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Foreword

Prof. Dr. M. R. Schroeder
University Professor
Speach and Acoustics Laboratory
University of Göttingen,
Germany

The present handbook covers a very wide field. Its 28 chapters range from the history
of acoustics to sound propagation in the atmosphere; from nonlinear and underwa-
ter acoustics to thermoacoustics and concert hall acoustics. Also covered are musical
acoustics, including computer and electronic music; speech and singing; animal (in-
cluding whales) communication as well as bioacoustics in general, psychoacoustics
and medical acoustics. In addition, there are chapters on structural acoustics, vibration
and noise, including optical methods for their measurement; microphones, their cali-
bration, and microphone and hydrophone arrays; acoustic holography; model analysis
and much else needed by the professional engineer and scientist.

Among the authors we find many illustrious names: Yoichi Ando, Mack Breazeale,
Babrina Dunmire, Neville Fletcher, Anders Gade, William Hartmann, William Kuper-
man, Werner Lauterborn, George Maling, Brian Moore, Allan Pierce, Thomas Rossing,
Johan Sundberg, Eric Young, and many more. They hail from countries around the
world: Australia, Canada, Denmark, France, Germany, Japan, Korea, Sweden, the
United Kingdom, and the USA. There is no doubt that this handbook will fill many
needs, nay be irreplaceable in the art of exercising today’s many interdisciplinary tasks
devolving on acoustics. No reader could wish for a wider and more expert coverage.
I wish the present tome the wide acceptance and success it surely deserves.

Göttingen, March 2007 Manfred R. Schroeder
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Preface

Prof. em. T. D. Rossing
Northern Illinois University
Presently visiting Professor
of Music at Stanford University

“A handbook,” according to the dictionary, “is a book capable of being conveniently
carried as a ready reference.” Springer has created the Springer Handbook series on
important scientific and technical subjects, and we feel fortunate that they have included
acoustics in this category.

Acoustics, the science of sound, is a rather broad subject to be covered in a single
handbook. It embodies many different academic disciplines, such as physics, mechan-
ical and electrical engineering, mathematics, speech and hearing sciences, music, and
architecture. There are many technical areas in acoustics; the Acoustical Society of
America, for example, includes 14 technical committees representing different areas
of acoustics. It is impossible to cover all of these areas in a single handbook. We have
tried to include as many as possible of the “hot” topics in this interdisciplinary field, in-
cluding basic science and technological applications. We apologize to the reader whose
favorite topics are not included.

We have grouped the 28 chapters in the book into eight parts: Propagation of
Sound; Physical and Nonlinear Acoustics; Architectural Acoustics; Hearing and Signal
Processing; Music, Speech, and Electroacoustics; Biological and Medical Acoustics;
Structural Acoustics and Noise; and Engineering Acoustics. The chapters are of varying
length. They also reflect the individual writing styles of the various authors, all of whom
are authorities in their fields. Although an attempt was made to keep the mathematical
level of the chapters as even as possible, readers will note that some chapters are more
mathematical than others; this is unavoidable and in fact lends some degree of richness
to the book.

We are indebted to many persons, especially Werner Skolaut, the manager of the
Springer Handbooks, and to the editorial board, consisting of Neville Fletcher, Floyd
Dunn, William Hartmann, and Murray Campbell, and for their advice. Each chapter
was reviewed by two authoritative reviewers, and we are grateful to them for their ser-
vices. But most of all we thank the authors, all of whom are busy people but devoted
much time to carefully preparing their chapters.

Stanford, April 2007 Thomas D. Rossing
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CDF cumulative distribution function
CMU concrete masonry unit
CN cochlear nucleus
CND cumulative normal distribution
CSDM cross-spectral-density matrix

D

DAC digital-to-analog converter
DL difference limen
DOF degree of freedom
DRS directed reflection sequence
DSL deep scattering layer
DSP digital speckle photography
DSP digital signal processing
DSPI digital speckle-pattern interferometry

E

EARP equal-amplitude random-phase
EDT early decay time

EDV end diastolic velocity
EEG electroencephalography
EOF empirical orthogonal function
EOH electro-optic holography
ERB equivalent rectangular bandwidth
ESPI electronic speckle-pattern interferometry

F

FCC Federal Communications Commission
FEA finite-element analysis
FEM finite-element method
FERC Federal Energy Regulatory Commission
FFP fast field program
FFT fast Fourier transform
FIR finite impulse response
FM frequency modulated
FMDL frequency modulation detection limen
FOM figure of merit
FRF frequency response function
FSK frequency shift keying

G

GA genetic algorithm

H

HVAC heating, ventilating and air conditioning

I

IACC interaural cross-correlation coefficient
IACF interaural cross-correlation function
IAD interaural amplitude difference
ICAO International Civil Aircraft Organization
IF intermediate frequency
IFFT inverse fast Fourier transform
IHC inner hair cells
IIR infinite impulse response
IM intermodulation
IRF impulse response function
ISI intersymbol interference
ITD interaural time difference
ITDG initial time delay gap

J

JND just noticeable difference
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K

KDP potassium dihydrogen phosphate

L

LDA laser Doppler anemometry
LDV laser Doppler vibrometry
LEF lateral energy fraction
LEV listener envelopment
LL listening level
LOC lateral olivocochlear system
LP long-play vinyl record
LTAS long-term-average spectra

M

MAA minimum audible angle
MAF minimum audible field
MAP minimum audible pressure
MCR multichannel reverberation
MDOF multiple degree of freedom
MEG magnetoencephalogram
MEMS microelectromechanical system
MFDR maximum flow declination rate
MFP matched field processing
MIMO multiple-input multiple-output
MLM maximum-likelihood method
MLS maximum length sequence
MOC medial olivocochlear system
MRA main response axis
MRI magnetic resonance imaging
MTF modulation transfer function
MTS multichannel television sound
MV minimum variance

N

NDT nondestructive testing
NMI National Metrology Institute
NRC noise reduction coefficient

O

OAE otoacoustic emission
ODS operating deflexion shape
OHC outer hair cells
OITC outdoor–indoor transmission class
OR or operation
OSHA Occupational Safety and Health

Administration

P

PC phase conjugation
PCM pulse code modulation

PD probability of detection
PDF probability density function
PE parabolic equation
PFA probability of false alarm
PIV particle image velocimetry
PL propagation loss
PLIF planar laser-induced fluorescent
PM phase modulation
PMF probability mass function
PS phase stepping
PS peak systolic
PSD power spectral density
PSK phase shift keying
PTC psychophysical tuning curve
PVDF polyvinylidene fluoride
PZT lead zirconate titanate

Q

QAM quadrature amplitude modulation

R

RASTI rapid speech transmission index
REL resting expiratory level
RF radio frequency
RIAA Recording Industry Association of

America
RMS root-mean-square
ROC receiving operating characteristic
RUS resonant ultrasound spectroscopy

S

s.c. supporting cells
S/N signal-to-noise
SAA sound absorption average
SAC spatial audio coding
SAW surface acoustic wave
SBSL single-bubble sonoluminescence
SDOF single degree of freedom
SE signal excess
SEA statistical energy analysis
SG spiral ganglion
SI speckle interferometry
SIL speech interference level
SIL sound intensity level
SISO single-input single-output
SL sensation level
SM scala media
SNR signal-to-noise ratio
SOC superior olivary complex
SP speckle photography
SPL sound pressure level
SR spontaneous discharge rate
ST scala tympani
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STC sound transmission class
STI speech transmission index
SV scala vestibuli
SVR slow vertex response

T

TDAC time-domain alias cancellation
TDGF time-domain Green’s function
THD total harmonic distortion
TL transmission loss
TLC total lung capacity
TMTF temporal modulation transfer function
TNM traffic noise model
TR treble ratio
TR time reversal
TTS temporary threshold shift
TVG time-varied gain

U

UMM unit modal mass

V

VBR variable bitrate
VC vital capacity

W

WS working standard

X

XOR exclusive or



1

Introduction t1. Introduction to Acoustics

This brief introduction may help to persuade
the reader that acoustics covers a wide range of
interesting topics. It is impossible to cover all
these topics in a single handbook, but we have
attempted to include a sampling of hot topics
that represent current acoustical research, both
fundamental and applied.

Acoustics is the science of sound. It deals
with the production of sound, the propagation
of sound from the source to the receiver, and
the detection and perception of sound. The word
sound is often used to describe two different
things: an auditory sensation in the ear, and
the disturbance in a medium that can cause this
sensation. By making this distinction, the age-old
question “If a tree falls in a forest and no one is
there to hear it, does it make a sound?” can be
answered.

1.1 Acoustics: The Science of Sound ............ 1

1.2 Sounds We Hear .................................. 1

1.3 Sounds We Cannot Hear:
Ultrasound and Infrasound .................. 2

1.4 Sounds We Would Rather Not Hear:
Environmental Noise Control ................ 2
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1.9 Harnessing Sound:
Physical and Engineering Acoustics ....... 5

1.10 Medical Acoustics................................. 5

1.11 Sounds of the Sea ................................ 6

References .................................................. 6

1.1 Acoustics: The Science of Sound

Acoustics has become a broad interdisciplinary field
encompassing the academic disciplines of physics, en-
gineering, psychology, speech, audiology, music, archi-
tecture, physiology, neuroscience, and others. Among
the branches of acoustics are architectural acoustics,
physical acoustics, musical acoustics, psychoacoustics,
electroacoustics, noise control, shock and vibration, un-
derwater acoustics, speech, physiological acoustics, etc.

Sound can be produced by a number of different
processes, which include the following.

Vibrating bodies: when a drumhead or a noisy ma-
chine vibrates, it displaces air and causes the local air
pressure to fluctuate.

Changing airflow: when we speak or sing, our vocal
folds open and close to let through puffs of air. In a siren,
holes on a rapidly rotating plate alternately pass and
block air, resulting in a loud sound.

Time-dependent heat sources: an electrical spark
produces a crackle; an explosion produces a bang
due to the expansion of air caused by rapid heat-
ing. Thunder results from rapid heating by a bolt of
lightning.

Supersonic flow: shock waves result when a super-
sonic airplane or a speeding bullet forces air to flow
faster than the speed of sound.

1.2 Sounds We Hear

The range of sound intensity and the range of fre-
quency to which the human auditory system responds
is quite remarkable. The intensity ratio between the

sounds that bring pain to our ears and the weakest
sounds we can hear is more than 1012. The frequency
ratio between the highest and lowest frequencies we
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can hear is nearly 103, or more than nine octaves (each
octave representing a doubling of frequency). Human
vision is also quite remarkable, but the frequency range
does not begin to compare to that of human hearing.
The frequency range of vision is a little less than one
octave (about 4 × 1014 –7 × 1014 Hz). Within this one oc-
tave range we can identify more than 7 million colors.
Given that the frequency range of the ear is nine times
greater, one can imagine how many sound colors might
be possible.

Humans and other animals use sound to commu-
nicate, and so it is not surprising that human hearing
is most sensitive over the frequency range covered by
human speech. This is no doubt a logical outcome of
natural selection. This same match is found throughout
much of the animal kingdom. Simple observations show

that small animals generally use high frequencies for
communication while large animals use low frequen-
cies. In Chap. 19, it is shown that song frequency f
scales with animal mass M roughly as f ∝ M−1/3.

The least amount of sound energy we can hear is of
the order of 10−20 J (cf. sensitivity of the eye: about one
quantum of light in the middle of the visible spectrum
≈ 4 × 10−19 J). The upper limit of the sound pressure
that can be generated is set approximately by atmo-
spheric pressure. Such an ultimate sound wave would
have a sound pressure level of about 191 dB. In practice,
of course, nonlinear effects set in well below this level
and limit the maximum pressure. A large-amplitude
sound wave will change waveform and finally break into
a shock, approaching a sawtooth waveform. Nonlinear
effects are discussed in Chap. 8.

1.3 Sounds We Cannot Hear: Ultrasound and Infrasound

Sound waves below the frequency of human hearing are
called infrasound, while sound waves with frequency
above the range of human hearing are called ultrasound.
These sounds have many interesting properties, and are
being widely studied. Ultrasound is very important in
medical and industrial imaging. It also forms the basis
of a growing number of medical procedures, both di-
agnostic and therapeutic (see Chap. 21). Ultrasound has
many applications in scientific research, especially in
the study of solids and fluids (see Chap. 6).

Frequencies as high as 500 MHz have been gener-
ated, with a wavelength of about 0.6 µm in air. This
is on the order of the wavelength of light and within
an order of magnitude of the mean free path of air
molecules. A gas ceases to behave like a continuum
when the wavelength of sound becomes of the order
of the mean free path, and this sets an upper limit on
the frequency of sound that can propagate. In solids
the assumption of continuum extends down to the in-
termolecular spacing of approximately 0.1 nm, with
a limiting frequency of about 1012 Hz. The ultimate limit
is actually reached when the wavelength is twice the

spacing of the unit cell of a crystal, where the propaga-
tion of multiply scattered sound resembles the diffusion
of heat [1.1].

Natural phenomena are prodigious generators of
infrasound. When Krakatoa exploded, windows were
shattered hundreds of miles away by the infrasonic wave.
The ringing of both the Earth and the atmosphere contin-
ued for hours. The sudden shock wave of an explosion
propels a complex infrasonic signal far beyond the shat-
tered perimeter. Earthquakes generate intense infrasonic
waves. The faster moving P (primary) waves arrive at
distant locations tens of seconds before the destructive
S (secondary) waves. (The P waves carry information;
the S waves carry energy.) Certain animals and fish can
sense these infrasonic precursors and react with fear and
anxiety.

A growing amount of astronomical evidence indi-
cates that primordial sound waves at exceedingly low
frequency propagated in the universe during its first
380 000 years while it was a plasma of charged particles
and thus opaque to electromagnetic radiation. Sound is
therefore older than light.

1.4 Sounds We Would Rather Not Hear: Environmental Noise Control

Noise has been receiving increasing recognition as one
of our critical environmental pollution problems. Like
air and water pollution, noise pollution increases with
population density; in our urban areas, it is a serious
threat to our quality of life. Noise-induced hearing loss

is a major health problem for millions of people em-
ployed in noisy environments. Besides actual hearing
loss, humans are affected in many other ways by high
levels of noise. Interference with speech, interruption of
sleep, and other physiological and psychological effects
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Introduction to Acoustics 1.6 Sound of the Human Voice: Speech and Singing 3

of noise have been the subject of considerable study.
Noise control is discussed in Chap. 23. The propagation
of sound in air in Chap. 4, and building acoustics is the
subject of Chap. 11.

Fortunately for the environment, even the noisiest
machines convert only a small part of their total energy
into sound. A jet aircraft, for example, may produce
a kilowatt of acoustic power, but this is less than 0.02%
of its mechanical output. Automobiles emit approxi-
mately 0.001% of their power as sound. Nevertheless,

the shear number of machines operating in our society
makes it crucial that we minimize their sound output
and take measures to prevent the sound from propagat-
ing throughout our environment. Although reducing the
emitted noise is best done at the source, it is possible,
to some extent, to block the transmission of this noise
from the source to the receiver. Reduction of classroom
noise, which impedes learning in so many schools, is re-
ceiving increased attention from government officials as
well as from acousticians [1.2].

1.5 Aesthetic Sound: Music

Music may be defined as an art form using sequences
and clusters of sounds. Music is carried to the listener
by sound waves. The science of musical sound is often
called musical acoustics and is discussed in Chap. 15.

Musical acoustics deals with the production of
sound by musical instruments, the transmission of
music from the performer to the listener, and the
perception and cognition of sound by the listener.
Understanding the production of sound by musical
instruments requires understanding how they vibrate
and how they radiate sound. Transmission of sound
from the performer to the listener involves a study of
concert hall acoustics (covered in Chaps. 9 and 10)
and the recording and reproduction of musical sound

(covered in Chap. 15). Perception of musical sound
is based on psychoacoustics, which is discussed in
Chap. 13.

Electronic musical instruments have become in-
creasingly important in contemporary music. Computers
have made possible artificial musical intelligence, the
synthesis of new musical sounds and the accurate and
flexible re-creation of traditional musical sounds by ar-
tificial means. Not only do computers talk and sing and
play music, they listen to us doing the same, and our in-
teractions with computers are becoming more like our
interactions with each other. Electronic and computer
music is discussed in Chap. 17.

1.6 Sound of the Human Voice: Speech and Singing

It is difficult to overstate the importance of the hu-
man voice. Of all the members of the animal kingdom,
we alone have the power of articulate speech. Speech
is our chief means of communication. In addition,
the human voice is our oldest musical instrument.
Speech and singing, the closely related functions of
the human voice, are discussed in a unified way in
Chap. 16.

In the simplest model of speech production, the vo-
cal folds act as the source and the vocal tract as a filter
of the source sound. According to this model, the spec-
trum envelope of speech sound can be thought of as the
product of two components:

Speech sound = source spectrum × filter function.
The nearly triangular waveform of the air flow from

the glottis has a spectrum of harmonics that dimin-
ish in amplitude roughly as 1/n2 (i. e., at a rate of

−12 dB/octave). The formants or resonances of the vo-
cal tract create the various vowel sounds. The vocal tract
can be shaped by movements of the tongue, the lips, and
the soft palate to tune the formants and articulate the
various speech sounds.

Sung vowels are fundamentally the same as spoken
vowels, although singers do make vowel modifications
in order to improve the musical tone, especially in their
high range. In order to produce tones over a wide range
of pitch, singers use muscular action in the larynx, which
leads to different registers.

Much research has been directed at computer recog-
nition and synthesis of speech. Goals of such research
include voice-controlled word processors, voice con-
trol of computers and other machines, data entry by
voice, etc.In general it is more difficult for a computer
to understand language than to speak it.
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1.7 How We Hear: Physiological and Psychological Acoustics

The human auditory system is complex in structure and
remarkable in function. Not only does it respond to
a wide range of stimuli, but it precisely identifies the
pitch, timbre, and direction of a sound. Some of the
hearing function is done in the organ we call the ear;
some of it is done in the central nervous system as well.

Physiological acoustics, which is discussed in
Chap. 12, focuses its attention mainly on the peripheral
auditory system, especially the cochlea. The dynamic
behavior of the cochlea is a subject of great interest.
It is now known that the maximum response along the
basilar membrane of the cochlea has a sharper peak in
a living ear than in a dead one.

Resting on the basilar membrane is the delicate and
complex organ of Corti, which contains several rows of
hair cells to which are attached auditory nerve fibers. The
inner hair cells are mainly responsible for transmitting
signals to the auditory nerve fibers, while the more-
numerous outer hair cells act as biological amplifiers.
It is estimated that the outer hair cells add about 40 dB
of amplification to very weak signals, so that hearing
sensitivity decreases by a considerable amount when
these delicate cells are destroyed by overexposure to
noise.

Our knowledge of the cochlea has now progressed
to a point where it is possible to construct and implant
electronic devices in the cochlea that stimulate the au-
ditory nerve. A cochlear implant is an electronic device
that restores partial hearing in many deaf people [1.3]. It

is surgically implanted in the inner ear and activated by
a device worn outside the ear. An implant has four basic
parts: a microphone, a speech processor and transmit-
ter, a receiver inside the ear, and electrodes that transmit
impulses to the auditory nerve and thence to the brain.

Psychoacoustics (psychological acoustics), the sub-
ject of Chap. 13, deals with the relationships between the
physical characteristics of sounds and their perceptual
attributes, such as loudness, pitch, and timbre.

The threshold of hearing depends upon frequency,
the lowest being around 3–4 kHz, where the ear canal
has a resonance, and rising considerably at low fre-
quency. Temporal resolution, such as the ability to detect
brief gaps between stimuli or to detect modulation of
a sound, is a subject of considerable interest, as is the
ability to localize the sound source. Sound localization
depends upon detecting differences in arrival time and
differences in intensity at our two ears, as well as spectral
cues that help us to localize a source in the median plane.

Most sound that reaches our ears comes from several
different sources. The extent to which we can perceive
each source separately is sometimes called segregation.
One important cue for perceptual separation of nearly
simultaneous sounds is onset and offset disparity. An-
other is spectrum change with time. When we listen to
rapid sequence of sounds, they may be grouped together
(fusion) or they may be perceived as different streams
(fission). It is difficult to judge the temporal order of
sounds that are perceived in different streams.

1.8 Architectural Acoustics

To many lay people, an acoustician is a person who
designs concert halls. That is an important part of archi-
tectural acoustics, to be sure, but this field incorporates
much more. Architectural acousticians seek to under-
stand and to optimize the sound environment in rooms
and buildings of all types, including those used for work,
residential living, education, and leisure. In fact, some
of the earliest attempts to optimize sound transmission
were practised in the design of ancient amphitheaters,
and the acoustical design of outdoor spaces for concerts
and drama still challenge architects.

In a room, most of the sound waves that reach the
listener’s ear have been reflected by one or more surfaces
of the room or by objects in the room. In a typical room,
sound waves undergo dozens of reflections before they
become inaudible. It is not surprising, therefore, that

the acoustical properties of rooms play an important
role in determining the nature of the sound heard by
a listener. Minimizing extraneous noise is an important
part of the acoustical design of rooms and buildings
of all kinds. Chapter 9 presents the principles of room
acoustics and applies them to performance and assembly
halls, including theaters and lecture halls, opera halls,
concert halls, worship halls, and auditoria.

The subject of concert hall acoustics is almost cer-
tain to provoke a lively discussion by both performers
and serious listeners. Musicians recognize the impor-
tance of the concert hall in communication between
performer and listener. Opinions of new halls tend to
polarize toward extremes of very good or very bad. In
considering concert and opera halls, it is important to
seek a common language for musicians and acousticians
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in order to understand how objective measurements re-
late to subjective qualities [1.4,5]. Chapter 10 discusses
subjective preference theory and how it relates to concert
hall design.

Two acoustical concerns in buildings are providing
the occupants with privacy and with a quiet environ-
ment, which means dealing with noise sources within
the building as well as noise transmitted from outside.
The most common noise sources in buildings, other than
the inhabitants, are related to heating, ventilating, and

air conditioning (HVAC) systems, plumbing systems,
and electrical systems. Quieting can best be done at
the source, but transmission of noise throughout the
building must also be prevented. The most common
external noise sources that affect buildings are those
associated with transportation, such as motor vehicles,
trains, and airplanes. There is no substitute for mas-
sive walls, although doors and windows must receive
attention as well. Building acoustics is discussed in
Chap. 11.

1.9 Harnessing Sound: Physical and Engineering Acoustics

It is sometimes said that physicists study nature, en-
gineers attempt to improve it. Physical acoustics and
engineering acoustics are two very important areas of
acoustics. Physical acousticians investigate a wide range
of scientific phenomena, including the propagation of
sound in solids, liquids, and gases, and the way sound
interacts with the media through which it propagates.
The study of ultrasound and infrasound are especially
interesting. Physical acoustics is discussed in Chap. 6.

Acoustic techniques have been widely used to study
the structural and thermodynamic properties of materials
at very low temperatures. Studying the propagation of ul-
trasound in metals, dielectric crystals, amorphous solids,
and magnetic materials has yielded valuable information
about their elastic, structural and other properties. Es-
pecially interesting has been the propagation of sound
in superfluid helium. Second sound, an unusual type of
temperature wave, was discovered in 1944, and since
that time so-called third sound, fourth sound, and fifth
sound have been described [1.6].

Nonlinear effects in sound are an important part
of physical acoustics. Nonlinear effects of interest
include waveform distortion, shock-wave formation, in-
teractions of sound with sound, acoustic streaming,
cavitation, and acoustic levitation. Nonlinearity leads
to distortion of the sinusoidal waveform of a sound
wave so that it becomes nearly triangular as the shock
wave forms. On the other hand, local disturbances, called
solitons, retain their shape over large distances.

The study of the interaction of sound and light, called
acoustooptics, is an interesting field in physical acoustics

that has led to several practical devices. In an acoustoop-
tic modulator, for example, sound waves form a sort
of moving optical diffraction grating that diffracts and
modulates a laser beam.

Sonoluminescence is the name given to a process
by which intense sound waves can generate light. The
light is emitted by bubbles in a liquid excited by sound.
The observed spectra of emitted light seem to indicate
temperatures hotter than the surface of the sun. Some
experimental evidence indicates that nuclear fusion may
take place in bubbles in deuterated acetone irradiated
with intense ultrasound.

Topics of interest in engineering acoustics cover
a wide range and include: transducers and arrays, un-
derwater acoustic systems, acoustical instrumentation,
audio engineering, acoustical holography and acousti-
cal imaging, ultrasound, and infrasound. Several of these
topics are covered in Chaps. 5, 18, 24, 25, 26, 27, and 28.
Much effort has been directed into engineering increas-
ingly small transducers to produce and detect sound.
Microphones are being fabricated on silicon chips as
parts of integrated circuits.

The interaction of sound and heat, called thermoa-
coustics, is an interesting field that applies principles
of physical acoustics to engineering systems. The ther-
moacoustic effect is the conversion of sound energy to
heat or visa versa. In thermoacoustic processes, acoustic
power can pump heat from a region of low temperature
to a region of higher temperature. This can be used to
construct heat engines or refrigerators with no moving
parts. Thermoacoustics is discussed in Chap. 7.

1.10 Medical Acoustics

Two uses of sound that physicians have employed for
many years are auscultation, listening to the body with

a stethoscope, and percussion, sound generation by the
striking the chest or abdomen to assess transmission or
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resonance. The most exciting new developments in med-
ical acoustics, however, involve the use of ultrasound,
both diagnostic imaging and therapeutic applications.

There has been a steady improvement in the qual-
ity of diagnostic ultrasound imaging. Two important
commercial developments have been the advent of
real-time three-dimensional (3-D) imaging and the de-
velopment of hand-held scanners. Surgeons can now
carry out procedures without requiring optical access.
Although measurements on isolated tissue samples show
that acoustic attenuation and backscatter correlate with
pathology, implementing algorithms to obtain this infor-
mation on a clinical scanner is challenging at the present
time.

The therapeutic use of ultrasound has blossomed in
recent years. Shock-wave lithotripsy is the predominant
surgical operation for the treatment of kidney stones.
Shock waves also appear to be effective at helping heal
broken bones. High-intensity focused ultrasound is used
to heat tissue selectivity so that cells can be destroyed in
a local region. Ultrasonic devices appear to hold promise
for treating glaucoma, fighting cancer, and controlling
internal bleeding. Advanced therapies, such as punctur-
ing holes in the heart, promoting localized drug delivery,
and even carrying out brain surgery through an intact
skull appear to be feasible with ultrasound [1.7].

Other applications of medical ultrasound are in-
cluded in Chap. 21.

1.11 Sounds of the Sea

Oceans cover more than 70% of the Earth’s surface.
Sound waves are widely used to explore the oceans, be-
cause they travel much better in sea water than light
waves. Likewise, sound waves are used, by humans and
dolphins alike, to communicate under water, because
they travel much better than radio waves. Acoustical
oceanography has many military, as well as commercial
applications. Much of our understanding of underwater
sound propagation is a result of research conducted dur-
ing and following World War II. Underwater acoustics
is discussed in Chap. 5.

The speed of sound in water, which is about
1500 m/s, increases with increasing static pressure by
about 1 part per million per kilopascal, or about 1% per
1000 m of depth, assuming temperature remains con-
stant. The variation with temperature is an increase of
about 2% per ◦C temperature rise. Refraction of sound,
due to these changes in speed, along with reflection at
the surface and the bottom, lead to waveguides at vari-
ous ocean depths. During World War II, a deep channel

was discovered in which sound waves could travel dis-
tances in excess of 3000 km. This phenomenon gave
rise to the deep channel or sound fixing and ranging
(SOFAR) channel, which could be used to locate, by
acoustic means, airmen downed at sea.

One of the most important applications of underwa-
ter acoustics is sound navigation and ranging (SONAR).
The purpose of most sonar systems is to detect and local-
ize a target, such as submarines, mines, fish, or surface
ships. Other SONARs are designed to measure some
quantity, such as the ocean depth or the speed of ocean
currents.

An interesting phenomenon called cavitation oc-
curs when sound waves of high intensity propagate
through water. When the rarefaction tension phase of
the sound wave is great enough, the medium rup-
tures and cavitation bubbles appear. Cavitation bubbles
can be produced by the tips of high-speed propellers.
Bubbles affect the speed of sound as well as its attenu-
ation [1.7, 8].
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A Brief History2. A Brief History of Acoustics

Although there are certainly some good historical
treatments of acoustics in the literature, it still
seems appropriate to begin a handbook of
acoustics with a brief history of the subject. We
begin by mentioning some important experiments
that took place before the 19th century. Acoustics in
the 19th century is characterized by describing the
work of seven outstanding acousticians: Tyndall,
von Helmholtz, Rayleigh, Stokes, Bell, Edison, and
Koenig. Of course this sampling omits the mention
of many other outstanding investigators.

To represent acoustics during the 20th century,
we have selected eight areas of acoustics,
again not trying to be all-inclusive. We select
the eight areas represented by the first eight
technical areas in the Acoustical Society of
America. These are architectural acoustics, physical
acoustics, engineering acoustics, structural
acoustics, underwater acoustics, physiological
and psychological acoustics, speech, and musical
acoustics. We apologize to readers whose main
interest is in another area of acoustics. It is, after
all, a broad interdisciplinary field.
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2.1 Acoustics in Ancient Times

Acoustics is the science of sound. Although sound waves
are nearly as old as the universe, the scientific study of
sound is generally considered to have its origin in ancient
Greece. The word acoustics is derived from the Greek
word akouein, to hear, although Sauveur appears to have
been the first person to apply the term acoustics to the
science of sound in 1701 [2.1].

Pythagoras, who established mathematics in Greek
culture during the sixth century BC, studied vibrating
strings and musical sounds. He apparently discovered
that dividing the length of a vibrating string into simple
ratios produced consonant musical intervals. According

to legend, he also observed how the pitch of the string
changed with tension and the tones generated by striking
musical glasses, but these are probably just legends [2.2].

Although the Greeks were certainly aware of the im-
portance of good acoustical design in their many fine
theaters, the Roman architect Vitruvius was the first
to write about it in his monumental De Architectura,
which includes a remarkable understanding and analy-
sis of theater acoustics: “We must choose a site in which
the voice may fall smoothly, and not be returned by re-
flection so as to convey an indistinct meaning to the
ear.”
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2.2 Early Experiments on Vibrating Strings, Membranes and Plates

Much of early acoustical investigations were closely
tied to musical acoustics. Galileo reviewed the relation-
ship of the pitch of a string to its vibrating length, and
he related the number of vibrations per unit time to
pitch. Joseph Sauveur made more-thorough studies of
frequency in relation to pitch. The English mathemati-
cian Brook Taylor provided a dynamical solution for the
frequency of a vibrating string based on the assumed
curve for the shape of the string when vibrating in its
fundamental mode. Daniel Bernoulli set up a partial
differential equation for the vibrating string and ob-
tained solutions which d’Alembert interpreted as waves
traveling in both directions along the string [2.3].

The first solution of the problem of vibrating mem-
branes was apparently the work of S. D. Poisson, and
the circular membrane was handled by R. F. A. Clebsch.
Vibrating plates are somewhat more complex than vi-
brating membranes. In 1787 E. F. F. Chladni described
his method of using sand sprinkled on vibrating plates to
show nodal lines [2.4]. He observed that the addition of
one nodal circle raised the frequency of a circular plate

Fig. 2.1 Chladni patterns on a circular plate. The first four have two, three, four, and five nodal lines but no nodal circles;
the second four have one or two nodal circles

by about the same amount as adding two nodal diam-
eters, a relationship that Lord Rayleigh called Chladni’s
law. Sophie Germain wrote a fourth-order equation to
describe plate vibrations, and thus won a prize provided
by the French emperor Napoleon, although Kirchhoff
later gave a more accurate treatment of the boundary
conditions. Rayleigh, of course, treated both membranes
and plates in his celebrated book Theory of Sound [2.5].

Chladni generated his vibration patterns by “strew-
ing sand” on the plate, which then collected along the
nodal lines. Later he noticed that fine shavings from
the hair of his violin bow did not follow the sand
to the nodes, but instead collected at the antinodes.
Savart noted the same behavior for fine lycopodium
powder [2.6]. Michael Faraday explained this as being
due to acoustic streaming [2.7]. Mary Waller published
several papers and a book on Chladni patterns, in which
she noted that particle diameter should exceed 100 µm
in order to collect at the nodes [2.8]. Chladni figures of
some of the many vibrational modes of a circular plate
are shown in Fig. 2.1.

2.3 Speed of Sound in Air

From earliest times, there was agreement that sound is
propagated from one place to another by some activity of
the air. Aristotle understood that there is actual motion
of air, and apparently deduced that air is compressed.
The Jesuit priest Athanasius Kircher was one of the first
to observe the sound in a vacuum chamber, and since
he could hear the bell he concluded that air was not
necessary for the propagation of sound. Robert Boyle,
however, repeated the experiment with a much improved
pump and noted the much-observed decrease in sound
intensity as the air is pumped out. We now know that
sound propagates quite well in rarified air, and that the
decrease in intensity at low pressure is mainly due to

the impedance mismatch between the source and the
medium as well as the impedance mismatch at the walls
of the container.

As early as 1635, Gassendi measured the speed of
sound using firearms and assuming that the light of the
flash is transmitted instantaneously. His value came out
to be 478 m/s. Gassendi noted that the speed of sound
did not depend on the pitch of the sound, contrary to
the view of Aristotle, who had taught that high notes
are transmitted faster than low notes. In a more careful
experiment, Mersenne determined the speed of sound to
be 450 m/s [2.9]. In 1650, G. A. Borelli and V. Viviani of
the Accademia del Cimento of Florence obtained a value
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of 350 m/s for the speed of sound [2.10]. Another Italian,
G. L. Bianconi, showed that the speed of sound in air
increases with temperature [2.11].

The first attempt to calculate the speed of sound
through air was apparently made by Sir Isaac Newton.
He assumed that, when a pulse is propagated through
a fluid, the particles of the fluid move in simple har-
monic motion, and that if this is true for one particle,
it must be true for all adjacent ones. The result is that
the speed of sound is equal to the square root of the ra-
tio of the atmospheric pressure to the density of the air.
This leads to values that are considerably less than those
measured by Newton (at Trinity College in Cambridge)
and others.

In 1816, Pierre Simon Laplace suggested that in
Newton’s and Lagrange’s calculations an error had been
made in using for the volume elasticity of the air the pres-
sure itself, which is equivalent to assuming the elastic
motions of the air particles take place at constant temper-
ature. In view of the rapidity of the motions, it seemed
more reasonable to assume that the compressions and
rarefactions follow the adiabatic law. The adiabatic elas-
ticity is greater than the isothermal elasticity by a factor
γ , which is the ratio of the specific heat at constant
pressure to that at constant volume. The speed of sound
should thus be given by c= (γ p/ρ)1/2, where p is the
pressure and ρ is the density. This gives much better
agreement with experimental values [2.3].

2.4 Speed of Sound in Liquids and Solids

The first serious attempt to measure the speed of sound
in liquid was probably that of the Swiss physicist
Daniel Colladon, who in 1826 conducted studies in Lake
Geneva. In 1825, the Academy of Sciences in Paris had
announced as the prize competition for 1826 the meas-
urement of the compressibility of the principal liquids.
Colladon measured the static compressibility of several
liquids, and he decided to check the accuracy of his
measurements by measuring the speed of sound, which
depends on the compressibility. The compressibility of
water computed from the speed of sound turned out to
be very close to the statically measured values [2.12].
Oh yes, he won the prize from the Academy.

In 1808, the French physicist J. B. Biot measured the
speed of sound in a 1000 m long iron water pipe in Paris
by direct timing of the sound travel [2.13]. He com-
pared the arrival times of the sound through the metal
and through the air and determined that the speed is
much greater in the metal. Chladni had earlier studied
the speed of sound in solids by noting the pitch em-
anating from a struck solid bar, just as we do today.
He deduced that the speed of sound in tin is about 7.5
times greater than in air, while in copper it was about
12 times greater. Biot’s values for the speed in metals
agreed well with Chladni’s.

2.5 Determining Frequency

Much of the early research on sound was tied to mu-
sical sound. Vibrating strings, membranes, plates, and
air columns were the bases of various musical instru-
ments. Music emphasized the importance of ratios for
the different tones. A string could be divided into halves
or thirds or fourths to give harmonious pitches. It was
also known that pitch is related to frequency. Marin
Mersenne (1588–1648) was apparently the first to de-
termine the frequency corresponding to a given pitch.
By working with a long rope, he was able determine the
frequency of a standing wave on the length, mass, and
tension of the rope. He then used a short wire under ten-
sion and from his rope formula he was able to compute
the frequency of oscillation [2.14]. The relationship be-

tween pitch and frequency was later improved by Joseph
Sauveur, who counted beats between two low-pitched
organ pipes differing in pitch by a semitone. Sauveur
deduced that “the relation between sounds of low and
high pitch is exemplified in the ratio of the numbers of vi-
brations which they both make in the same time.” [2.1].
He recognized that two sounds differing a musical fifth
have frequencies in the ratio of 3:2. We have already
commented that Sauveur was the first to apply the term
acoustics to the science of sound. “I have come then to
the opinion that there is a science superior to music, and
I call it acoustics; it has for its object sound in general,
whereas music has for its objects sounds agreeable to
the ear.” [2.1]
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