections 11.2–11.3, Chapter 12, Sections 14.2–14.3 and Chapter 15) require
knowledge of probability theory at the measure-theoretic level for a full under-
standing, even though most of the results as such can be understood without
it.

There is no need to read the book in linear order, from cover to cover.
Indeed, this is probably the wrong way to read it! Rather we encourage the
reader to first go through the more algorithmic parts of the book, to get an
overall view of the subject, and then, if desired, later return to the theoretical
parts for a fuller understanding. Readers with particular topics in mind may
of course be even more selective. A reader interested in the EM algorithm,
for instance, could start with Chapter 1, have a look at Chapter 2, and then
proceed to Chapter 3 before reading about the EM algorithm in Chapter 10.
Similarly a reader interested in simulation-based techniques could go to Chap-
ter 6 directly, perhaps after reading some of the introductory parts, or even
directly to Section 6.3 if he/she is already familiar with MCMC methods.
Each of the two chapters entitled “Advanced Topics in...” (Chapters 4 and 8)
is really composed of three disconnected complements to Chapters 3 and 7,
respectively. As such, the sections that compose Chapters 4 and 8 may be
read independently of one another. Most chapters end with a section entitled
“Complements” whose reading is not required for understanding other parts
of the book—most often, this section mostly contains bibliographical notes—
although in some chapters (9 and 11 in particular) it also features elements
needed to prove the results stated in the main text.

Even in a book of this size, it is impossible to include all aspects of hidden
Markov models. We have focused on the use of HMMs to model long, po-
tentially stationary, time series; we call such models ergodic HMMs. In other
applications, for instance speech recognition or protein alignment, HMMs are
used to represent short variable-length sequences; such models are often called
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left-to-right HMMs and are hardly mentioned in this book. Having said that
we stress that the computational tools for both classes of HMMs are virtually
the same. There are also a number of generalizations of HMMs which we do
not consider. In Markov random fields, as used in image processing applica-
tions, the Markov chain is replaced by a graph of dependency which may be
represented as a two-dimensional regular lattice. The numerical techniques
that can be used for inference in hidden Markov random fields are similar to
some of the methods studied in this book but the statistical side is very differ-
ent. Bayesian networks are even more general since the dependency structure
is allowed to take any form represented by a (directed or undirected) graph.
We do not consider Bayesian networks in their generality although some of
the concepts developed in the Bayesian networks literature (the graph repre-
sentation, the sum-product algorithm) are used. Continuous-time HMMs may
also be seen as a further generalization of the models considered in this book.
Some of these “continuous-time HMMs”, and in particular partially observed
diffusion models used in mathematical finance, have recently received consid-
erable attention. We however decided this topic to be outside the range of
the book; furthermore, the stochastic calculus tools needed for studying these
continuous-time models are not appropriate for our purpose.

We acknowledge the help of Stéphane Boucheron, Randal Douc, Gersende
Fort, Elisabeth Gassiat, Christian P. Robert, and Philippe Soulier, who par-
ticipated in the writing of the text and contributed the two chapters that
compose Part III (see next page for details of the contributions). We are also
indebted to them for suggesting various forms of improvement in the nota-
tions, layout, etc., as well as helping us track typos and errors. We thank
François Le Gland and Catherine Matias for participating in the early stages
of this book project. We are grateful to Christophe Andrieu, Søren Asmussen,
Arnaud Doucet, Hans Künsch, Steve Levinson, Ya’acov Ritov and Mike Tit-
terington, who provided various helpful inputs and comments. Finally, we
thank John Kimmel of Springer for his support and enduring patience.

Paris, France Olivier Cappé
& Lund, Sweden Eric Moulines
March 2005 Tobias Rydén
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for their contributions to Chapters 9 (Randal) and 6, 7, and 13 (Christian) as
well as for their help in proofreading these and other parts of the book

Chapter 14 was written by

Gersende Fort
CNRS & LMC-IMAG
Philippe Soulier
Université Paris-Nanterre

with Eric Moulines

Chapter 15 was written by
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1

Introduction

1.1 What Is a Hidden Markov Model?

A hidden Markov model (abbreviated HMM) is, loosely speaking, a Markov
chain observed in noise. Indeed, the model comprises a Markov chain, which
we will denote by {Xk}k≥0, where k is an integer index. This Markov chain
is often assumed to take values in a finite set, but we will not make this
restriction in general, thus allowing for a quite arbitrary state space. Now,
the Markov chain is hidden, that is, it is not observable. What is available to
the observer is another stochastic process {Yk}k≥0, linked to the Markov chain
in that Xk governs the distribution of the corresponding Yk. For instance, Yk

may have a normal distribution, the mean and variance of which is determined
by Xk, or Yk may have a Poisson distribution whose mean is determined by
Xk. The underlying Markov chain {Xk} is sometimes called the regime, or
state. All statistical inference, even on the Markov chain itself, has to be
done in terms of {Yk} only, as {Xk} is not observed. There is also a further
assumption on the relation between the Markov chain and the observable
process, saying that Xk must be the only variable of the Markov chain that
affects the distribution of Yk. This is expressed more precisely in the following
formal definition.

A hidden Markov model is a bivariate discrete time process {Xk, Yk}k≥0,
where {Xk} is a Markov chain and, conditional on {Xk}, {Yk} is a sequence
of independent random variables such that the conditional distribution of Yk

only depends on Xk. We will denote the state space of the Markov chain {Xk}
by X and the set in which {Yk} takes its values by Y.

The dependence structure of an HMM can be represented by a graphical
model as in Figure 1.1. Representations of this sort use a directed graph
without loops to describe dependence structures among random variables. The
nodes (circles) in the graph correspond to the random variables, and the edges
(arrows) represent the structure of the joint probability distribution, with the
interpretation that the latter may be factored as a product of the conditional
distributions of each node given its “parent” nodes (those that are directly
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Fig. 1.1. Graphical representation of the dependence structure of a hidden Markov
model, where {Yk} is the observable process and {Xk} is the hidden chain.

connected to it by an arrow). Figure 1.1 thus implies that the distribution
of a variable Xk+1 conditional on the history of the process, X0, . . . , Xk,
is determined by the value taken by the preceding one, Xk; this is called
the Markov property. Likewise, the distribution of Yk conditionally on the
past observations Y0, . . . , Yk−1 and the past values of the state, X0, . . . , Xk,
is determined by Xk only (this is exactly the definition we made above).
We shall not go into details about graphical models, but just sometimes use
them as an intuitive means of illustrating various kinds of dependence. The
interested reader is referred to, for example, Jensen (1996) or Jordan (2004)
for introductory texts and to Lauritzen (1996), Cowell et al. (1999), or Jordan
(1999) for in-depth coverage. Throughout the book, we will assume that each
HMM is homogeneous, by which we mean that the Markov chain {Xk} is
homogeneous (its transition kernel does not depend on the time index k),
and that the conditional law of Yk given Xk does not depend on k either.
In order to keep this introductory discussion simple, we do not embark into
precise mathematical definitions of Markov chain concepts such as transition
kernels for instance. The formalization of several of the ideas that are first
reviewed on intuitive grounds here will be the topic of the first part of the
book (Section 2.1).

As mentioned above, of the two processes {Xk} and {Yk}, only {Yk} is
actually observed, whence inference on the parameters of the model must be
achieved using {Yk} only. The other topic of interest is of course inference on
the unobserved {Xk}: given a model and some observations, can we estimate
the unobservable sequence of states? As we shall see later in the book, these
two major statistical objectives are indeed strongly connected. Models that
comprise unobserved random variables, as HMMs do, are called latent variable
models, missing data models, or also models with incomplete data, where the
latent variable refers to the unobservable random quantities.

Let us already at this point give a simple and illustrative example of an
HMM. Suppose that {Xk} is a Markov chain with state space {0, 1} and that
Yk, conditional on Xk = i, has a Gaussian N(µi, σ

2
i ) distribution. In other

words, the value of the regime governs the mean and variance of the Gaussian
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distribution from which we then draw the output. This model illustrates a
common feature of HMMs considered in this book, namely that the condi-
tional distributions of Yk given Xk all belong to a single parametric family,
with parameters indexed by Xk. In this case, it is the Gaussian family of
distributions, but one may of course also consider the Gamma family, the
Poisson family, etc. A meaningful observation, in the current example, is that
the marginal distribution of {Yk} is that of a mixture of two Gaussian dis-
tributions. Hence we may also view HMMs as an extension of independent
mixture models, including some degree of dependence between observations.

Indeed, even though the Y -variables are conditionally independent given
{Xk}, {Yk} is not an independent sequence because of the dependence in
{Xk}. In fact, {Yk} is not a Markov chain either: the joint process {Xk, Yk} is
of course a Markov chain, but the observable process {Yk} does not have the
loss of memory property of Markov chains, in the sense that the conditional
distribution of Yk given Y0, . . . , Yk−1 generally depends on all the condition-
ing variables. As we shall see in Chapter 2, however, the dependence in the
sequence {Yk} (defined in a suitable sense) is not stronger than that in {Xk}.
This is a general observation that is valid not only for the current example.

Another view is to consider HMMs as an extension of Markov chains, in
which the observation {Yk} of the state {Xk} is distorted or blurred in some
manner that includes some additional, independent randomness. In the pre-
vious example, the distortion is simply caused by additive Gaussian noise, as
we may write this model as Yk = µXk

+ σXk
Vk, where {Vk}k≥0 is an i.i.d.

(independent and identically distributed) sequence of standard Gaussian ran-
dom variables. We could even proceed one step further by deriving a similar
functional representation for the unobservable sequence of states. More pre-
cisely, if {Uk}k≥0 denotes an i.i.d. sequence of of uniform random variables on
the interval [0, 1], we can define recursively X1, X2, . . . by the equation

Xk+1 = 1(Uk ≤ pXk
)

where p0 and p1 are defined respectively by pi = P(Xk+1 = 1 |Xk = i) (for
i = 0 and 1). Such a representation of a Markov chain is usually referred
to as a stochastically recursive sequence (and sometimes abbreviated to SRS)
(Borovkov, 1998). An alternative view consists in regarding 1(Uk ≤ p·) as a
random function (here on {0, 1}), hence the name iterated random functions
also used to refer to the above representation of a Markov chain (Diaconis and
Freedman, 1999). Our simple example is by no means a singular case and, in
great generality, any HMM may be equivalently defined through a functional
representation known as a (general) state-space model,

Xk+1 = a(Xk, Uk) , (1.1)
Yk = b(Xk, Vk) , (1.2)

where {Uk}k≥0 and {Vk}k≥0 are mutually independent i.i.d. sequences of ran-
dom variables that are independent of X0, and a and b are measurable func-
tions. The first equation is known as the state or dynamic equation, whereas
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the second one is the observation equation. These two equations correspond
to a recursive, generative form of the model, as opposed to our initial expo-
sition, which focused on the specification of the joint probability distribution
of the variables. Which view is most natural and fruitful typically depends on
what the HMM is intended to model and for what purpose it is used (see the
examples section below).

In the times series literature, the term “state-space model” is usually re-
served for models in which a and b are linear functions and the sequences {Uk},
{Vk}, and X0 are jointly Gaussian (Anderson and Moore, 1979; Brockwell and
Davis, 1991; Kailath et al., 2000). In this book, we reverse the perspective and
refer to the family of models defined by (1.1) as (general) state-space models.
The linear Gaussian sub-family of models will be covered in some detail, no-
tably in Chapter 5, but is clearly not the main focus of this book. Similarly, in
the classical HMM literature like the tutorial by Rabiner (1989) or the books
by Elliott et al. (1995) and MacDonald and Zucchini (1997), it is tacitly as-
sumed that the denomination “hidden Markov model” implies a finite state
space X. This is a very important case indeed, but in this book we will treat
more general state spaces as well. In our view, the terms “hidden Markov
model” and “state-space model” refer to the same type of objects, although
we will reserve the latter for describing the functional representation of the
model given by (1.1).

1.2 Beyond Hidden Markov Models

The original works on (finite state space) hidden Markov models, as well as
most of the theory regarding Gaussian linear state-space models, date back to
the 1960s. Since then, the practical success of these models in several distinct
application domains has generated an ever-increasing interest in HMMs and a
similarly increasing number of new models based on HMMs. Several of these
extensions of the basic HMM structure are, to some extent, also covered in
this book.

A first simple extension is when the hidden state sequence {Xk}k≥0
is a dth order Markov process, that is, when the conditional distribution
of Xk given past values X� (with 0 ≤ � < k) depends on the d-tuple
Xk−d, Xk−d+1, . . . , Xk−1. At least conceptually this is not a very significant
step, as we can fall back to the standard HMM setup by redefining the state
to be the vector (Xk−d+1, . . . , Xk), which has Markovian evolution. Another
variation consists in allowing for non-homogeneous transitions of the hidden
chain or for non-homogeneous observation distributions. By this we mean that
the distribution of Xk given Xk−1, or that of Yk given Xk, can be allowed
to depend on the index k. As we shall see in the second part of this book,
non-homogeneous models lead to identical methods as far as state inference,
i.e., inference about the hidden chain {Xk}, is concerned (except for the need
to index conditional distributions with k).
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Fig. 1.2. Graphical representation of the dependence structure of a Markov-
switching model, where {Yk} is the observable process and {Xk} is the hidden
chain.

Markov-switching models perhaps constitute the most significant general-
ization of HMMs. In such models, the conditional distribution of Yk+1, given
all past variables, depends not only on Xk+1 but also on Yk (and possibly
more lagged Y -variables). Thus, conditional on the state sequence {Xk}k≥0,
{Yk}k≥0 forms a (non-homogeneous) Markov chain. Graphically, this is rep-
resented as in Figure 1.2. In state-space form, a Markov-switching model may
be written as

Xk+1 = a(Xk, Uk) , (1.3)
Yk+1 = b(Xk+1, Yk, Vk+1) . (1.4)

The terminology regarding these models is not fully standardized and the
term Markov jump systems is also used, at least in cases where the (hidden)
state space is finite.

Markov-switching models have much in common with basic HMMs. In
particular, virtually identical computational machinery may be used for both
models. The statistical analysis of Markov-switching models is however much
more intricate than for HMMs due to the fact that the properties of the ob-
served process {Yk} are not directly controlled by those of the unobservable
chain {Xk} (as is the case in HMMs; see the details in Chapter 4). In partic-
ular, {Yk} is an infinite memory process whose dependence may be stronger
than that of {Xk} and it may even be the case that no stationary solution
{Yk}k≥0 to (1.3)–(1.4) exists.

A final observation is that the computational tools pertaining to posterior
inference, and in particular the smoothing equations of Chapter 3, hold in even
greater generality. One could for example simply assume that {Xk, Yk}k≥0
jointly forms a Markov process, only a part {Yk}k≥0 of which is actually ob-
served. We shall see however in the third part of the book that all statistical
statements that we can currently make about the properties of estimators of
the parameters of HMMs heavily rely on the fact that {Xk}k≥0 is a Markov
chain, and even more crucially, a uniformly ergodic Markov chain (see Chap-
ter 4). For more general models such as partially observed Markov processes,
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it is not yet clear what type of (not overly restrictive and reasonably general)
conditions are required to guarantee that reasonable estimators (such as the
maximum likelihood estimator for instance) are well behaved.

1.3 Examples

HMMs and their generalizations are nowadays used in many different areas.
The (partial) bibliography by Cappé (2001b) (which contains more than 360
references for the period 1990–2000) gives an idea of the reach of the do-
main. Several specialized books are available that largely cover applications of
HMMs to some specific areas such as speech recognition (Rabiner and Juang,
1993; Jelinek, 1997), econometrics (Hamilton, 1989; Kim and Nelson, 1999),
computational biology (Durbin et al., 1998; Koski, 2001), or computer vision
(Bunke and Caelli, 2001). We shall of course not try to compete with these in
fully describing real-world applications of HMMs. We will however consider
throughout the book a number of prototype HMMs (used in some of these
applications) in order illustrate the variety of situations: finite-valued state
space (DNA or protein sequencing), binary Markov chain observed in Gaus-
sian noise (ion channel), non-linear Gaussian state-space model (stochastic
volatility), conditionally Gaussian state-space model (deconvolution), etc.

It should be stressed that the idea one has about the nature of the hidden
Markov chain {Xk} may be quite different from one case to another. In some
cases it does have a well-defined physical meaning, whereas in other cases it
is conceptually more diffuse, and in yet other cases the Markov chain may
be completely fictitious and the probabilistic structure of the HMM is then
used only as a tool for modeling dependence in data. These differences are
illustrated in the examples below.

1.3.1 Finite Hidden Markov Models

In a finite hidden Markov model, both the state space X of the hidden Markov
chain and the set Y in which the output lies are finite. We will generally assume
that these sets are {1, 2, . . . , r} and {1, 2, . . . , s}, respectively. The HMM is
then characterized by the transition probabilities qij = P(Xk+1 = j |Xk = i)
of the Markov chain and the conditional probabilities gij = P(Yk = j |Xk = i).

Example 1.3.1 (Gilbert-Elliott Channel Model). The Gilbert-Elliott
channel model, after Gilbert (1960) and Elliott (1963), is used in information
theory to model the occurrence of transmission errors in some digital commu-
nication channels. Interestingly, this is a pre-HMM hidden Markov model, as
it predates the seminal papers by Baum and his colleagues who introduced
the term hidden Markov model.

In digital communications, all signals to be transmitted are first digitized
and then transformed, a step known as source coding. After this preprocessing,
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one can safely assume that the bits that represent the signal to be transmitted
form an i.i.d. sequence of fair Bernoulli draws (Cover and Thomas, 1991). We
will denote by {Bk}k≥0 the sequence of bits at the input of the transmission
system.

Abstracted high-level models of how this sequence of bits may get distorted
during the transmission are useful for devising efficient reception schemes and
deriving performance bounds. The simplest model is the (memoryless) binary
symmetric channel in which it is assumed that each bit may be randomly
flipped by an independent error sequence,

Yk = Bk ⊕ Vk , (1.5)

where {Yk}k≥0 are the observations and {Vk}k≥0 is an i.i.d. Bernoulli sequence
with P(Vk = 1) = q, and ⊕ denotes modulo-two addition. Hence, the received
bit is equal to the input bit Bk if Vk = 0; otherwise Yk �= Bk and an error
occurs.

The more realistic Gilbert-Elliott channel model postulates that errors
tend to be more bursty than predicted by the memoryless channel. In
this model, the channel regime is modeled as a two-state Markov chain
{Sk}k≥0, which represents low and high error conditions, respectively. The
transition matrix of this chain is determined by the switching probabilities
p0 = P(Sk+1 = 1 |Sk = 0) (transition into the high error regime) and
p1 = P(Sk+1 = 0 |Sk = 1) (transition into the low error regime). In each
regime, the model acts like the memoryless symmetric channel with error
probabilities q0 = P(Yk �= Bk |Sk = 0) and q1 = P(Yk �= Bk |Sk = 1), where
q0 < q1.

To recover the HMM framework, define the hidden state sequence as the
joint process that collates the emitted bits and the sequence of regimes, Xk =
(Bk, Sk). This is a four-state Markov chain with transition matrix

(0, 0) (0, 1) (1, 0) (1, 1)
(0, 0) (1− p0)/2 p0/2 (1− p0)/2 p0/2
(0, 1) p1/2 (1− p1)/2 p1/2 (1− p1)/2
(1, 0) (1− p0)/2 p0/2 (1− p0)/2 p0/2
(1, 1) p1/2 (1− p1)/2 p1/2 (1− p1)/2

Neither the emitted bit Bk nor the channel regime Sk is observed directly,
but the model asserts that conditionally on {Xk}k≥0, the observations are
independent Bernoulli draws with

P(Yk = b |Bk = b, Sk = s) = 1− qs .

�

Example 1.3.2 (Channel Coding and Transmission Over Memory-
less Discrete Channel). We will consider in this example another elemen-
tary example of the use of HMMs, also drawn from the digital communication
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world. Assume we are willing to transmit a message encoded as a sequence
{b0, . . . , bm} of bits, where bi ∈ {0, 1} are the bits and m is the length of the
message. We wish to transmit this message over a channel, which will typically
affect the transmitted message by introducing (at random) errors.

To go further, we need to have an abstract model for the channel. In this
example, we will consider discrete channels, that is, the channel’s inputs and
outputs are assumed to belong to finite alphabets: {i1, . . . , iq} for the inputs
and {o1, . . . , ol} for the outputs. In this book, we will most often consider
binary channels only; then the inputs and the outputs of the transmission
channel are bits, q = l = 2 and {i1, i2} = {o1, o2} = {0, 1}. A transmission
channel is said to be memoryless if the probability of the channel’s output
Y0:n = y0:n conditional on its input sequence S0:n = s0:n factorizes as

P(Y0:n |S0:n) =
n∏

i=0

P(Yi |Si) .

In words, conditional on the input sequence S0:n, the channel outputs are con-
ditionally independent. The transition probabilities of the discrete memory-
less channel are defined by a transition kernel R : {i1, . . . , iq}×{o1, . . . , ol} →
[0, 1], where for i = 1, . . . , q and j = 1, . . . , l,

R(ii, oj) = P(Y0 = oj |S0 = ii) . (1.6)

The most classical example of a discrete memoryless channel is the binary
symmetric channel (BSC) with binary input and binary output, for which
R(0, 1) = R(1, 0) = ε with ε ∈ [0, 1]. In words, every time a bit Sk = 0 or Sk =
1 is sent across the BSC, the output is also a bit Yk = {0, 1}, which differs from
the input bit with probability ε; that is, the error probability is P(Yk �= Ok) =
ε. As described in Example 1.3.1, the output of a binary symmetric channel
can be modeled as a noisy version of the input sequence, Yk = Sk⊕Vk, where
⊕ is the modulo-two addition and {Vk}k≥0 is an independent and identically
distributed sequence of bits, independent of the input sequence {Xk}k≥0 and
with P{Vk = 0} = 1− ε. If we wish to transmit a message S0:m = b0:m over a
BSC without coding, the probability of getting an error will be

P(Y0:m �= b0:m |S0:m = b0:m) =
1− P(Y0:m = b0:m |S0:m = b0:m) = 1− (1− ε)m .

Therefore, as m becomes large, with probability close to 1, at least one bit
of the message will be incorrectly received, which calls for practical solution.
Channel coding is a viable method to increase reliability, but at the expense
of reduced information rate. Increased reliability is achieved by adding redun-
dancy to the information symbol vector, resulting in a longer coded vector
of symbols that are distinguishable at the output of the channel. There are
many ways to construct codes, and we consider in this example only a very
elementary example of a rate 1/2 convolutional coder with memory length 2.
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Fig. 1.3. Rate 1/2 convolutional code with memory length 2.

The rate 1/2 means that a message of length m will be transformed into a
message of length 2m, that is, we will send 2m bits over the transmission
channel in order to introduce some kind of redundancy to increase our chance
of getting an error-free message. The principle of this convolutional coder is
depicted in Figure 1.3.

Because the memory length is 2, there are 4 different states and the behav-
ior of this convolutional encoder can be captured as 4-state machine, where
the state alphabet is X = {(0, 0), (0, 1), (1, 0), (1, 1)}. Denote by Xk the value
of the state at time k, Xk = (Xk,1, Xk,2) ∈ X. Upon the arrival of the bit
Bk+1, the state is transformed to

Xk+1 = (Xk+1,1, Xk+1,2) = (Bk+1, Xk,1) .

In the engineering literature, Xk is said to be a shift register. If the sequence
{Bk}k≥0 of input bits is i.i.d. with probability P(Bk = 1) = p, then {Xk}k≥0
is a Markov chain with transition probabilities

P[Xk+1 = (1, 1) |Xk = (1, 0)] = P[Xk+1 = (1, 1) |Xk = (1, 1)] = p ,

P[Xk+1 = (1, 0) |Xk = (0, 1)] = P[Xk+1 = (1, 0) |Xk = (0, 0)] = p ,

P[Xk+1 = (0, 1) |Xk = (1, 0)] = P[Xk+1 = (0, 1) |Xk = (1, 1)] = 1− p ,

P[Xk+1 = (0, 0) |Xk = (0, 1)] = P[Xk+1 = (0, 0) |Xk = (0, 0)] = 1− p ,

all other transition probabilities being zero. To each input bit, the convolu-
tional encoder generates two outputs according to

Sk = (Sk,1, Sk,2) = (Bk ⊕Xk,2, Bk ⊕Xk,2 ⊕Xk,1) .

These encoded bits, referred to as symbols, are then sent on the transmission
channel. A graphical interpretation of the problem is quite useful. A convo-
lutional encoder (or, more generally, a finite state Markovian machine) can
be represented by a state transition diagram of the type in Figure 1.4. The
nodes are the states and the branches represent transitions having non-zero
probability. If we index the states with both the time index k and state index
m, we get the trellis diagram of Figure 1.4. The trellis diagram shows the time
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Fig. 1.4. Trellis representation of rate 1/2 convolutional code with memory length
2.

progression of the state sequences. For every state sequence, there is a unique
path through the trellis diagram and vice versa.

More generally, the channel encoder is a finite state machine that trans-
forms a message encoded as a finite stream of bits into an output sequence
whose length is increased by a multiplicative factor that is the inverse of the
rate of the encoder. If the input bits are i.i.d., the state sequence of this
finite state machine is a finite state Markov chain. The m distinct states
of the Markov source are {t1, . . . , tm}. The outputs of this finite state ma-
chine is a sequence Sk with values in a finite alphabet {o1, . . . , oq}. The state
transitions of the Markov source are governed by the transition probabilities
p(i, j) = P(Xn = tj |Xn−1 = ti) and the output of the finite-state machine
by the probabilities q(i; j, k) = P(Sn = oi |Xn = tj , Xn−1 = tk).

The Markov source always starts from the same initial state, X0 = t1 say,
and produces an output sequence S0:n = (S0, S1, . . . , Sn) ending in the termi-
nal state Xn = t1. S0:n is the input to a noisy discrete memoryless channel
whose output is the sequence Y0:n = (Y0, . . . , Yn). This discrete memoryless
channel is also governed by transition probabilities (1.6). It is easy to rec-
ognize the general set-up of hidden Markov models, which are an extremely
useful and popular tool in the digital communication community.

The objective of the decoder is to examine Y0:n and estimate the a poste-
riori probability of the states and transitions of the Markov source, i.e., the
conditional probabilities P(Xk = ti |Y0:n) and P(Xk = ti, Xk+1 = tj |Y0:n).

�

Example 1.3.3 (HMM in Biology). Another example featuring finite
HMMs is stochastic modeling of biological sequences. This is certainly one of
the most successful examples of applications of HMM methodology in recent
years. There are several different uses of HMMs in this context (see Churchill,
1992; Durbin et al., 1998; Koski, 2001; Baldi and Brunak, 2001, for further
references and details), and we only briefly describe the application of HMMs
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to gene finding in DNA, or more generally, functional annotation of sequenced
genomes.

In their genetic material, all living organisms carry a blueprint of the
molecules they need for the complex task of living. This genetic material
is (usually) stored in the form of DNA—short for deoxyribonucleic acid—
sequences. The DNA is not actually a sequence, but a long, chain-like molecule
that can be specified uniquely by listing the sequence of amine bases from
which it is composed. This process is known as sequencing and is a challenge
on its own, although the number of complete sequenced genomes is growing
at an impressive rate since the early 1990s. This motivates the abstract view
of DNA as a sequence over a four-letter alphabet A, C, G, and T (for adenine,
cytosine, guanine, and thymine—the four possible instantiations of the amine
base).

The role of DNA is as a storage medium for information about the individ-
ual molecules needed in the biochemical processes of the organism. A region
of the DNA that encodes a single functional molecule is referred to as a gene.
Unfortunately, there is no easy way to discriminate coding regions (those that
correspond to genes) from non-coding ones. In addition, the dimension of the
problem is enormous as typical bacterial genomes can be millions of bases
long with the number of genes to be located ranging from a few hundreds to
a few thousands.

The simplistic approach to this problem (Churchill, 1992) consists in mod-
eling the observed sequence of bases {Yk}k≥0 ∈ {A,C,G, T} by a two-state
hidden Markov model such that the non-observable state is binary-valued with
one state corresponding to non-coding regions and the other one to coding re-
gions. In the simplest form of the model, the conditional distribution of Yk

given Xk is simply parameterized by the vector of probabilities of observing A,
C, G, or T when in the coding and non-coding states, respectively. Despite its
deceptive simplicity, the results obtained by estimating the parameters of this
basic two-state finite HMM on actual genome sequences and then determin-
ing the smoothed estimate of the state sequence Xk (using techniques to be
discussed in Chapter 3) were sufficiently promising to generate an important
research effort in this direction.

The basic strategy described above has been improved during the years to
incorporate more and more of the knowledge accumulated about the behav-
ior of actual genome sequences—see Krogh et al. (1994), Burges and Karlin
(1997), Kukashin and Borodovsky (1998), Jarner et al. (2001) and references
therein. A very important fact, for instance, is that in coding regions the
DNA is structured into codons, which are composed of three successive sym-
bols in our A, C, G, T alphabet. This property can be accommodated by
using higher order HMMs in which the distribution of Yk does not only de-
pend on the current state Xk but also on the previous two observations Yk−1
and Yk−2. Another option consists in using non-homogeneous models such
that the distribution of Yk does not only depend on the current state Xk

but also on the value of the index k modulo 3. In addition, some particular
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sub-sequences have a specific function, at least when they occur in a coding
region (there are start and end codons for instance). Needless to say, enlarging
the state space X to add specific states corresponding to those well identified
functional sub-sequences is essential. Finally and most importantly, the func-
tional description of the DNA sequence is certainly not restricted to just the
coding/non-coding dichotomy, and most models use many more hidden states
to differentiate between several distinct functional regions in the genome se-
quence. �

Example 1.3.4 (Capture-Recapture). Capture-recapture models are of-
ten used in the study of populations with unknown sizes as in surveys, census
undercount, animal abundance evaluation, and software debugging to name
a few of their numerous applications. To set up the model in its original
framework, we consider here the setting examined in Dupuis (1995) of a pop-
ulation of lizards (Lacerta vivipara) that move between three spatially con-
nected zones, denoted 1, 2, and 3, the focus being on modeling these moves.
For a given lizard, the sequence of the zones where it stays can be modeled
as a Markov chain with transition matrix Q. This model still pertains to
HMMs as, at a given time, most lizards are not observed: this is therefore a
partly hidden Markov model. To draw inference on the matrix Q, the capture-
recapture experiment is run as follows. At time k = 0, a (random) number
of lizards are captured, marked, and released. This operation is repeated at
times k = 1, . . . , n by tagging the newly captured animals and by recording
at each capture the position (zone) of the recaptured animals. Therefore, the
model consists of a series of capture events and positions (conditional on a
capture) of n+1 cohorts of animals marked at times k = 0, . . . , n. To account
for open populations (as lizards can either die or leave the region of observa-
tion for good), a fourth state is usually added to the three spatial zones. It
is denoted † (dagger) and, from the point of view of the underlying Markov
chain, it is an absorbing state while, from the point of view of the HMM, it
is always hidden.1

The observations may thus be summarized by the series {Ykm}0≤k≤n of
capture histories that indicate, for each lizard at least captured once (m being
the lizard index), in which zone it was at each of the times it was captured.
We may for instance record

{ykm}0≤k≤n = (0, . . . , 0, 1, 1, 2, 0, 2, 0, 0, 3, 0, 0, 0, 1, 0, . . . , 0) ,

where 0 means that the lizard was not captured at that particular time in-
dex. To each such observed sequence, there corresponds a (partially) hidden
sequence {Xkm}0≤k≤n of lizard locations, for instance

{xkm}0≤k≤n = (1, . . . , 2,1,1,2,2,2,3, 2,3,3, 2, 2,1,†, . . . , †)
1One could argue that lizards may also enter the population, either by migration

or by birth. The latter reason is easily accounted for, as the age of the lizard can be
assessed at the first capture. The former reason is real but will be ignored.
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which indicates that the animal disappeared right after the last capture (where
the values that are deterministically known from the observations have been
stressed in bold).

The purposes in running capture-recapture experiments are often twofold:
first, inference can be drawn on the size of the whole population based on the
recapture history as in the Darroch model (Castledine, 1981; Seber, 1983),
and, second, features of the population can be estimated from the captured
animals, like capture and movement probabilities. �

1.3.2 Normal Hidden Markov Models

By a normal hidden Markov model we mean an HMM in which the conditional
distribution of Yk given Xk is Gaussian. In many applications, the state space
is finite, and we will then assume it is {1, 2, . . . , r}. In this case, given Xk = i,
Yk ∼ N(µi, σ

2
i ), so that the marginal distribution of Yk is a finite mixture of

normals.

Example 1.3.5 (Ion Channel Modeling). A cell, for example in the hu-
man body, needs to exchange various kinds of ions (sodium, potassium, etc.)
with its surrounding for its metabolism and for purposes of chemical commu-
nication. The cell membrane itself is impermeable to such ions but contains
so-called ion channels, each tailored for a particular kind of ion, to let ions
pass through. Such a channel is really a large molecule, a protein, that may
assume different configurations, or states. In some states, the channel allows
ions to flow through—the channel is open—whereas in other states ions can-
not pass—the channel is closed. A flow of ions is a transportation of electrical
charge, hence an electric current (of the order of picoamperes). In other words,
each state of the channel is characterized by a certain conductance level. These
levels may correspond to a fully open channel, a closed channel, or something
in between. The current through the channel can be measured using special
probes (this is by no means trivial!), with the result being a time series that
switches between different levels as the channel reconfigures. In this context,
the main motivation is to study the characteristics of the dynamic of these ion
channels, which is only partly understood, based on sampled measurements.

In the basic model, the channel current is simply assumed to be corrupted
by additive white (i.i.d.) Gaussian measurement noise. If the state of the ion
channel is modeled as a Markov chain, the measured time series becomes an
HMM with conditionally Gaussian output and with the variances σ2

i not de-
pending on i. A limitation of this basic model is that if each physical configura-
tion of the channel (say closed) corresponds to a single state of the underlying
Markov chain, we are implicitly assuming that each visit to this state has a
duration drawn from a geometric distribution. A work-around that makes it
possible to keep the HMM framework consists in modeling each physical con-
figuration by a compound of distinct states of the underlying Markov chain,
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which are constrained to have a common conditional Gaussian output distri-
bution. Depending on the exact transition matrix of the hidden chain, the
durations spent in a given physical configuration can be modeled by negative
binomial, mixtures of geometric or more complicated discrete distributions.

Further reading on ion-channel modeling can be found, for example, in
Ball and Rice (1992) for basic references and Ball et al. (1999) and Hodgson
(1998) for more advanced statistical approaches. �

Example 1.3.6 (Speech Recognition). As yet another example of normal
HMMs, we consider applications to speech recognition, which was the first
area where HMMs were used extensively, starting in the early 1980s. The
basic task is to, from a recording of a person’s voice (or in real time, on-line),
automatically determine what he or she said.

To do that, the recorded and sampled speech signal is slotted into short
sections (also called frames), typically representing about 20 milliseconds of
the original signal. Each section is then analyzed separately to produce a set
of coefficients that represent the estimated power spectral density of the signal
in the frame. This preprocessing results in a discrete-time multivariate time
series of spectral coefficients. For a given word to be recognized (imagine, for
simplicity, that speakers only pronounce single words), the length of the series
of vectors resulting from this preprocessing is not determined beforehand but
depends on the time taken for the speaker to utter the word. A primary
requirement on the model is thus to cope with the time alignment problem so
as to be able to compare multivariate sequences of unequal lengths.

In this application, the hidden Markov chain corresponds to sub-elements
of the utterance that are expected to have comparable spectral characteris-
tics. In particular, we may view each word as a sequence of phonemes (for
instance, red: [r-e-d]; class: [k-l-a:-s]). The state of the Markov chain is then
the hypothetical phoneme that is currently being uttered at a given time slot.
Thus, for a word with three phonemes, like “red” for example, the state of
the Markov chain may evolve according to Figure 1.5. Note that as opposed
to Figures 1.1 and 1.2, Figure 1.5 is an automaton description of the Markov
chain that indicates where the chain may jump to given its current state. Each
arrow thus represents a possible transition that is associated with a non-zero
transition probability. In this book, we shall use double circles for the nodes
of such automata, as in Figure 1.5, to distinguish them from graphical mod-
els. We see that each state corresponding to a phoneme has a transition back
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Fig. 1.5. Automaton representation of the Markov chain structure of an HMM for
recognizing the word “red”.
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to itself, that is, a loop; this is to allow the phoneme to last for as long as
the recording of it does. The purposes of the initial state Start and termi-
nal state Stop is simply to have well-defined starts and terminations of the
Markov chain; the stop state may be thought of as an absorbing state with
no associated observation.

The observation vectors associated with a particular (unobservable) state
are assumed to be independent and are assigned a multivariate distribution,
most often a mixture of Gaussian distributions. The variability induced by this
distribution is used to model spectral variability within and between speak-
ers. The actual speech recognition is realized by running the recorded word
as input to several different HMMs, each representing a particular word, and
selecting the one that assigns the largest likelihood to the observed sequence.
In a prior training phase, the parameters of each word model have been esti-
mated using a large number of recorded utterances of the word. Note that the
association of the states of the hidden chain with the phonemes in Figure 1.5
is more a conceptual view than an actual description of what the model does.
In practice, the recognition performance of HMM-based speech recognition
engines is far better than their efficiency at segmenting words into phonemes.

Further reading on speech recognition using HMMs can be found in the
books by Rabiner and Juang (1993) and Jelinek (1997). The famous tutorial
by Rabiner (1989) gives a more condensed description of the basic model, and
Young (1996) provides an overview of current large-scale speech recognition
systems. �

1.3.3 Gaussian Linear State-Space Models

The standard state-space model that we shall most often employ in this book
takes the form

Xk+1 = AXk + RUk , (1.7)
Yk = BXk + SVk , (1.8)

where

• {Uk}k≥0, called the state or process noise, and {Vk}k≥0, called the mea-
surement noise, are independent standard (multivariate) Gaussian white
noise (sequences of i.i.d. multidimensional Gaussian random variables with
zero mean and identity covariance matrices);

• The initial condition X0 is Gaussian with mean µν and covariance Γν and
is uncorrelated with the processes {Uk} and {Vk};

• The state transition matrix A, the measurement transition matrix B, the
square-root of the state noise covariance R, and the square-root of the
measurement noise covariance S are known matrices with appropriate di-
mensions.


