ANTIOXIDANTS AND CARDIOVASCULAR DISEASE

SECOND EDITION
Developments in Cardiovascular Medicine

232. A. Bayés de Luna, F. Furlanello, B.J. Maron and D.P. Zipes (eds.):
Arrhythmias and Sudden Death in Athletes. 2000

2000.
ISBN: 0-7923-7829-6

236. Douglas L. Mann (ed.): The Role of Inflammatory Mediators in the Failing
Heart. 2001

237. Donald M. Bers (ed.): Excitation-Contraction Coupling and Cardiac
ISBN: 0-7923-7157-7

238. Brian D. Hoit, Richard A. Walsh (eds.): Cardiovascular Physiology in the

239. Pieter A. Doevedands, A.A.M. Wilde (eds): Cardiovascular Genetics for Clinicians
2001
ISBN 1-4020-0097-9

240. Stephen M. Factor, Maria A.Lamberti-Abadi, Jacobo Abadi (eds.): Handbook of
Pathology and Pathophysiology of Cardiovascular Disease. 2001
ISBN 0-7923-7542-4

ISBN 1-4020-0147-9

Pathophysiological Concepts. 2002

243. Daan Kromhout, Alessandro Menotti, Henry Blackburn (eds.): Prevention
of Coronary Heart Disease: Diet, Lifestyle and Risk Factors in the Seven
Countries Study. 2002
ISBN 1-4020-7123-X

244. Antonio Pacifico (ed.), Philip D. Henry, Gust H. Bardy, Martin Borggrefe,
Francis E. Marchilinski, Andrea Natale, Bruce L. Wilkoff (assoc. eds):
Implantable Defibrillator Therapy: A Clinical Guide. 2002
ISBN 1-4020-7143-4

245. Hein J.J. Wellens, Anton P.M. Gorgels, Pieter A. Doevedands (eds.):
The ECG in Acute Myocardial Infarction and Unstable Angina: Diagnosis and Risk
Stratification. 2002
ISBN 1-4020-7214-7

246. Jack Rychik, Gil Wernovsky (eds.): Hypoplastic Left Heart Syndrome. 2003
ISBN 1-4020-7319-4

247. Thomas H. Marwick: Stress Echocardiography. Its Role in the Diagnosis and Evaluation
of Coronary Artery Disease 2nd Edition.
ISBN 1-4020-7369-0

248. Akira Matsumori: Cardiomyopathies and Heart Failure: Biomolecular, Infectious
and Immune Mechanisms. 2003
ISBN 1-4020-7438-7

249. Ralph Shabetai: The Pericardium. 2003
ISBN 1-4020-7639-8

250. Irene D. Turpie; George A. Heckman (eds.): Aging Issues in Cardiology. 2004
ISBN 1-40207674-6

251. C.H. Peels; L.H.B. Baur (eds.): Valve Surgery at the Turn of the Millennium. 2004
ISBN 1-4020-7834-X

252. Jason X.-J. Yuan (ed.): Hypoxic Pulmonary Vasoconstriction: Cellular and Molecular
Mechanisms. 2004
ISBN 1-4020-7857-9

253. Francisco J. Villarreal (ed.): Interstitial Fibrosis In Heart Failure 2004
ISBN 0-387-22824-1

254. Xander H.T. Wehrens; Andrew R. Marks (eds.): Ryanodine Receptors: Structure, function
dysfunction in clinical disease. 2005
ISBN 0-387-23187-0

255. Guillen Pons-Lladó; Fransesc Carreras (eds.): Atlas of Practical Applications of
Cardiovascular Magnetic Resonance. 2005

256. José Marín-García : Mitochondria and the Heart. 2005

257. Macdonald Dick II: Clinical Cardiac Electrophysiology in the Young 2006
ISBN 0-387-29164-4

258. Martial G. Bourassa, Jean-Claude Tardif (eds.): Antioxidants and Cardiovascular
Disease, 2nd Edition. 2006
ISBN 0-387-29552-6

Previous volumes are still available
ANTIOXIDANTS AND CARDIOVASCULAR DISEASE
SECOND EDITION

Edited by
Martial G. Bourassa

Montreal Heart Institute,
Research Center and Department of Medicine, Faculty of Medicine,
University of Montreal
Montreal, Quebec, Canada

And
Jean-Claude Tardif

Montreal Heart Institute,
Research Center and Department of Medicine, Faculty of Medicine,
University of Montreal
Montreal, Quebec, Canada

Springer
Martial G. Bourassa
Montreal Heart Institute
Research Center and Department of Medicine, Faculty of Medicine
Montreal, Quebec, Canada

Jean-Claude Tardif
Montreal Heart Institute
Research Center and Department of Medicine, Faculty of Medicine
University of Montreal
Montreal, Quebec, Canada

Library of Congress Control Number: 2005933858

ISBN-10: 0-387-29552-6
c-ISBN-10: 0-387-29553-4

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.
All rights reserved. This work may not be translated or copied in whole or in part without
the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring
Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or
scholarly analysis. Use in connection with any form of information storage and retrieval,
electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.
While the advice and information in this book are believed to be true and accurate at the
date of going to press, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1 SPIN 11054375

springeronline.com
Contents

Contributing authors vii

Preface xiii

General concepts about oxidative stress
 Ulf Landmesser and Helmut Drexler 1

Lipoproteins and oxidation
 Sotirios Tsimikas 17

Pathogenesis of atherosclerosis
 Juan Viles-Gonzalez, Juan J. Badimon, Valentin Fuster 49

The antioxidant hypothesis
 Charlene Bierl, Marc Forgione, and Joseph Loscalzo 87

Reactive oxygen species as mediators of signal transduction in cardiovascular diseases
 Charles Kunsch and Xilin Chen 103

Biomarkers of oxidant stress in vivo: oxidative modifications of lipids, proteins and DNA
 Ian A. Blair, John A Lawson, Harry Ischiropoulos and Garret A. FitzGerald 131

Pharmacological compounds with antioxidant activity
 Sergey Dikalov and David G. Harrison 167
Antioxidant nutrients and antioxidant nutrient-rich foods against coronary heart disease
 Michel de Lorgeril and Patricia Salen

Antioxidants and chronic vascular disease: animal studies
 Tillman Cyprus and Domenico Pratico

Synthetic antioxidants and atherosclerosis: human studies
 Martial G. Bourassa and Jean-Claude Tardif

Antioxidants and endothelial function: human studies
 Christian Bingelli, Isabella Sudano, Bernd van der Loo, Francesco Cosentino, Georg Noll, and Thomas F. Lüscher

Antioxidant vitamins and cardiovascular disease
 Danielle Hollar and Charles H. Hennekens

Antioxidants and restenosis after percutaneous coronary intervention: animal studies
 Eric Durand, Ayman Al Haj Zen, Camille Brasselet, Antoine Lafont

Antioxidants and restenosis after percutaneous coronary intervention: human studies
 Martial G. Bourassa and Jean-Claude Tardif

Oxidative stress in hypertension
 Ernesto L. Schiffrin and Rhian M. Touyz

Oxidative stress in the development of diabetes and its complications
 Jean-Louis Chiasson, Rémi Rabasa-Lhoret and Ashok K. Srivastava

Anti-inflammatory and antioxidant functions of high density lipoproteins
 Ryan E. Moore and Daniel J. Rader

Oxidative stress in heart failure
 Douglas B. Sawyer and Wilson S. Colucci

Use of antioxidants in patients with congestive heart failure
 Anique Ducharme, Jean Lucien Rouleau, Michel White

Index

vi Antioxidants and Cardiovascular Disease

Antioxidant nutrients and antioxidant nutrient-rich foods against coronary heart disease
 Michel de Lorgeril and Patricia Salen 195

Antioxidants and chronic vascular disease: animal studies
 Tillman Cyprus and Domenico Pratico 227

Synthetic antioxidants and atherosclerosis: human studies
 Martial G. Bourassa and Jean-Claude Tardif 255

Antioxidants and endothelial function: human studies
 Christian Bingelli, Isabella Sudano, Bernd van der Loo, Francesco Cosentino, Georg Noll, and Thomas F. Lüscher 279

Antioxidant vitamins and cardiovascular disease
 Danielle Hollar and Charles H. Hennekens 305

Antioxidants and restenosis after percutaneous coronary intervention: animal studies
 Eric Durand, Ayman Al Haj Zen, Camille Brasselet, Antoine Lafont 327

Antioxidants and restenosis after percutaneous coronary intervention: human studies
 Martial G. Bourassa and Jean-Claude Tardif 337

Oxidative stress in hypertension
 Ernesto L. Schiffrin and Rhian M. Touyz 363

Oxidative stress in the development of diabetes and its complications
 Jean-Louis Chiasson, Rémi Rabasa-Lhoret and Ashok K. Srivastava 381

Anti-inflammatory and antioxidant functions of high density lipoproteins
 Ryan E. Moore and Daniel J. Rader 399

Oxidative stress in heart failure
 Douglas B. Sawyer and Wilson S. Colucci 437

Use of antioxidants in patients with congestive heart failure
 Anique Ducharme, Jean Lucien Rouleau, Michel White 451

Index 477
Contributing authors

Ayman Al Haj Zen
Service de Cardiologie, Hôpital Européen Georges Pompidou (HEGP), 20 rue Leblanc, 75908 Paris 15, France

Juan J. Badimon
Cardiovascular Biology Research Laboratory, Cardiovascular Institute, Mount Sinai Medical Center, One Gustave Levy Pl. Box 1030, New York, N.Y. 10029-6574 USA

Charlene Bierl
Whitaker Cardiovascular Institute, and Evans Department of Medicine, Boston University School of Medicine, 88 East Newton Street, Boston, MA 02118-2308 USA

Christian Binggeli
Cardiology, University Hospital, Ramistrasse 100, CH-8091 Zurich, Switzerland

Ian A. Blair
The Institute for Translational Medicine and Therapeutics, Departments of Pharmacology, Pediatrics and Chemistry, and The Center for Cancer Pharmacology, 153 Johnson Pavilion, University of Pennsylvania, Philadelphia PA 19104-6084 USA

Martial G. Bourassa*
Research Center, Montreal Heart Institute, 5000 Belanger Street East, Montreal, Quebec, Canada H1T 1C8. E-mail: martial.bourassa@icm-mhi.org.
*Corresponding author.
Antioxidants and Cardiovascular Disease

Camille Brasselet
Service de Cardiologie, Hôpital Européen Georges Pompidou (HEGP), 20 rue Leblanc, 75908 Paris 15, France.

Xilin Chen
Discovery Research, AtheroGenics, Inc., 8995 Westside Parkway, Alpharetta, GA 30004 USA.

Jean-Louis Chiasson*
Research Centre, CHUM-Hôtel-Dieu, 3850 St. Urbain Street, Montreal, Québec, Canada H2W 1T8. E-mail: jean.louis.chiasson@umontreal.ca.
*Corresponding author.

Wilson S. Colucci*
Cardiovascular Section, Boston University Medical Center, 88 East Newton Street, Boston, MA 02118 USA. E-mail: wilson.colucci@bmc.org.
*Corresponding author.

Francesco Cosentino
Cardiology, University Hospital, Ramistrasse 100, CH-8091 Zurich, Switzerland.

Tillman Cyrus
University of Pennsylvania, Department of Pharmacology, 124 John Morgan Building, 3620 Hamilton Walk, Philadelphia PA 19104-6084 USA.

Michel de Lorgeril*
Laboratoire Nutrition, Vieillissement et Maladies Cardiovasculaires (NVMCV), UFR de Médecine et Pharmacie, Domaine de la Merci, 38706 La Tronche, France. E-mail: michel.delorgeril@ujf-grenoble.fr.
*Corresponding author.

Sergey Dikalov
Division of Cardiology, Emory University School of Medicine, 1639 Pierce Drive, 319 WMB, Atlanta, GA 30322 USA.

Helmut Drexler*
Abteilung Kardiologie und Angiologie, Medizinische Hochschule Hannover (MHH), Carl-Neuberg Str. 1, 30625 Hannover, Germany. E-mail: drexler.helmut@mh-hannover.de.
*Corresponding author.
Antioxidants and Cardiovascular Disease

Anique Ducharme
Research Center, Montreal Heart Institute, 5000 Belanger Street East, Montreal, Quebec, Canada H1T 1C8

Eric Durand
Service de Cardiologie, Hôpital Européen Georges Pompidou (HEGP), 20 rue Leblanc, 75908 Paris 15, France.

Garrett A. FitzGerald*
The Institute for Translational Medicine and Therapeutics, and Department of Pharmacology, 153 Johnson Pavilion, University of Pennsylvania, Philadelphia PA 19104-6084 USA. E-mail: garret@spirit.gcrc.upenn.edu.
*Corresponding author.

Marc Forgione
Whitaker Cardiovascular Institute, and Evans Department of Medicine, Boston University School of Medicine, 88 East Newton Street, Boston, MA 02118-2308 USA.

Valentin Fuster*
Cardiovascular Institute, Mount Sinai Medical Center, One Gustave Levy Pl., Box 1030, New York, N.Y. 10029-6574 USA. E-mail: valentin.fuster@mssm.edu.
*Corresponding author.

David G. Harrison*
Division of Cardiology, Emory University School of Medicine, 1639 Pierce Drive, 319 WMB, Atlanta, GA 30322 USA. E-mail: dharr02@emory.edu.
*Corresponding author.

Charles H. Hennekens*
Agatston Research Institute (ARI), Miami Beach, FL; Departments of Medicine & Epidemiology and Public Health, University of Miami School of Medicine, Boca Raton, FL 33432 USA. E-mail: profchhmd@prodigy.net.
*Corresponding author.

Danielle Hollar
Agatston Research Institute (ARI), 4302 Alton Road, Suite 710, Miami Beach, FL 33140 USA.
Antioxidants and Cardiovascular Disease

Harry Ischiropoulos
Department of Pharmacology and Pediatrics, 153 Johnson Pavilion, University of Pennsylvania, Philadelphia PA 19104-6084 USA.

Charles Kunsch*
Department of Discovery Research, AtheroGenics, Inc., 8995 Westside Parkway, Alpharetta, GA 30004 USA. E-mail: ckunsch@atherogenics.com
*Corresponding author.

Antoine Lafont*
Service de Cardiologie, Hôpital Européen Georges Pompidou (HEGP), 20 rue Leblanc, 75908 Paris 15, France. E-mail: lafont@necker.fr.
*Corresponding author.

Ulf Landmesser
Abteilung Kardiologie und Angiologie, Medizinische Hochschule Hannover (MHH), Carl Neuberg Str. 1, 30625 Hannover, Germany

John A. Lawson
The Institute for Translational Medicine and Therapeutics, and Department of Pharmacology, 153 Johnson Pavilion, University of Pennsylvania, Philadelphia PA 19104-6084 USA.

Joseph Loscalzo*
Whitaker Cardiovascular Institute, and Evans Department of Medicine, Boston University School of Medicine, 88 East Newton Street, Boston, MA 02118-2308 USA. E-mail: joseph.loscalzo@bmc.org.
*Corresponding author.

Thomas F. Luscher*
Cardiology, University Hospital, Ramistrasse 100, CH-8091 Zurich, Switzerland. E-mail: karlue@usz.unizh.ch.
*Corresponding author.

Ryan E. Moore
University of Pennsylvania Medical Center, 654 Biochemical Research Building II/III, 421, Curie Blvd, Philadelphia PA 19104 USA.

Georg Noll
Cardiology, University Hospital, Ramistrasse 100, CH-8091 Zurich, Switzerland.
Domenico Pratico*
University of Pennsylvania, Department of Pharmacology, 124 John Morgan Building, 3620 Hamilton Walk, Philadelphia PA 19104-6084 USA. E-mail: domenico.pratico@spirit.gcrc.upenn.edu.
*Corresponding author.

Rémi Rabasa-Lhoret
Research Centre, CHUM-Hôtel-Dieu, 3850 St. Urbain Street, Montreal, Quebec, Canada H2W 1T8.

Daniel J. Rader*
University of Pennsylvania Medical Center, 654 Biomedical Research Building II/III, 421 Curie Blvd, Philadelphia, PA 19104 USA. E-mail: rader@mail.med.upenn.edu.
*Corresponding author.

Jean L. Rouleau*
Dean’s Office, Faculty of Medicine, University of Montreal, Pavillon Principal, 2900 Edouard-Montpetit, Local P407, Montreal, Quebec, Canada H3T 1J4. E-mail: jean.rouleau@umontreal.ca.
*Corresponding author.

Patricia Salen
Laboratoire Nutrition, Vieillissement et Maladies Cardiovasculaires (NVMCV), UFR de Médecine et Pharmacie, Domaine de la Merci, 38706 La Tronche, France.

Douglas B. Sawyer
Cardiovascular Section, Boston University Medical Center, 88 East Newton Street, Boston, MA 02118 USA.

Ernesto L. Schiffrin*
Clinical Research Institute of Montreal, University of Montreal, 110 Pine Avenue West, Montreal, Quebec, Canada H2W 1R7. E-mail: ernesto.schiffrin@ircm.qc.ca.
*Corresponding author.

Ashok Srivastava
Research Centre, CHUM-Hôtel-Dieu, 3850 St. Urbain Street, Montreal, Quebec, Canada H2W 1T8.

Isabella Sudano
Cardiology, University Hospital, Ramistrasse 100, CH-8091 Zurich, Switzerland.
Antioxidants and Cardiovascular Disease

Jean-Claude Tardif
Research Center, Montreal Heart Institute, 5000 Belanger Street
East, Montreal, Quebec, Canada H1T 1C8

Rhian M. Touyz
Clinical Research Institute of Montreal, University of Montreal, 110
Pine Avenue West, Montreal, Quebec, Canada H2W 1R7.

Sotirios Tsimikas*
Department of Medicine, Cardiology, University of California, San
Diego (UCSD), 9350 Campus Point Dr., La Jolla, CA 92037-0682
USA. E-mail: stsimikas@ucsd.edu
*Corresponding author.

Bernd van der Loo
Cardiology, University Hospital, Ramistrasse 100, CH-8091 Zurich,
Switzerland.

Juan Viles-Gonzalez
Cardiovascular Biology Research Laboratory, Cardiovascular
Institute, Mount Sinai Medical Center, One Gustave Levy Pl., Box
1030, New York, N.Y., 10029-6574 USA.

Michel White
Research Center, Montreal Heart Institute, 5000 Belanger Street
East. Montreal, Quebec, Canada H1T 1C8
Preface

The role and mechanisms of oxidative stress and of antioxidant molecules in patients with cardiovascular disease have been the subject of intense experimental and clinical research recently. Rapid accumulation of new knowledge in this field since the beginning of the 21st century amply justifies this second edition of the book *Antioxidants & Cardiovascular Disease.*

The generation of reactive oxygen species (ROS) is an unavoidable consequence of life in an aerobic environment. Cells produce ROS as part of their general metabolic activity. ROS are a family of molecules derived from oxygen, and characterized by their high chemical reactivity and ability to act as oxidants. ROS encompass free radicals (species containing highly reactive unpaired electrons) such as superoxide (O2-) and hydroxyl radicals (OH), as well as other molecules such as hydrogen peroxide (H2O2) and peroxynitrite (ONOO), which are not free radicals, but can also act as oxidizing agents in biological systems. Under physiological conditions, there is a balance between ROS generation and the activity of enzymatic (superoxide dismutase, catalase, glutathione peroxidase) and non-enzymatic (glutathione, alpha-tocopherol, ascorbate, thioredoxin) antioxidant defences that decrease ROS concentrations. ROS are normally produced in low concentrations and exert important physiological functions in the vessel wall. However, increased production of ROS or decreased antioxidant defences result in excess production of ROS, a condition referred to as oxidative stress. Oxidative stress can lead to free radical-induced oxidation and damage to bio-molecules such as lipids, DNA and proteins. ROS-mediated cellular damage has been associated with the pathogenesis of many diseases.
including Alzheimer’s disease, rheumatoid arthritis, asthma, diabetes and especially cardiovascular disease.

Major cardiovascular risk factors, such as hypertension, dyslipidemia, diabetes and smoking, are associated with a marked increase in vascular ROS production. Increased ROS induce significant tissue damage and modification of lipids and proteins in the vessel wall. Over two decades ago, the antioxidant hypothesis focused mainly on the oxidative modification of LDL rendering it more atherogenic to promote foam cell formation in the intima. Although the exact mechanisms leading to LDL oxidation in vivo are still not entirely understood, it appears to be one of the earliest atherogenic changes leading to progression of atherosclerosis. In addition, oxidized LDL is intimately involved in the transition of stable atherosclerotic lesions to vulnerable plaques and plaque disruption. A variety of lipid and protein modifications of LDL, which are generated from lipid peroxidation, make it atherogenic. However, LDL oxidation alone may not explain the complex relation of oxidative stress and atherosclerosis.

Atherosclerosis originates from endothelial dysfunction and inflammation. Increased ROS production is a major cause of endothelial dysfunction in experimental and clinical atherosclerosis. Endothelial dysfunction leads to a rapid decrease in nitric oxide (NO) production or availability, due in part to inactivation of NO by superoxide. In addition to its vasodilator effect, NO protects against vascular injury, inflammation and thrombosis. Endothelial dysfunction is a strong independent predictor of future cardiovascular events in patients with cardiovascular risk factors, coronary artery disease and acute coronary syndromes. ROS are involved in endothelial and vascular smooth muscle cell pro-inflammatory signaling, particularly in the regulation of endothelial adhesion molecules (VCAM-1) and chemokine (MCP-1) expression. Moreover, ROS are involved in signaling cascades (redox signaling) leading to vascular pro-inflammatory and pro-thrombotic gene expression involving the transcription factor NF-kappa B. Finally, ROS activate matrix metallo-proteinases (MMPs), contributing to plaque instability and rupture.

One of the most convincing arguments for a major role of oxidative stress in the pathogenesis of atherosclerosis and cardiovascular disease has been the documentation, in numerous experimental and clinical studies, that antioxidant molecules can reverse the atherosclerotic process and can reduce subsequent cardiovascular events. There is a consensus, based on several recent negative clinical trials, that supplementation with natural antioxidants such as vitamins (vitamin A, C, and E) and minerals (zinc and selenium) should not be recommended routinely. The reasons underlying the lack of efficacy of these natural antioxidants in patients with cardiovascular disease or cardiovascular risk factors are still poorly understood. On the other hand,
a diet rich in antioxidant-macro-nutrients, particularly fruits and vegetables, is recommended for all individuals, and some types of diets such as the Mediterranean diet, have been shown to be highly beneficial in the prevention of cardiovascular events in patients with coronary heart disease. Some of the beneficial effects of aspirin, beta-blockers, calcium channel blockers, statins and ACE inhibitors (or angiotensin receptor blockers) in patients with cardiovascular disease are potentially related to their known antioxidant properties. These relationships must be more clearly delineated, however. Other potentially beneficial candidates also deserve to be investigated further. For example, acarbose has been shown to be beneficial in patients with diabetes mellitus. Probucol, a potent antioxidant, has been shown in numerous experimental and clinical studies to prevent atherosclerosis and restenosis after percutaneous coronary interventions. This agent is no longer in clinical use because of unacceptable side effects. An analog of probucol, AGI-1067, has recently been shown by our group to possess antioxidant properties which are comparable to those of probucol, but without the undesirable side effects of the latter. AGI-1067 has been shown to have similar beneficial effects on prevention of coronary atherosclerosis and coronary restenosis in humans and it is currently being investigated for its ability to reduce long-term clinical events in patients with coronary heart disease. Finally, this still represents a very novel approach, which may ultimately lead to major prevention of atherosclerosis and its vascular complications.

In summary, this book addresses a complex but very timely and fascinating problem in cardiovascular medicine. It is written by recognized experts in the fields of atherosclerosis and antioxidants. It should be of interest not only to academicians but also to practicing physicians. The first five chapters review the general concepts of oxidative stress and their relationship to lipid metabolism, endothelial dysfunction, genetics and transcriptional factors. The next seven chapters describe recently defined markers of oxidative stress, pharmacological compounds with antioxidant activity, natural antioxidants found in micronutrients and in nutrient-rich diets, and reviews the recent evidence for their efficacy or lack of efficacy in patients with cardiovascular disease or cardiovascular risk factors. The last seven chapters discuss the potential therapeutic benefits of antioxidants in a number of cardiovascular conditions which include atherosclerosis, restenosis after percutaneous coronary intervention, major cardiovascular risk factors such as hypertension, diabetes mellitus and dyslipidemia, and left ventricular dysfunction and congestive heart failure.
The editors are grateful to the authors and co-authors of the different chapters of the book, and wish to thank them for their excellent contributions.

Martial G. Bourassa

Jean-Claude Tardif
Chapter 1

GENERAL CONCEPTS ABOUT OXIDATIVE STRESS

Ulf Landmesser and Helmut Drexler
Abteilung Kardiologie und Angiologie, Medizinische Hochschule Hannover, Hannover, Germany

Introduction

This chapter focuses on general concepts about the role and mechanisms of oxidative stress in atherosclerosis and its resultant cardiovascular events. There is convincing evidence, from both experimental and clinical studies, that the major cardiovascular risk factors are associated with a marked increase of vascular production of reactive oxygen species (ROS) and lipid oxidation. To what extent, however, ROS contribute causally to the pathophysiology of human cardiovascular disease is an area of intense ongoing research.

Whereas initially the oxidative modification hypothesis of atherosclerosis was focused on the oxidative modification of low-density lipoprotein (LDL), rendering it more atherogenic to promote foam cell formation in the intimal space, a large body of evidence has now underscored numerous additional, likely important, oxidative events in cardiovascular disease.

Increased ROS production has been identified as a major cause of endothelial dysfunction in experimental and clinical atherosclerosis, that is associated with a rapid loss of anti-atherogenic and anti-inflammatory properties of endothelium-derived nitric oxide (NO*), in part due to increased inactivation of NO* by superoxide. Moreover, ROS have been shown to be critically involved in signaling cascades leading to vascular pro-inflammatory and pro-thrombotic gene expression, in part involving the transcription factor nuclear factor(NF)-kappaB. Redox signaling may represent a highly localized and specific role of ROS.
In addition, ROS are potent activators of matrix metallo-proteinases (MMPs) that may represent a mechanism whereby ROS could contribute to plaque destabilization and rupture.

The refined understanding of the complexity of oxidative events, that have different cellular localization and involve different ROS as well as potential physiological functions of ROS need to be taken into account when antioxidative treatment strategies are considered.

Reactive oxygen species (ROS)

ROS encompass a variety of diverse chemical species, including both free radicals (containing highly reactive unpaired electrons), such as superoxide (O$_2^*$) and hydroxyl radicals (OH*), and other molecular species, such as hydrogen peroxide (H$_2$O$_2$) and peroxynitrite (ONOO$^-$). Accordingly, some of these species, such as superoxide and hydroxyl radicals, are extremely unstable, whereas others, like hydrogen peroxide, are freely diffusible and relatively long-lived$^{(1)}$.

Of note, besides the suggested pathological role of increased ROS production in cardiovascular diseases as discussed below and in other diseases, such as neurodegenerative disease$^{(2)}$, there are likely also physiologically important functions of ROS. For example, ROS play a role in cellular proliferation and host defense. Increased vascular production of ROS, however, may contribute to important processes in the pathophysiology of cardiovascular disease.

Evidence for increased oxidative stress in cardiovascular disease

Over the past decade, accumulating data from both experimental studies and studies in patients with coronary disease or cardiovascular risk factors, such as hypercholesterolemia, hypertension, diabetes and smoking, have convincingly demonstrated that there is an association of cardiovascular risk factors with an increased vascular production of ROS. In animal studies, an increased vascular production of ROS, in particular of superoxide, has been shown directly by chemiluminescence and electron spin resonance spectroscopy measurements$^{(3-7)}$. In humans, increased oxidative stress has been demonstrated in patients with cardiovascular risk factors or coronary disease by increased levels of F$_2$ isoprostanes, stable, free radical-catalyzed products of arachidonic acid reflecting lipid peroxidation in vivo$^{(8-11)}$. In addition, the urinary excretion of the F$_2$-isoprostane 8-iso-prostaglandin F$_{2\alpha}$ (8-iso-PGF$_{2\alpha}$) was correlated with the number of cardiovascular risk factors$^{(12)}$.
Figure 1. Reactive oxygen species (ROS) and oxidant and antioxidant enzyme systems involved in the production and detoxification of ROS are shown. Cardiovascular risk factors, such as hypercholesterolemia, hypertension, diabetes and smoking, increase the vascular production of ROS, in particular superoxide. This may be mediated by some of the oxidant enzyme systems shown. Superoxide reacts then rapidly with nitric oxide (NO·) resulting in reduced NO· bioactivity with loss of its vasculoprotective functions and formation of peroxynitrite (ONOO·), that may contribute to lipid oxidation. Superoxide dismutase converts superoxide to hydrogen peroxide. Myeloperoxidase and lipoxygenase are enzyme systems that are likely involved in lipid oxidation. Myeloperoxidase produces hypochlorous acid by using hydrogen peroxide. ROS, in particular hydrogen peroxide, have been suggested to play a critical role in pro-inflammatory signaling.

Moreover, in human atherosclerotic coronary arteries, an intense staining of superoxide has been shown in the plaque shoulder\(^{(13)}\), that is rich in macrophages and prone to rupture, that is thought to underly a majority of clinical cardiovascular events.

Furthermore, increased oxidant stress in human cardiovascular disease has been suggested by several studies analyzing the effect of antioxidants on endothelial dysfunction in patients with coronary disease or cardiovascular risk factors. In these studies structurally different antioxidants, in particular a high local dose of the antioxidant vitamin C, could improve endothelium-dependent vasodilation\(^{(14-21)}\). It is important to note, however, that most of
these studies have used a high-local dose of vitamin C. The local concentration of vitamin C in these studies may exceed up to 100-fold the plasma concentrations achieved by oral treatment with vitamin C. It is therefore questionable whether vitamin C as administered in large scale clinical trials (i.e. 250 mg vitamin C/day in the Heart Protection Study22, can achieve similar effects on endothelial function. In fact, recent studies have suggested that a high local dose of vitamin C is required to impact on endothelial function23 and long-term oral treatment with 800 IE of vitamin E and 1000 mg of vitamin C per day had no effect on endothelial function in patients with coronary disease24.

Lipid oxidation

Brown and Goldstein have originally put forward the concept that circulating low-density lipoprotein (LDL) must undergo some kind of structural modification before it becomes fully proatherogenic25. Several different modifications of LDL have been described, including oxidation, aggregation, enzymatic modification, and possibly others, that convert LDL to a form that is recognized by one or more of the macrophage scavenger receptors. The best studied of these and the one for which there is good in vivo evidence is oxidative modification26. Oxidation of LDL modifies its bioactivity extensively in vitro, conferring properties associated with disease pathogenesis. The oxidative modification hypothesis will be discussed in more detail in chapter 4.

This concept alone, however, may not explain the complexity of oxidative stress and atherosclerosis. For example, Witting et al.27 observed that the antioxidant probucol and its metabolite bisphenol had a similar effect on vascular lipid oxidation, but the effect of the antioxidant probucol on atherosclerotic lesion formation was more pronounced. Although this study has several limitations28, it may point to the notion that other oxidant mechanisms are also important in atherosclerosis.

Endothelial dysfunction

Originally, oxidative stress was primarily implicated in atherosclerosis by damaging lipids. Whereas oxidized LDL may contribute to endothelial dysfunction, it has now been recognized that oxygen radicals may directly cause endothelial dysfunction, i.e. by reducing endothelial NO* bioavailability29,30. In particular, superoxide (O$_2^-$) reacts rapidly with NO*, resulting in formation of peroxynitrite and loss of NO*’s bioactivity. Endothelial dysfunction in experimental atherosclerosis could be reversed by administration of superoxide scavengers, suggesting that increased vascular superoxide production represents a major cause of endothelial dysfunction3,4. Recently it has been recognized that ROS, and especially
peroxynitrite, can oxidize tetrahydrobiopterin, a critical co-factor for endothelial NO\(^+\) synthase\(^{4,31}\), that leads to dysfunction ("uncoupling") of the enzyme.

Proposed pathophysiological mechanisms of oxidative stress and cardiovascular disease

Figure 2. Proposed mechanisms of how increased vascular ROS production, as stimulated by cardiovascular risk factors, may contribute to cardiovascular disease. Initially, the oxidative modification hypothesis of atherosclerosis was focused on the oxidative modification of LDL cholesterol rendering it fully pro-atherogenic to promote foam cell formation and vascular inflammation. Increased ROS production has now also been identified as a major cause of endothelial dysfunction, in part resulting from increased inactivation of endothelial NO\(^+\) by superoxide. In addition, accumulating data indicate ROS as critical signaling molecules involved in vascular pro-inflammatory and pro-thrombotic gene expression, i.e. endothelial leukocyte adhesion molecule and chemokine expression. ROS are potent activators of matrix metallo-proteinases that are expressed in the shoulder region of atherosclerotic plaques, that could importantly contribute to plaque destabilisation and rupture, thought to underlie a large number of clinical cardiovascular events.
NO* not only produces vasodilation, but also has anti-atherogenic properties\(^{32-34}\). These include inhibition of leukocyte adhesion molecule expression, inhibition of platelet aggregation and prevention of smooth muscle cell proliferation. Thus, the loss of NO* not only alters vascular tone, but also likely contributes importantly to the development, progression and clinical complications of atherosclerosis. This concept is supported by a growing number of clinical studies indicating that the degree of endothelial dysfunction, measured as impaired endothelium-dependent vasomotion, represents a strong and independent predictor of future cardiovascular events in patients with cardiovascular risk factors, coronary disease, acute coronary syndromes and peripheral artery disease\(^{35-40}\). In fact, the effect of a high local dose of the antioxidant vitamin C on endothelium-dependent vasodilation has been shown to predict future cardiovascular events in a study following 179 patients with coronary disease\(^{41}\), suggesting that oxidative stress-induced endothelial dysfunction has prognostic implications.

ROS and vascular inflammation

There is accumulating evidence supporting the concept that, both development of atherosclerotic lesions and clinical cardiovascular complications of atherosclerotic disease, are related to vascular inflammation\(^{42,43}\). In experimental studies, it has been shown that inhibition of leukocyte adhesion and infiltration, regulated by leukocyte adhesion molecules, such as vascular cell adhesion molecule-1 (VCAM-1), and chemokines, such as monocyte chemoattractant protein (MCP-1), prevents atherosclerotic lesion development\(^{44-46}\). Notably, it has been suggested that ROS are importantly involved in endothelial and vascular smooth muscle cell (VSMC) pro-inflammatory signaling, i.e. the regulation of endothelial adhesion molecules and chemokine expression, that may represent an important link of oxygen radicals and vascular disease\(^{47}\). The stimulating effect of cytokines, such as TNF-alpha and interleukin 1, or angiotensin II on endothelial expression of the adhesion molecule VCAM-1\(^{48,49}\) or the chemokine MCP-1\(^{50,51}\) was suppressed by different ROS scavengers, suggesting that ROS are critical mediators of pro-inflammatory signaling in the endothelium. Some of these redox-sensitive pro-inflammatory signaling pathways may involve the transcription factor NF-kappaB\(^{52}\).

In contrast, endothelial NO* production has been shown to exert important anti-inflammatory effects. NO* has been shown to reduce endothelial adhesion molecule and chemokine expression in vitro\(^ {53,54}\). Moreover, NO* synthase gene therapy rapidly reduces hypercholesterolemia-induced leukocyte adhesion molecule expression, i.e. VCAM-1, and ameliorates monocyte infiltration into the arterial wall of cholesterol-fed rabbits\(^ {55}\). The loss of endothelial NO* as a result of increased ROS
production may therefore represent an important mechanism whereby oxidative stress promotes a pro-inflammatory phenotype of the endothelium.

Of note, recent evidence suggests that "redox signaling", i.e. via kinase signaling pathways may be distinct from "oxidative stress," and could be mediated by discrete, localized redox circuitry\(^{(56)}\). Taken together, there are several important links between increased endothelial oxidative stress and ROS production with vascular inflammation. Furthermore, inflammation per se may augment vascular oxidative stress\(^{(57)}\). Therefore, the observed association of vascular oxidative stress and inflammatory markers in patients with coronary disease\(^{(58)}\) may indicate that oxidative stress promotes vascular inflammation, but also that inflammation augments oxidant stress, a potential vicious cycle.

ROS and thrombosis

Increased ROS production has been shown to be critically involved in the up-regulation of tissue factor in VSMCs in response to activated platelets\(^{(59)}\). Tissue factor (TF) initiates the extrinsic coagulation cascade leading to thrombin formation. Thrombin induces tissue factor mRNA in human VSMCs by a redox-sensitive, NAD(P)H oxidase dependent mechanism, that may contribute to prolonged procoagulant activity and enhanced thrombogenicity at sites of vascular injury\(^{(60)}\). These findings suggest that vascular pro-thrombotic gene expression is redox-sensitive that may link increased oxidant stress to vascular thrombotic events.

In addition, endothelial NO\(^{\ast}\) has several important anti-thrombotic effects and inhibits platelet adhesion to the endothelium, an effect that is lost after oxidative inactivation of NO\(^{\ast}\). Taken together, ROS have been identified as important mediators of vascular pro-inflammatory and pro-thrombotic gene expression that together with oxidative inactivation of endothelial NO\(^{\ast}\) may promote a pro-inflammatory and pro-thrombotic phenotype of the endothelium.

ROS activate matrix metallo-proteinases: relevance to plaque instability?

Plaque rupture is the most common type of plaque complication, and is thought to account for \(\approx 70\%\) of fatal acute myocardial infarctions and/or sudden coronary deaths\(^{(61,62)}\). The expression of MMPs, i.e. MMP-2 (gelatinase A, which degrades collagen IV) and MMP-9 (gelatinase B, which acts on collagen I fibers) that are secreted by macrophages and vascular myocytes, is increased in the rupture-prone shoulders of atherosclerotic plaques\(^{(63)}\). Notably, ROS have been shown to importantly modulate MMPs, that could contribute to lesion instability\(^{(64)}\). It has been demonstrated that pro-MMP-9 and pro-MMP-2 from VSMCs are activated in vitro by ROS\(^{(64)}\). Furthermore, cyclic strain-induced MMP-2 expression in VSMCs was
dependent on activation of the oxidant enzyme NAD(P)H-oxidase65. Sorescu et al. have recently demonstrated particularly high levels of superoxide in the shoulder region of human coronary atherosclerotic plaques13. Thus, MMP activation by ROS could contribute to plaque rupture.

Other mechanisms linking ROS and cardiovascular disease

There are additional mechanisms that may link increased oxidant stress and cardiovascular disease. ROS have been suggested to play a major role in mediating VSMC and cardiomyocyte hypertrophy in response to stimuli such as angiotensin II or mechanical stretch, that may contribute to vascular and cardiac remodeling processes.

Another interesting novel concept that needs to be further explored suggests a link between increased oxidative stress and insulin resistance66. In rats over-expressing angiotensin II, superoxide scavenging could improve skeletal muscle insulin-dependent glucose uptake and whole body insulin resistance67, indicating that oxidative stress plays an important role in angiotensin II mediated insulin resistance.

Sources of ROS in cardiovascular disease

There are numerous potential sources of ROS that have been studied intensely over the past years (figure 1), and may play a different role for several cardiovascular risk factors. With respect to lipid oxidation, it is still not entirely understood what are the exact mechanisms leading to LDL oxidation in vivo. There is, however, evidence to suggest that 12/15-lipoxygenase may initiate lipid peroxidation68,69. Notably, when 12/15-lipoxygenase deficient mice are crossed with animals deficient in ApoE, atherosclerotic lesion formation is dramatically inhibited68,69. Myeloperoxidase (MPO)-generated ROS, i.e. HOCl, may represent a plausible pathway for converting LDL into an atherogenic form70,71. Notably, increased MPO serum levels could identify patients at risk for cardiac events who presented with chest pain in the absence of myocardial necrosis72 or an acute coronary syndrome73.

With respect to ROS-induced impairment of endothelial function, that may have important prognostic implications, the following three superoxide producing oxidant enzyme systems have received most attention, the vascular NAD(P)H oxidase, xanthine oxidase and uncoupled endothelial nitric oxide synthase (figure 3)29,74. Increased vascular activity of the NADPH oxidase and xanthine oxidase have been demonstrated in experimental and clinical atherosclerosis6,13,75,76. Of note, a deficiency of the cytosolic NAD(P)H oxidase component p47phox was associated with a
markedly reduced atherosclerotic lesion formation in the apoE-deficiency mouse model of atherosclerosis(77).

Figure 3. Oxidant and antioxidant enzyme systems are shown that have been implicated as important sources of increased vascular superoxide production in atherosclerosis leading to rapid inactivation of NO causing endothelial dysfunction. Experimental and clinical evidence suggests an activation of the vascular NAD(P)H oxidase system. This may further promote endothelial oxidant stress by increasing endothelial xanthine oxidase levels(61) and by causing uncoupling of the endothelial nitric oxide synthase (eNOS) due to oxidative inactivation of the eNOS cofactor tetrahydrobiopterin (H4B)(31). In advanced atherosclerosis the vascular activity of the superoxide scavenging enzyme extracellular superoxide dismutase (ccSOD) has been shown to be reduced(20).

More recent studies suggest, that intracellular ROS production may also be derived from the mitochondria. The production of mitochondrial superoxide radicals occurs primarily at two discrete points in the electron transport chain, namely at complex I (NADH dehydrogenase) and at complex III (ubiquinone–cytochrome c reductase)(3). This could play a role in atherosclerosis and hyperglycemia(78,79).

Besides increased activation of oxidant enzyme systems in atherosclerosis, a reduced activity of several antioxidant scavenging enzyme systems has been observed in advanced human atherosclerotic disease. In
particular, extracellular superoxide dismutase²⁰ and glutathione peroxidase activities⁶⁰ have been shown to display reduced activities in human atherosclerotic arteries.

Summary and conclusion

In summary, there is convincing evidence of an association of increased oxidant stress and cardiovascular risk factors or atherosclerosis in experimental studies and in humans. There is an increasing understanding of the complexity of oxidant mechanisms that may importantly contribute to key pathophysiological processes such as vascular inflammation, thrombosis and plaque rupture, far beyond oxidative modification of lipids. To what extent these mechanisms play a causal role for the development, progression and the complications of human atherosclerosis is an exciting and important area of ongoing intense research.
General concepts about oxidative stress

References

General concepts about oxidative stress

