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Foreword

Prof. Theodor W. Hänsch
Nobel Laureate in Physics 2005
Department of Physics
Ludwig-Maximilians-
Universität (LMU)
Munich, Germany

After working for more than four decades in the field of laser science, I am delighted
that Springer-Verlag has devoted one of the first volumes of the new Springer Hand-
book series to lasers and optics. The exhilarating pace of technological advances in
our field is still accelerating, and lasers and optical techniques are becoming ever
more indispensible as enabling tools in almost any field of science or technology.
Since no single physicist, engineer, or graduate student can be an expert in all the im-
portant subfields of optical science, a concise, balanced, and timely compilation of
basic principles, key applications, and recent advances, written by leading experts,
will make a most valuable desk reference. The chosen readable style and attractive,
well-illustrated layout is even inviting to casual studying and browsing. I know that I
will keep my Springer Handbook of Lasers and Optics close at hand, despite the in-
finite amount of information (and misinformation) that is readily accessible via the
Internet.

Munich, February 2007 Theodor W. Hänsch
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Preface

Prof. Frank Träger
Universität Kassel
Experimentalphysik I
Germany

It is often said that the 21st century is the century of the photon. In fact, optical
methods, materials, and components have reached an advanced state of sophistication
hitherto unknown. Optical techniques, particularly those based on lasers, not only find
applications in the classical fields of physics and engineering but have expanded into
many other disciplines such as medicine, the life sciences, chemistry and environmental
research, to mention only a few examples. Nevertheless, progress in optics, photonic
materials and coherent light sources continues at a rapid pace: new laser materials
are being developed; novel concepts such as optics far beyond the diffraction limit,
or nanooptics, are being explored; and coherent light sources generate wavelengths in
ranges not previously accessible.

In view of the pronounced interdisciplinary nature of optics, the Springer Handbook
of Lasers and Optics is designed as a readable desk reference book to provide fast, up-
to-date, comprehensive, and authoritative coverage of the field. The handbook chapters
are grouped into four parts covering basic principles and materials; fabrication and
properties of optical components; coherent and incoherent light sources; and, finally,
selected applications and special fields such as terahertz photonics, X-ray optics and
holography.

I hope that all readers will find this Springer Handbook useful and will enjoy using it.

Kassel, February 2007 Frank Träger
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The Propertie1. The Properties of Light

The mystery of light has formed the core of cre-
ation stories in every culture, and attracted the
earnest attentions of philosophers since at least
the fifth century BCE. Their questions have ranged
from how and what we see, to the interaction of
light with material bodies, and finally to the na-
ture of light itself. This chapter begins with a brief
intellectual history of light from ancient Greece
to the end of the 19th century. After introducing
the physical parameterization of light in terms of
standard units, three concepts of light are intro-
duced: light as a wave, light as a quantum particle,
and light as a quantum field. After highlighting
the distinctive characteristics of light beams from
various sources – thermal radiation, lumines-
cence from atoms and molecules, and synchrotron
light sources – the distinctive physical character-
istics of light beams are examined in some detail.
The chapter concludes with a survey of the sta-
tistical and quantum-mechanical properties of
light beams. In the appropriate limits, this treat-
ment not only recovers the classical description
of light waves and the semiclassical view of light
as a stream of quanta, but also forms a consis-
tent description of quantum phenomena – such
as interference phenomena generated by single
photons – that have no classical analogs.
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4 Part A Basic Principles and Materials

1.1 Introduction and Historical Sketch

1.1.1 From the Greeks and Romans
to Johannes Kepler

The history of optics from the fifth century BCE until the
early 17th century CE can be read as a single, prolonged
attempt to elucidate, first qualitatively and then quanti-
tatively, the nature of light as it is revealed through the
phenomena of propagation, reflection and refraction.

The earliest known theories about the nature of light
originated with Empedocles of Agrigentum (fifth cen-
tury BCE) and his contemporary, Leucippus. To the
latter is attributed the notion that external objects are
enveloped by eidola, “a kind of shadow or some ma-
terial simulacrum which envelopes the bodies, quivers
on the surface and can detach itself from them” in or-
der to convey to the soul “the shape, the colors and all
the other qualities of the bodies from which they em-
anate” [1.1]. A century later, Plato and his academy
characterized light as a variant of elemental fire and the-
orized that seeing results from a conjunction of a ray
emitted by the object seen and a “visual ray,” emitted by
the seeing eye [1.2]. This picture was contentious from
the start: Plato’s pupil Aristotle fumed that “to say, as the
Ancients did, that colors are emissions and that this is
how we see, is absurd” [1.1]. Nevertheless, the emission
theory was debated well into the 16th century.

Another of Plato’s pupils, the mathematician Eu-
clid, wrote treatises on optics and catoptrics that were
still being translated seven centuries later. Euclid’s work
is distinguished from that of his predecessors by conclu-
sions deduced from postulates; in the Optics, he adduces
a model of ray optics that can be translated into recog-
nizable principles of geometrical optics including the
law of reflection from a plane surface; the concept of
a near point for the eye; and the focusing of light by con-
cave surfaces [1.3]. The Roman philosopher Lucretius
(early first century BCE) gave to the world in his De Re-
rum Natura the most detailed ancient understanding of
not only the geometry of light propagation, but also the
effects of intensity on the observer.

Two other ancient texts – by Hero (first century CE)
and Ptolemy (second century CE), both of Alexandria
– are important historically. Hero postulated the law
of reflection in a form strikingly similar to that which
emerged much later as Fermat’s principle of least time.
Heros’s countryman Ptolemy produced a text on optics
distinguished by its use of axiomatics coupled to experi-
mental studies of reflection from curved surfaces and an
attempt at developing a law of refraction. The data on

refraction are remarkably accurate, [1.4] and his attempt
to provide a mathematical model, though unsuccessful,
nevertheless stamps the work as modern.

Building on the philosophical foundation laid by
Aristotle, medieval opticians focused primarily on the
phenomenon of refraction and made important predic-
tions about the nature of light [1.1]. The ninth-century
Baghdad philosopher Abu Hsuf Yaqub Ibn Is-haz
(Alkindi) improved on the concept of the visual ray by
requiring that it should have a physiological effect on the
eye. In De Aspectibus, he mounted the first serious at-
tack, supported by observations, on the theory of light as
a stream of simulacra. Abu Ali al-Hasan ibn al-Haitham
– known widely by his Latin name, Alhazen – published
The Book of Optics (De aspectibus, or On Vision) in the
11th century CE. This text was translated into Latin and
used until the early 17th century. His diagrams of the hu-
man visual apparatus correct some, though not all, the
errors made by Galen, who worked only from dissec-
tions of animals. Because Alhazen understood how the
eye lens refracted incoming rays of light, he was able
to show that every point on the surface of an object in
the visual field of the eye maps onto a point on the op-
tic nerve to make a faithful, small-scale image of the
object.

By the beginning of the 12th century, western Euro-
pean scholars had in their possession both the works of
the Greeks and those of the Muslim scholars. These cen-
turies see a working out of the contradictions inherent
in these competing views by late-medieval thinkers in
England, France and Italy, [1.5] including Robert Gros-
seteste and Roger Bacon who were unwilling to accept
the dogmatism of the Scholastics. In particular, they saw
the phenomenology of the rainbow as a key to the un-
derstanding of refraction and reflection. The origin of
the rainbow was correctly explained for the first time by
Theodoric of Freiburg in the 15th century.

1.1.2 From Descartes to Newton

By the time of Johannes Kepler’s death in the mid-17th
century, the concept of light as a geometrical ray em-
anating from an object and collected by the eye was
firmly established, and the emphasis shifted to theo-
retical questions about the mechanisms of refraction
and reflection that could only be answered by under-
standing the properties of light. Moreover, there was
increasing emphasis from the mid-17th century onward
on carefully controlled experimentation, not simply ob-
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servation. Harmonized with mathematical models, this
experimental philosophy proved to be the way to es-
tablish scientific knowledge of light on the strongest
foundation [1.6].

René Descartes and the Cartesian thinkers who fol-
lowed his lead, built a science of light and optics as
part of a more general mathematical theory of physics,
with his Dioptrics and the Discourses [1.7]. The Carte-
sian theory is distinguished by the concept of light as
a vibration in a diaphanous medium that transmits the
undulations from object to eye, a tendency to motion
in particles of the embedding medium. Robert Hooke,
Thomas Hobbes and Christiaan Huygens were like-
wise committed to vibrational theories of light. The first
experimental evidence of what would eventually be con-
vincing evidence for the wave theory of light came in
1658 with the publication of Grimaldi’s first memoir on
diffraction.

Pierre Fermat (1601–1665) solved one of the prob-
lems that the Dioptrics had treated badly, and did so
in a way that was characteristic of what Newton would
later call “mathematical philosophy.” Fermat’s simple
idea was based on the rectilinear propagation of light,
and the postulate that light travels less rapidly in a dense,
material medium than in air. From this, he hypothesized
that a light ray always follows that path that allows it to
travel a given trajectory in the shortest time. It is possi-
ble to derive Snell’s law of refraction from this principle
of least time [1.8].

Fermat based his theory on the assumption that the
speed of light was finite, and that it was slower in
material bodies than in air or vacuum – clearly con-
tradicting Descartes, who believed the speed of light to
be infinite. The Cartesian postulate was disproved when
Cassini (in 1675) and Ole Römer (a year later), meas-
ured the time it took light to pass across the earth’s
orbit based on observation of the transit time of Jupiter:
about 11 minutes. The surveyors – Cassini in Paris and
Jean Richer in Guyana – were measuring the Earth’s
orbit. Christiaan Huygens, court astronomer to Louis
XIV, proposed a figure of 12, 000 earth diameters for
the orbital diameter, and thereby arrived in his Treatise
on Light at an estimate of 2.3 × 108 m/s, within 20%
of the currently accepted value and very close to the
value calculated by Newton [1.9]. Grimaldi (1658) had
discovered the phenomenon of diffraction, the explana-
tion of which led in time to the ascendance of the wave
theory. Progress in the science of light during this pe-
riod was also aided immensely by the development of
the differential and integral calculus and by the inven-
tion of high-quality clear glass for lenses, prisms and

optical instruments such as telescopes, microscopes and
eventually spectrometers [1.10].

1.1.3 Newton and Huygens

The early part of the 18th century saw the rise of the two
competing theories about the nature of light that were
to dominate the next century and a half. These are em-
bodied in the lives and work of the two principals: Isaac
Newton (1642–1728) and Christiaan Huygens (1629–
1695).

The dispersion of light in a prism was known well
before the young Isaac Newton “procured . . . a prism
with which to try the celebrated phenomenon of colors.”
Newton’s experimentum crucis was designed to show
that white light could be decomposed into constituent
colors that were dispersed according to a corpuscular
model [1.11]. However, Newton’s Opticks, when pub-
lished in 1710, was a curious admixture of projectile or
corpuscular ideas and crude wave theories. Newton be-
lieved in the ether as a required medium to support the
projectiles, and expected that the ether would undulate as
light corpuscles passed through it. However, he was con-
vinced on the basis of the corpuscular model that light
traveled faster in material media, an assumption that
would not be conclusively disproved until Foucault’s
experiments in 1850.

Challenges to Newton’s corpuscular theory came
from kinematical theories that viewed light as one or
another kind of vibrational motion: a vibratory motion
supported by an ether (Hooke, 1665); or a propa-
gating pulse-like disturbance in the ether (Huygens,
1690) [1.12]. Leonhard Euler explained refraction at an
interface based on the vibrational theory, arguing that
dispersion resulted from a variation of vibrational mo-
tion with color [1.13]. In Germany at least, Euler was
seen as the originator of a wave model that could replace
Newton’s corpuscular theory. In France, Huygens devel-
oped a geometrical construction of secondary wavelets
to trace the propagation of a wave in time, laying a con-
ceptual foundation for early 19th-century experiments in
interference and diffraction that ultimately undermined
the corpuscular hypothesis.

1.1.4 The 19th Century:
The Triumph of the Wave Picture

By the last quarter of the 18th century, it was clear
that Newton’s corpuscular theory could not match the
experimentally measured velocity of light in materials;
moreover, experiments by Malus and Arago had shown

Part
A

1
.1



6 Part A Basic Principles and Materials

that light has a new property, which came to be called
polarization, that does not fit within the corpuscular
picture at all. The earliest systematic studies of polariza-
tion phenomena associated with the propagation of light
waves are due to Étienne Malus in 1808, in response
to a prize competition offered by the Paris Academy for
a mathematical description of the phenomenon of double
refraction in Iceland spar (calcite). Malus’s discoveries
led to the recognition that light is a transverse electro-
magnetic wave, in which the electric and magnetic fields
are perpendicular to each other and to the direction of
propagation. Malus, using his ingenious refractometer,
demonstrated in 1807 that the phenomenon of double re-
fraction could be explained mathematically by Huygens’
construction. Fresnel, a dozen years later, was to win the
prize competition for his theory of diffraction, even an-
ticipating the objection of Poisson that light diffracted
around a tiny opaque object would produce a bright spot
in the middle of the geometrical shadow – to be known
afterwards as Poisson’s spot [1.4]. Moreover, increas-
ingly powerful mathematical descriptions [1.14] were
applied to the phenomena of interference and diffraction
studied experimentally by Thomas Young, the London
polymath, and Fresnel. It was at last becoming clear
that light constituted a qualitatively new kind of wave
in which the vibrations were transverse to the direction
of propagation of the light [1.15]. Indeed, the transverse
character of the vibrations was first suggested by Young
in a letter to Arago in 1812, thus hinting that Young
was already reinterpreting his interference experiments
in a way that differed sharply from previous thinking
based on analogies with acoustic waves [1.16].

At virtually the same time, Biot and Savart, Ampère
and Faraday were generating the experimental under-
pinnings for the eventual unification of optics and

electromagnetism. Galvani’s experiments on the stimu-
lus of what was then called animal electricity had shifted
attention from electrostatics, the major preoccupation of
the eighteenth century, to time-dependent phenomena
associated with electricity. However, it was Alessandro
Volta who successfully showed that this phenomenon
was not due to some vital magnetic force, but that it was
no different from ordinary magnetism. While electro-
physiology continued to be of major interest to biologists
and students of medicine, it was thereafter studied by
physicists primarily in relation to other electromag-
netic phenomena. Oersted, by showing the deflection
of a compass placed next to a current-carrying wire,
demonstrated the interconnection of electrical and mag-
netic phenomena. And Faraday, in 1845, showed that
the polarization of light could be rotated by applying
a strong magnetic field to a medium through which the
light was propagating.

Thus the stage was set for the grand synthesis of
classical electromagnetic theory. The first step was the
publication of James Clerk Maxwell’s theory of elec-
tromagnetism in 1869. Maxwell’s theoretical prediction
of electromagnetic radiation was verified experimen-
tally by Heinrich Hertz in 1888 with the discovery of
Hertzian waves in what now would be called the radio-
frequency range of the spectrum. The classical theory
of the electron developed by H. A. Lorentz would be
the next step in the creation of a 19th-century theory
of everything. The only clouds on the horizon were the
unsolved problems of black-body radiation and the pho-
toelectric effect, problems whose solutions would lead
to the development of quantum physics and the evolu-
tion of a new view of light based on its dual character as
wave and particle, and later of its accommodation into
a fully quantum-mechanical field theory.

1.2 Parameterization of Light

The properties of light are parameterized in similar ways
in both the classical (wave) and semiclassical (photon)
pictures of light. The fundamental physical properties of
an electromagnetic wave are its wavelength λ, frequency
ν and polarization state; alternatively, the first two of
these properties may be stated in the form of a wave
number k = 2πλ and angular frequency ω= 2πν. The
photon model associates with individual light quanta
a particle-like photon energy Ephoton = �ω and momen-
tum pphoton = �k, where h = 2π� is Planck’s constant.
Photons are also associated with a helicity (photon spin)
of ±1 that can be related to wave polarization.

The properties of light have been defined by in-
ternational commissions in four kinds of units now
in general use, depending on what properties are to
be emphasized: radiometric units, based on the phys-
ical units, such as energy, and power, are used to
describe the properties of electromagnetic waves or
photons; photometric units, which refer to the prop-
erties of light as discerned by the human eye; photon
units analogous to radiometric units that are normalized
to photon energy; and spectral units that parameterize
light in terms of its properties at specific frequencies or
wavelength.
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The Properties of Light 1.2 Parameterization of Light 7

1.2.1 Spectral Regions
and Their Classification

The electromagnetic spectrum extends over an enor-
mous range of frequencies and wavelengths, from
low-frequency radio wavelength vibrations to extremely
high-energy, short-wavelength nuclear gamma radia-
tion. Figure 1.1 shows a typical classification scheme,
relating wavelengths, frequencies, wave numbers and
photon energies to the common designations of spectral
regions of interest in optics, extending from the vacuum
ultraviolet through the far-infrared. Some of the units
employed match the Système International (SI) conven-
tion, others are habitually used in specialized science or
technology communities.

1.2.2 Radiometric Units

Radiometric units measure the properties of light in
terms of physical units of energy and power, with-
out reference to wavelength, and are therefore the
most fundamental of the parameters used to describe
light [1.19, 20]. The fundamental radiometric units are:
radiance, a vector L whose magnitude is the power pass-
ing through a surface of unit area into a unit solid angle
about the normal to the surface; irradiance, again a vector
E, defined as the total power per unit spectral inter-
val passing through a surface of unit area. As shown
in Fig. 1.2, the magnitude of the radiance and irradi-
ance depends on the shape of the surface over which
one integrates, that is, over the projected area A⊥ as
well as the solid angle dΩ into which light is emitted
and the perpendicular area of the detector. The defini-
tion of spectral interval is not uniform; depending on
the resolution or the parameterization desired, it might
be given in Å, nm, cm−1 (not the same as 1/cm), or
Hz, as here. To convert any radiometric unit X to the
corresponding spectral radiometric unit Xν, recall that
X = Xν dν for values of the frequency lying between ν

and ν+ dν.

1.2.3 Photometric Units

Photometry refers to the measurement of light as it is
perceived by the human eye; thus these units pertain
principally to light with wavelengths of 380–760 nm. In
astronomy, photometry also refers to the measurement
of apparent magnitudes of celestial objects. Since these
quantities depend on the spectral amplitude of light, it
is not possible to convert photometric values directly
into energy values. The photometric units use the same
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Fig. 1.1 Chart showing the wavelengths, frequencies, wave numbers
and photon energies of electromagnetic radiation of interest in optics.
(After [1.17])

terminology and symbols as the radiometric units, but
with a subscript V for visual.

The four fundamental photometric quantities, listed
in Table 1.2, are: luminous intensity, the amount of
light emitted by a source; luminous flux, the quantity
of light transmitted in a given direction; illuminance,
the measure of light falling on a surface; and lumi-
nance, which measures the brightness of a surface
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Fig. 1.2 Geometry used to define radiometric units of ra-
diance and irradiance in terms of emitting area, detecting
area and solid angle of emission. The projected surface
area in a given angular direction Θ is A⊥ = A cosΘ, while
the solid angle in radiometric units is determined by the
projected detector area Ap perpendicular to the viewing
direction, dΩ = Ap/r2. (After [1.18])
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8 Part A Basic Principles and Materials

Table 1.1 Radiometric units

Symbol SI unit Definition

Radiant energy Qe J = W s –

Radiant energy density we J/m−3 we = 〈dQe/dV 〉
Radiant flux (power) Φe W Φe = 〈dQe/dt〉
Radiant exitance Me W m−2 Me = 〈dΦe/dA〉
Irradiance Ee W m−2 Ee = 〈dQe/dt〉
Radiant intensity Ie W sr−1 Ie = 〈dΦe/dΩ〉
Radiance Le W m −2 sr−1 Le = Ie/∆A ≡ 〈d2Φe/dΩ · dA〉

Table 1.2 Photometric units

Symbol SI unit Photometric unit Definition

Luminous energy QV J=W s lm s (talbot) —

Luminous energy density WV J / m3 lm s/m3 wV = dQV/dV

Luminous intensity IV W sr−1 lm sr−1 = candela (cd) IV = dΦV/dΩ

Luminous power ΦV W lm (lumen) ΦV = dQV/dt

Luminous exitance MV W m−2 lm m−2 MV = dΦV/dA

Illuminance EV Wsr−1 lux (lx) = lm m−2 EV = dΦV/dA

Luminance (Apostilb) LV W m−2 sr−1 asb = 1/π cd/m2 LV = d2ΦV/dA · dΩ

considered as a light source. The standard source, or
international standard candle, is defined as the inten-
sity of a black-body radiator with an area of 1/60 cm2
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Fig. 1.3 The standard CIE luminous efficacy curve for the human
eye, used as the basis for converting between photometric and
radiometric units

heated to the melting point of platinum. Two auxil-
iary quantities, luminous energy and luminous energy
density, correspond to the analogous radiometric units.
The photometric units carry a subscript V for visual, to
distinguish them from their radiometric counterparts;
the overbar in the table below signifies an averaged
quantity.

The Commission Internationale de l’Eclairage (CIE)
has developed a standard luminous efficacy curve for
the human eye, with respect to which the photomet-
ric units are referred (Fig. 1.3). The lumen is defined
such that the peak of the photopic (light-adapted) vi-
sion spectrum of an average eye has a luminous efficacy
of 683 lm/W.

1.2.4 Photon and Spectral Units

In the photon picture, there is a different set of descrip-
tive quantities normalized to photon energy or photon
number, as shown in Table 1.3. The overbarred quanti-
ties denote an average over photon wavelengths as well
as over area and solid angle.

In some cases – for example, when discussing the
spectral brightness of laser or synchrotron sources –
it is useful to distinguish physical quantities by their
frequency ν. For example, in most cases involving
spectroscopy or materials processing with lasers, the
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