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Foreword 
by Vishwani D. Agrawal 

11  

About five years ago, I was engaged in co-authoring a text-book on electronic testing 
for the Frontiers in Electronic Testing Book Series. We had to make some difficult 
decisions about what to include and what not to include. A text-book must contain 
all or most of the essentials of the established practices, and should not exceed a 
convenient, somewhat “standard,” size. Those requirements do not leave room for 
what are the needs of the future and many of the groundbreaking developments. As a 
result, stuck-at tests win over delay tests, conventional analog tests are selected 
while radio frequency testing is ignored, and defect-oriented testing of nanometer 
devices is barely mentioned. So, no sooner the text-book was completed, I developed 
a feeling of discomfort about leaving out a vast amount of material on testing that 
could have been included. 

What I have said about the text-book in the Frontiers Series applies to other text-
books as well. As years go by the gap between those text-books and what is 
considered up-to-date has been widening. There is a definite need for documenting 
the advances in testing. It is for these reasons that I find the work of this edited 
volume by Dimitris Gizopoulos and his team of authors to be significant and timely. 

The field of modern electronic testing can be regarded as about half a century 
old. Two things are obvious. First, the field has gained maturity. We have well 
established conferences and workshops all over the world organized by IEEE  
 



xiv Foreword 

Computer Society’s Test Technology Technical Council. The attendance at these 
meeting remained quite steady even through down turns of the semiconductor 
industry. There is an over ten years old Journal of Electronic Testing: Theory and 
Applications that is entirely devoted to testing. The IEEE Computer Society has been 
publishing the IEEE Design & Test of Computers magazine for over two decades. 
Clearly, the field of electronic testing has developed a core but, and this is my 
second point, the field of testing now has a divergence of specializations. It is this 
divergence that an advanced book like this one captures. 

While no one argues that the idea of an advanced book is good, there are 
problems with its implementation. Specialization demands experts and no single 
expert feels competent to write about all areas. Dimitris Gizopoulos has gathered a 
team of experts to write this book. Hence, the book provides, besides novel test 
methodologies, a collective insight into the emerging aspects of testing. This, I think, 
is beneficial to practicing engineers and researchers both of whom must stay at the 
forefront of technology. 

Let me share a few of these insights with the reader. In Chapter 1, Rob Aiken 
states a theme, “Defect-oriented tests for digital logic typically include 
comprehensive structural logic tests, a current test … and at-speed tests. All these 
tests share the property that they measure some aspect of circuit behavior that is 
directly affected by defects,…” before expanding on it. 

In Chapter 2, Jaume Segura, Charles Hawkins and Jerry Soden give a motivation 
for statistical test methods by saying, “Deep submicron structures don’t affect test 
and diagnosis just because they are small. They primarily impact test because the 
manufacturing parameters are not tightly controlled as they were in the past.” 

Doug Josephson and Bob Gottlieb share their insights on silicon debug in 
Chapter 3. According to them, “… test cases that are interesting for electrical 
validation are likely very different from those that are interesting for functional 
validation. For the ALU example, a CMOS dynamic circuit implementation may 
perform differently electrically if there are two add instructions executed in 
consecutive clock cycles than it would if there was a long period of inactivity 
between the add instructions … from a functional validation point of view, these 
cases would be identical.”  Besides, I was fascinated with, “An interesting example 
of “debugging” was in 1945 when a computer failure was traced down to a moth 
that was caught in a relay between contacts (Figure 3-1).” 

Discussing delay testing in Chapter 4, Adam Cron candidly admits, “Much of this 
“information” about the prominent defect types is from informal discussions with 
engineers and researchers “in the trenches”. ”  

Continuing on the theme of high-speed test in Chapter 5, Wolfgang Maichen 
points out, “… any chain is only as strong as its weakest link. In this case it means 
that even the best performing, highest bandwidth, most accurate tester will fail to 
reliably sort good devices from bad ones or give accurate characterization results if 
the connection between tester and device – i.e. the interface – does not perform 
equally well …” 
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Chapter 6 on low-cost testers, written by Al Crouch and Geir Eide, is particularly 
timely in view of the rising costs of testing and the test equipment. This subject is 
almost always found missing from the usual text-books. 

Today, it is unthinkable that a VLSI chip will be designed without embedded 
cores. In Chapter 7, Rubin Parekhji points out the problems with applying the 
conventional test methodology to core-based System-on-Chip (SOC). He goes on to 
provide test solutions that use the conventional test methods and the IEEE standards 
like 1149.1 and 1500. 

A majority of the embedded cores are memories. Dean Adams, the author of 
Chapter 8, describes the design for test structures and test methods in detail. The 
following sentence in that chapter very well represents the nature of the memory test 
problem and its solution: “All of the testing and redundancy calculation must be 
performed by built-in self-test logic embedded on chip around the memory 
structures. The BIST must be implemented and integrated on the chip through the 
use of EDA tools which understand the memories, the process, and the physical 
constraints of the chip.” 

It is often said that testing of 10% analog circuitry of a mixed-signal device may 
contribute to 90% of the total test cost. Clearly, analog testing cannot be ignored. In 
Chapter 9, Stephen Sunter gives a complete coverage of analog test methodologies, 
fault modeling, design for testability including the IEEE 1149.4 test bus standard, 
and test tools. 

For many digital test professionals radio frequency (RF) testing, mostly 
neglected during education, remains an unavoidable mystery. The wireless 
communication systems of today require SOCs that contain RF components. What  
I said above about the cost of analog testing is even more applicable to RF testing. 
Chapter 10 by Randy Wolf, Mustapha Slamani, John Ferrario and Jayendra Bhagat 
contains a comprehensive discussion on RF testing methods and tools that very few 
books on testing can boast of. 

If we consider the varieties and the total number of printed circuit boards (PCB) 
manufactured in the world it will immediately become evident that the PCB test 
problem is no less important than the semiconductor device test problem. In Chapter 
11, Kenneth Parker gives a detailed account of the PCB test methods oriented toward 
the board-specific defects, the conventional in-circuit testing (ICT), and the modern 
IEEE 1149.1 boundary-scan testing. 

Considering that the eleven chapters of this book were written by different 
authors, the tasks of technical coordination and that of providing a uniform 
formatting and flow are not easy ones. I thank Dimitris Gizopoulos for his untiring 
effort on getting all chapters together and an excellent technical editing. This latest 
addition to the Frontiers Series is destined to serve an important role. However, 
“Advances” in the title of the book suggests that we keep track of the test technology 
as it advances. It is my hope that we will bring out future volumes of this type. 

Vishwani D. Agrawal 
Consulting Editor 

Frontiers in Electronic Testing Book Series 
September 2005 



 

Preface  

11  

Electronic circuits testing has always been a very vibrant area of scientific research 
and development. The engineering adventure of discovering whether an integrated 
circuit has been properly manufactured and operates in accordance with its 
specifications advanced significantly over the last few decades. Every new 
manufacturing technology generation—already supporting feature sizes of a few tens 
of nanometers today—brings with it enhanced functionality, more transistors per 
unit area, elevated performance and reduced power consumption at lower costs per 
circuit unit. On the other hand, each shrinking manufacturing process also carries 
new types of failure mechanisms and defects which were either unknown or of less 
importance in previous generations of larger geometries and lower operating 
frequencies. Each integrated circuit generation packs more modules of improved or 
completely new functionality (digital logic, memories, analog and mixed-signal as 
well as radio frequency components) into half or even less of the space; as a 
consequence, improved or completely new testing techniques are necessary for them. 
To make matters worse, the rising instance count and shrinking pin-to-gate ratio 
exacerbate the difficulties of controlling and observing the internal nodes of the 
circuit.  

The definitions of test quality and test cost have never been more complex than 
they are today. Electronic testing methodologies should be able to detect the new 
types of failure modes in modern manufacturing technologies. The population of  
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integrated circuit physical defects that are not accurately modeled by traditional fault 
models is rapidly increasing. Moreover, the majority of defects can only be detected 
when the circuit operates at its regular, full-speed frequency. This can only be 
guaranteed if the performance and accuracy of test application and response 
capturing are extremely high. The volume of test data (stimuli and responses) that 
should be applied to each manufactured circuit to provide high levels of confidence 
of it being correctly implemented, along with the need of applying tests at very high 
performance, precision and accuracy have launched the costs of capable test 
equipment alarmingly upwards. Reducing the cost of automatic test equipment while 
maintaining the ability to perform high performance, precise and accurate testing has 
been and will continue to be a major concern: careful embedding of test-related 
mechanisms on the chip itself, and communicating this information to the tester has 
shown a promising path to reach this cost and quality goal. 

If new defect types are not given special consideration, integrated circuits 
released to the market, mounted in boards, and connected in their final system have 
an increased probability of malfunctioning. Conversely, if testing the manufactured 
circuit takes too long and/or costs too much (in an effort to exhaustively deal with 
new defect types) the price of testing will severely affect product development costs 
and the resulting delayed entry to the market will jeopardize product success. If 
testing is not performed with accurate measurement techniques, the product 
development cost will also be severely affected due to yield loss: fault-free devices 
will be rejected only because of inaccuracies in high-speed test measurements. 

The major challenge of test technology researchers and practitioners today is to 
define and apply electronic testing methodologies that keep a balance between 
quality and cost. This fundamental test technology challenge is an essential 
component of a key term of modern electronics: manufacturability—the extent to 
which a new product can be easily and effectively manufactured at minimum cost 
and with maximum quality and reliability meeting customer expectations. 
Production of high quality electronic circuits at profitable yield levels requires 
carefully implemented testing strategies. 

For the majority of electronic circuits today, it is crucial that the appropriate test 
budget (in terms of time or allocated expenses—these are usually directly related) 
must be utilized, no more, no less. All the advances of the last decades in electronic 
circuits test technology have led us to a maturity point that can make this happen. 
Methodologies and practices of the near future should take advantage of this 
knowledge base to effectively answer today’s challenges of test cost and test quality; 
all that needs to be done is to understand and focus on these challenges. This is the 
motivation and inspiration behind this book: to provide a comprehensive text that 
focuses on the advances of the research and development community in key test 
technology topics, records today’s industrial practices and new needs, elaborates on 
the challenges that emerging testing methodologies have to deal with, and provides a 
vision for the near future of this amazing journey. Hopefully, the book provides the 
necessary information to understand and assess the tradeoffs to achieve the ideal 
balance of meeting the appropriate test budget. 

i i
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PURPOSE AND CONTENT OF THIS BOOK 

This edited volume is a unique compilation of chapters on many electronic testing 
topics of importance today and in the foreseeable future. The topics discussed are 
those on which the vast majority of the research and development community in test 
technology works today; topics where the electronic circuits industry needs effective 
answers, methodologies and practices that can be applied in the short term. 

Every chapter of the book includes the following pieces of information for the 
reader: 

 Insight about the importance of the chapter topic today. Unless improved or 
new methodologies and solutions are devised in the topic, electronic testing 
will either lead to poor test quality or unacceptable test costs. This part of 
the chapters gives the motivation for further research and development in 
each topic. 

 Detailed snapshot of the state-of-the-art in the topic and recent advances 
and industry practices related to it. The chapter authors allocated  
a significant portion of their efforts in distilling the literature and providing 
a comprehensive set of references that represent significant recent research 
in the topic and can be used as a compass for further in-depth study of  
each area. 

 Identification of the challenges in the topic today. Challenges in a topic are 
either due to the topic being in its infancy and the lack of effective 
methodologies providing solutions, or due to new problems that emerging 
manufacturing technologies or product needs have introduced to mature 
topics. Both types of challenges are discussed in this book along with vision 
and forecasting about the near future as well as guidelines for the focus of 
emerging testing methodologies.  

Chapter authors provide all this information based on their long experience in the 
corresponding topic, lots of industrial success and failure cases, supported by a deep 
understanding of what test quality and test cost mean today for the electronics 
market. The entire book has a strong industrial and practical orientation. Each 
chapter is written in a unique way corresponding to the specifics of the topic and 
representing the authors’ background, experience, and way of addressing challenges, 
problems and solutions. There are several interconnecting relationships among the 
chapters of the book: chapters touch on the topics of each other, and the reader of 
one piece can refer to other locations in the book where more specialized elaboration 
can be found. The matched pieces of this puzzle give the entire picture of Advances 
in Electronic Testing: Challenges and Methodologies. 

This book serves a different and unique purpose compared to the comprehensive 
list of test technology books in the Frontiers in Electronic Testing series—a series 
that continues to support the education of the international test technology 
community and has done so for the past ten years. This book is neither an 
introductory book in test technology nor a detailed and specialized study of a single 
research topic. These two purposes are very successfully served by the other books 
of the series. Advances in Electronic Testing: Challenges and Methodologies 

ix
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enriches the series with a new type of edited volume on recent advances in modern 
electronic circuits testing. The book focuses on a carefully selected and broad set of 
topics among those in which intensive research and development takes place today 
and is expected to continue attracting the interest of researchers and practitioners in 
the near future.  

The intention of this edited volume is to be an advanced textbook and valuable 
reference point for senior undergraduate students, graduate students in MSc or PhD 
tracks, researchers and professors conducting research in the electronic testing 
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Chapter 1 

1 Defect-Oriented Testing 
Robert C. Aitken  

The integrated circuit manufacturing process is imperfect, and as a result defects are 
introduced into some of the fabricated chips. Defects take a wide variety of forms, 
from localized spot defects, typically extra or missing material caused by contam- 
ination, to defects affecting much larger areas, such as transistor changes caused  
by implantation variation. 

Some defects affect circuit behavior. Testing is used to find these before products 
are shipped, in order to ensure high quality. Defect-oriented testing is a way to 
improve the efficiency of testing by targeting tests directly at the defects that cause 
incorrect circuit operation. 

Defects occur in random places and can have unpredictable effects. The 
processes that cause them are continuous over a wide range of variables. In order to 
simplify the problem of identifying defective circuits, this infinite defect space is 
approximated by a finite set of faults. A fault is a deterministic, discrete change in 
circuit behavior. Faults are often thought of as being localized within a circuit (e.g.  
a particular gate is broken), but they may also be modeled mathematically as 
transformations that change the Boolean function implemented by a circuit. Many 
fault models are time-independent; some use an arbitrary form of time progression, 
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while a few include time behavior explicitly. The fault effects associated with fault 
models can be as simple as replacing a subcircuit function with a constant value or 
be so complex as to require SPICE simulation to evaluate. The choice of fault model 
depends on its intended use (e.g. test generation, manufacturing quality prediction, 
defect diagnosis, characterization for defect tolerance, etc.) 

This chapter provides an overview of the Defect-Oriented test approach, 
beginning with a brief history of the subject, an overview of defect mechanisms, 
with special emphasis on advanced technologies. This is followed by a discussion of 
how these change the behavior of circuits (fault models). Next is a catalog of the 
types of tests used in Defect-Oriented test, and a survey of relevant published 
experimental results on the effectiveness of Defect-Oriented test approaches. Finally, 
some thoughts on future directions are given as part of the conclusions.  

1.1 HISTORY OF DEFECT-ORIENTED TESTING 

Historically, all testing was functional, and asked the question “Does the device do 
what it is supposed to?” Functional tests are primarily defined logically (outputs are 
a function of the inputs). For digital logic, functional tests became too expensive to 
develop, due partly to the amount of manual effort required to write the tests, but 
more to the complexity required to translate verification testbenches and tests from a 
simulation or characterization environment into an ATE environment. As a result, 
functional tests in production have largely (but not completely) been replaced by 
structural tests. Structural tests changed the basic questions being asked by test, and 
expanded the “Does it work?” question into a new question and a syllogism: “Are all 
circuit elements present and working? If so, and the design is correct, then it must 
work”. This approach is the basis of scan testing. Defect-Oriented testing takes a step 
beyond structural testing to ask, “What could go wrong with this design, how would 
the design’s behavior change if this happened, and how can that be measured?” Any 
measurable circuit property could be affected: logical values, timing, current 
consumption, etc., whether part of the specification or not. Defect-Oriented tests for 
digital logic typically include comprehensive structural logic tests, a current test 
(typically a variant of IDDQ test1), and at-speed tests. All these tests share the property 
that they measure some aspect of circuit behavior that is directly affected by defects, 
regardless of their direct applicability to normal circuit functionality. 

A key aspect of Defect-Oriented Testing is measurability, and measurability 
involves overcoming multiple sources of error or variability, including: 

1. Defect-dependent variation, since defects can change circuit behavior in a 
variety of ways. 

2. Circuit-dependent variation, including manufacturing process related 
variation (e.g. gate length, oxide thickness, etc.). 

                                                           
1
 IDDQ testing measures the quiescent (Q) current (IDD) consumed by a device. In standard 

CMOS circuits, the defect-free current is mainly transistor leakage. Many defects raise the level 
of this current enough to be measured in production test. 
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3. Environment-dependent variation, since many circuit behaviors change 
depending on temperature and voltage. 

4. Equipment-dependent variation, due to limitations in resolution, 
repeatability of measurement equipment, as well as drift over time and other 
machine-dependent variations. 

A defect detection method is not useful unless it consistently separates defect-
dependent variation from circuit- and environment-dependent variation in the 
context of equipment variation. We will concentrate mainly on the first two sources 
of variation in this chapter. 

An interesting question is whether we can separate defect behavior from circuit 
variation. A given flaw, such as a resistive via, can have a range of resistance values. 
Some of these will cause the circuit to fail logically, others will cause timing failures 
under some operating conditions, and others will never fail. Defect-Oriented Testing 
needs to work with the design margin process in order to effectively distinguish 
between these cases. 

Defect-Oriented test requires information exchange between design, test 
development, process R&D, wafer manufacturing and manufacturing test to be 
successful. Historically, all these elements have been present inside vertically 
organized companies, and this is still true today in many cases. In these cases, 
information exchange between various entities is relatively straightforward, since all 
are motivated to action by the ultimate financial success of the company. Most 
published success stories in Defect-Oriented Testing originate within vertically 
integrated companies. 

However, the semiconductor industry has substantially disaggregated, allowing 
chip designers the freedom to select from a number of IP providers, wafer foundries, 
packaging and test houses, among others. Some of these complex relationships are 
shown in Figure 1-1. 

EDA Vendors
Digital IP

CPU, DSP

ATE Vendors

Test Houses

Foundries

Library IP
Cells, RAM, IO

Mixed Signal IP
PLL, PHY

Integration

 
Figure 1-1: Value chain relationships in semiconductor industry. 
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In this situation, information exchange is not guaranteed, and in some cases may 
be hindered, based on economic interests of the various parties involved. To succeed 
in this context, a Defect-Oriented test methodology must provide some form of value 
to all companies involved. This constrains the problem significantly from the 
original vertically integrated case, but successful partnership approaches are 
possible, since all parties benefit from successful silicon. 

This new format of the semiconductor industry should still be able to implement 
Defect-Oriented Testing, although in a modified form. For instance, in a single 
company, process engineers, library design engineers, and test engineers could easily 
collaborate on the best approach to designing a defect-robust scan flip-flop. In the 
disaggregated model, each of these three could belong to a different organization, 
different even from the design integrator and end customer. In such a model, the 
library design engineers need to develop flip-flop architectures that were robust 
across a variety of foundries, when used with standard EDA tools in standard ways. 
Similarly, the test house would need to be prepared for a variety of approaches. In 
each case, an effective flow can be established through standardization, through a 
robust methodology that can account for a variety of implementation techniques, or 
through a specific cooperative effort between organizations. 

1.2 CLASSIC DEFECT MECHANISMS 

The causes and manifestations of CMOS failures are many, but they have historically 
been lumped into two broad categories: Shorts, where conduction occurs when none 
is desired, and opens, where desired conduction does not occur. In aluminum 
processes, shorts have been more common and more problematic than opens, and so 
most research has focused on them [1]. Both shorts and opens have standard 
electrical properties. Of these, the most commonly studied has been resistance. 
Failure mechanisms will be discussed in detail in Chapter 2 of this book, but are 
introduced in brief here since they are key to understanding Defect-Oriented test. 

1.2.1 Shorts 
Shorts can be caused both by extra conducting material and by missing insulating 
material. Examples include: 

 Photolithographic printing error 
 Conductive particle contamination 
 Incomplete etch 
 Incomplete metal polish 
 Crack in the insulator  
 Gate oxide defect causing pinhole 

For a comprehensive list, see Chapter 2 of this book. An example metal short by 
a conductive particle and gate oxide short are shown in Figure 1-2. 
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Figure 1-2: Particle and gate oxide shorts. 

The electrical behavior of a short is determined by where it lies in a circuit. 
Shorts at the diffusion level often involve only the terminals of a single transistor. 
Shorts in poly or metal 1 affect the internals of one or more standard cells. Shorts in 
higher levels of metal interconnect typically involve gate outputs, power, and /or 
ground. 

Shorts are active when the two nodes involved are driven to opposite values. A 
conducting path is formed from the power supply through active P transistors 
through the short (modeled as a resistance) through active N transistors to ground. 
The shorter (less resistive) the short, the more likely this conducting path will disrupt 
circuit operation. This basic idea can be extended to the concept of a “critical 
resistance” [2] below which the short “wins” and the circuit operates incorrectly, and 
above which the circuit “wins” and continues to operate correctly. There are actually 
multiple critical resistances for any short, as shown by Table 1-1 below, which lists 
delays associated with a bridge between an inverter output and ground in 0.13um 
technology. The waveforms associated with this Table can be seen in  
Figure 1-3. There is a logical critical resistance, where the circuit will fail under all 
circumstances (below about 1700 ohms), a set of timing critical resistances (e.g. at 
1800 ohms, a delay of about 150ps results), where the critical resistance depends on 
required timing and also on operating environment, and finally, a set of IDDQ critical 
resistance, where the defect will cause a significant enough increase in IDDQ to be 
observed. An IDDQ technique with 100uA resolution will be able to identify this short 
at 1.0V for resistances below 10kohms. 
  

Resistance (Ω) 1700 1720 1730 1750 1800 2000 3000 
Delay SA0 600ps 400ps 250ps 150ps 70ps <10ps 

Table 1-1: Resistance and delay for short in 0.13um technology [3]. 
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Figure 1-3: Resistance delay curves for a short in 0.13um technology. 

Actual bridge resistance has been studied experimentally, and a wide distribution 
has been reported [4]. As technology advances, critical resistance is tending to rise, 
because timing requirements are tighter. Slack times – the difference between the 
required arrival of a signal and its actual arrival – are shrinking to the order of 100ps 
or less. At the same time, better synthesis algorithms are making more timing paths 
critical or near critical. So with more paths having less slack, even high resistance 
shorts are able to disturb circuit behavior enough to cause a fault. 

1.2.2 Opens 
Opens are caused by missing conducting material or extra insulating material. 
Examples of these include: 

 Photolithographic printing error 
 Step coverage 
 Incompletely filled via 
 Electromigration 
 Silicide agglomeration 
 Incomplete via etch or via foreign material 
 Insulating particle contamination 

As with shorts, the behavior of an open is determined by where it is located, 
whether in the transistor structure (diffusion, poly or metal 1) or in the interconnect 
between transistors (higher level metal). Logically, opens can be within a cell, or 
between cells. In many cases, a complete open results in a node that is electrically 
isolated from its surroundings. Charge stored on this node during fabrication can 
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affect its subsequent operation. For small opens, Fowler-Nordheim tunneling2 can 
occur, resulting in a circuit that operates more slowly than expected. Many complex 
open behaviors have been postulated (see Chapter 2 of this book for details), but 
some of these have proven difficult to identify in practice. High levels of leakage and 
mutual capacitance in modern processes mean that open behavior will likely be more 
deterministic in future, in that stored charge will bleed away, or nodes will follow 
their neighbors. 

In practice, many opens are partial or “almost opens”. Such opens are 
challenging to detect and will be addressed later in this chapter. An experimental 
analysis of resistances was made in [5] and is given in Figure 1-4. 

Figure 1-4: Resistance distribution for opens [5]. 

1.2.3 Parametric Changes 
Defective behavior is not always caused by a single isolated problem such as a short 
or an open. Sometimes a circuit parameter is out of specification across a wide area, 
and this can cause a failure, or an increased susceptibility to other problems (e.g. 
temperature effects, crosstalk, etc.). These problems will also be discussed later in 
the chapter. Parametric variation begins with a physical change (e.g. variation in 
printed transistor gate length) and affects the circuit via electrical change (e.g. 
transistors that are faster and leakier than expected). In addition to gate length, other 
                                                           
2
 Fowler-Nordheim tunneling is the process by which an electron is able to “tunnel” under the 

potential barrier represented by the physical break in conducting material. As a result, current is 
still able to flow across a physically small open. 
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parameters of interest include dopant concentration (device mobility, capacitance), 
metal thickness (resistance, capacitance), oxide thickness (leakage, performance). 
Some variation is expected, and design must accommodate it, but at some point 
variation will exceed the tolerance or margin in the design, and it becomes a defect. 

1.3 DEFECT MECHANISMS IN ADVANCED 
TECHNOLOGIES 

This section covers some defect mechanisms that are becoming increasingly 
common in manufacturing processes at the 130nm node and below, and which need 
to provide the basis for ongoing efforts in Defect-Oriented test. 

1.3.1 Copper-related Defects 
For most of the history of CMOS, metal has meant aluminum. Since 130nm, however, 
copper has become the metal of choice, and this means that changes must be made in 
the way metal defects are considered. Aluminum metallization is a subtractive 
process: an entire layer of metal is deposited, a mask is applied and unwanted metal 
is etched away. This metal etch is inherently “dirty” and results in many particles 
being present, some of which lead to shorts. The etching process has led to shorts 
being far more common faults than opens in CMOS processes for many years.  

Copper, on the other hand, uses a dual damascene3 process. A layer of insulator 
is applied to the wafer. Next troughs for wires are etched (first damascene step). 
Next additional troughs for vias are etched. A layer of copper is electroplated into 
the trenches (on top of a small tantalum barrier/seed layer). Finally, excess copper is 
removed via chemical/mechanical polishing (CMP). There is no metal etch to 
provide a slurry of particles. As a result, additional defect mechanisms become 
important. Figure 1-5 summarizes the processing differences. Note that the process is 
highly simplified when copper is used.  

In addition to a metal etch, aluminum processing also features two via/wire 
interfaces (tungsten to aluminum). Copper has only a single via/wire interface, since 
both vias and wires are deposited together. The absence of the metal etch and the 
reduced number of interfaces can result in a lower defect level for copper 
metalization than aluminum. However, there are some specific new defect 
mechanisms associated with copper. These were particularly troublesome in the 
early days of copper processing, but are now at more acceptable levels. 

 

                                                           
3
 The term “damascene” comes from metal inlaid with gold or silver, an intricate craft associated 

with the city of Damascus. 


