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-PREFACE --

F or cells to function properly, correct protein localization is essential. 
This is true for both prokaryotes, i.e., Bacteria and Archaea, where 
proteins may be directed outside the confines of the cytoplasm to take 

up residence in the plasma membrane or beyond, as well as for eukaryotes, 
which also have to ensure that selected proteins are correctly distributed 
between the various organelles found inside the cell. Such non-cytoplasmic 
proteins must, therefore, be effectively recognized and targeted to their des
ignated subcellular locations, where translocation across one or more mem
branes takes place. Across evolution, cells have developed complex systems 
dedicated to the transfer of proteins across a variety of biological membranes. 
In this volume, aimed at both the newcomer seeking an introduction to the 
subject and the expert wanting to keep abreast of recent discoveries in the 
field, the reader will learn about various aspects of protein translocation across 
a variety of membranes. 

Translocation of exported proteins in each of the three domains of Life 
is the focus of the first four chapters. In Chapter 1, recent findings and 
outstanding questions regarding protein translocation across the membrane 
of the endoplasmic reticulum, the first step on the eukaryal secretory path
way, are presented. Chapter 2 provides insight into the latest discoveries in 
bacterial Sec-dependent translocation. In Chapter 3, current understanding 
of protein translocation in Archaea is discussed. Chapter 4 reveals how struc
tural biology joins genetics and biochemistry as experimental approaches 
being employed to better understand translocation through the Sec 
translocon. 

Indeed, as we learn more about protein translocation, previously hid
den aspects of the process are being uncovered. Chapter 5 addresses strate
gies adopted by Bacteria for the integration of membrane proteins from a 
structural perspective. In Chapter 6, the twin arginine transport system, a 
more recently-defined translocation system largely employed for the transit 
of folded and complexed proteins across the membrane, is discussed. Chap
ter 7 describes how the endoplasmic reticulum exploits the Sec-based 
translocon for retrograde translocation of defective proteins back into the 
cytosol, where they undergo proteasome-based degradation. 

Finally, several chapters examine the manner by which proteins are 
imported into different cellular organelles. Playing central roles in cellular 
metabolism, the chloroplast, mitochondria and peroxisome obtain most, if 
not all, of their proteins from sites of synthesis in the cytoplasm. Chapter 8 
addresses how protein translocation into and across the membranes surround
ing the chloroplast and the various sub-compartments contained therein 
takes place. Chapter 9 considers how proteins are delivered from outside the 
mitochondria into either the matrix or the inter-membrane space, as well as 
how outer and inner membrane proteins are inserted. In Chapter 10, current 



understanding of one of the least-well described protein import systems, 
namely that of the peroxisome, is considered. 

With biological investigators now able to simultaneously address nu
merous complex processes at the cellular, system and even entire organism 
levels, a more thorough understanding of protein translocation is essential. 
This volume represents a step in that direction. 

Jerry Eichler 
Department of Life Sciences 

Ben Gurion University 
BeershevUy Israel 



CHAPTER 1 

Protein Translocation Across 
the Endoplasmic Reticulum Membrane 

Ramanujan S. Hegde* 

Abstract 

P roteins to be secreted from eukaryotic cells are delivered to the extracellular space after 
trafficking through a secretory pathway composed of several complex intracellular 
compartments. Secretory proteins are first translocated from the cytosol into the endo

plasmic reticulum (ER), after which they travel by vesicular trafficking via various intermediate 
destinations en route to the plasma membrane where they are released from the cell by exocyto-
sis. By sharp contrast, secretion in prokaryotes involves the translocation of proteins directly 
across the plasma membrane. While these two systems are superficially dissimilar, they are 
evolutionarily and mechanistically related. This relationship between the prokaryotic and eu
karyotic systems of secretion forms the backdrop for this chapter focused on protein transloca
tion into the ER. In the first part of this chapter, the essential steps and core machinery of ER 
translocation are discussed relative to evolutionarily conserved principles of protein secretion. 
The last section then explores the concept of regulation, a poorly understood facet of transloca
tion that is argued to be evolutionarily divergent, relatively specific to the ER, and likely to be 
most highly developed in metazoans. 

Reductionistic View of ER Translocation 
The eukaryotic secretory pathway is thought to have evolved by a series of steps that were 

initiated by specialization of the prokaryotic plasma membrane (Fig. 1). This specialized region 
of membrane was then expanded, internalized, and eventually subdivided into many compart
ments. Hence, the lumenal space of compartments in the secretory pathway is topologically 
equivalent to the extracellular space, and the transport of proteins across the prokaryotic plasma 
membrane is directly analogous to transport into the ER. Both processes face the same basic 
challenges: (a) substrates to be transported need to be recognized, (b) selectively targeted to 
the site of transport, (c) vectorally translocated across the membrane, and (d) maintain a 
permeability barrier during these events. At the most fundamental level, these obstacles must 
have been solved in even the earliest life forms. This realization, together with the evolutionary 
relationship between the eukaryotic ER and bacterial plasma membrane, suggests a substantial 
conservation of the core principles of secretory protein translocation. Thus, assorted data using 
various model substrates from multiple systems (e.g.. Bacteria, Archaea, yeast, and mammal) 

*Rannanujan S. Hegde—Cell Biology and Metabolism Branch, NICHD, 18 Library Drive, 
BIdg. 18T, Room 101, National Institutes of Health, Bethesda, Maryland, U.S.A. 
Email: hegder@mail.nih.gov 

Protein Movement Across Membranesy edited by Jerry Eichler. ©2005 Eurekah.com 
and Springer Science+Business Media. 
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Figure 1. Evolution of the eukaryotic secretory pathway. Steps (1) through (4) depict successive stages in 
the generally accepted view of eukaryotic secretory pathway evolution from a prokaryotic ancestor. The 
cytoplasm is shown in gray, and translocons for protein secretion are depicted by cylinders with the 
direction of polypeptide transport indicated by an arrow. Note the relationship between secretion across 
the bacterial plasma membrane (in stage 1) and translocation into the ER (in stage 4). Diagram 4a shows 
a more detailed view of the mammalian secretory and endocytic pathways, with the primary pathways 
of protein traffic indicated by arrows. Essentially all of these pathways have been discovered to be 
regulated in a manner that allows some, but not other substrates to be trafficked in appropriate amounts 
to meet the changing demands of the cell. Notable examples include quality control at the ER, exit from 
the ER, sorting at the Golgi, regulated exocytosis, and endocytic sorting and degradation. By contrast, 
translocation into the ER (open arrow) is often regarded as a constitutive process where the presence of 
a signal sequence in a protein predetermines its entry into the ER. 
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and multiple approaches (biochemical, genetic, and structural) have often been consolidated 
into unifying models of protein translocation that are extrapolated to all systems. While this 
provides a convenient framework for understanding protein translocation in general, it is ap
parent that further experiments will be required to either validate or revise the models for each 
individual system. 

Basic Principles 
Secretory and membrane proteins destined for the secretory pathway are recognized by 

the presence of hydrophobic domains in either signal sequences or transmembrane segments. 
N-terminal signal sequences (typically --15-35 amino acids long) contain a hydrophobic core 
of at least 6 residues, while transmembrane segments have a hydrophobic stretch of between 
16-25 residues. Aside from hydrophobicity, sequences used for the segregation of secretory 
and membrane proteins have no other features in common.^' Indeed, the requirements are so 
degenerate that signals and transmembrane domains from prokaryotic and eukaryotic pro
teins are often ftinctionally interchangeable,^ and a surprising 20% of random sequences 
can at least partially mediate secretion from yeast. Despite this tremendous diversity, signal 
sequences direct substrates into one of only two main translocation pathways in eukaryotes. 
In the cotranslational pathway (studied most extensively in the mammalian system), sub
strates are translocated across the membrane concurrent with their synthesis by 
membrane-bound ribosomes. In the post-translational pathway (studied primarily in the yeast 
system), the substrate is fully synthesized in the cytosol first, and translocated in a 
ribosome-independent fashion. 

In cotranslational translocation, emergence from the ribosome of the first hydrophobic 
domain (either the signal sequence or transmembrane segment) allows its recognition in the 
cytosol by the signal recognition particle (SRP).^'^The complex of SRP and the ribosome-nascent 
chain (RNC) is then targeted to the membrane by an interaction with the SRP receptor (SR). 
At the membrane, the signal sequence is released by SRP, the RNC is transferred to the translocon, 
and the SRP-SR complex is dissociated. Thus, the targeting cycle culminates with delivery of 
the RNC to the translocon and recycling of components of the targeting machinery (SRP and 
SR) for the next substrate. 

Nascent chains that are cotranslationally targeted to the translocon must then engage the 
translocation channel, mediate its opening, and be transported through it across the membrane. 
The central component of the translocation channel is the evolutionarily conserved 
heterotrimeric Sec6l complex. ' The Sec61 complex, which has a high affinity for ribo
somes,^^ provides a docking site for RNCs without the need for other components. However, 
docking of an RNC at the translocon is not sufficient to initiate translocation. Rather, engage
ment of the channel requires a functional signal sequence (or transmembrane domain), whose 
association with the Sec61 complex represents a second substrate recognition event during 
cotranslational translocation. 

This second recognition step may serve a ^proofreading' purpose to ensure that no non-
signal-containing substrates that inadvertently target to the channel can engage it. More 
importantly, binding of the signal to the Sec61 complex triggers at least three essentially 
simultaneous changes in the RNC-translocon complex: (a) an increase in stability of the 
interaction between the RNC and translocon, (b) insertion of the nascent chain into the 
translocation channel, and (c) opening of the translocation channel towards the lumen. 
Upon successful completion of these steps, the substrate resides in a continuous path run
ning from the peptidyl transferase center in the ribosome, through the translocation chan
nel, and into the ER lumen.^ '̂ '̂̂ ^ From this point, continued protein synthesis is thought 
to result in 'pushing' of the nascent chain through the channel and across the membrane. 
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Hence, the architecture of the RNC-translocon complex '"̂ ^ biases the direction of nascent 
chain movement, thereby harnessing the energy of protein synthesis to simultaneously drive 
translocation. 

Post-translational translocation operates in several qualitatively different ways. In eukary-
otes, this pathway has been studied most extensively in yeast, where a seven protein Sec com
plex at the ER membrane and the lumenal chaperone BiP (known as Kar2p in yeast) have been 
identified as the essential translocation apparatus."^ '̂̂ "^ This Sec complex can be conceptually 
(and experimentally) divided into two sub-complexes: the trimeric Sec61 complex (homolo
gous to the mammalian Sec61 complex), and the tetrameric Sec62/63 complex. The Sec61 
complex presumably forms a similar channel in the post-translational SQC complex as it does in 
the cotranslationaJ translocon."^^ This means that the remaining components (the Sec62/63 
subcomplex and BiP) must fulfill the functions otherwise provided in cotranslational translo
cation by the targeting machinery (SRP and SR) and ribosome, neither of which are involved 
in post-translational translocation. 

Consistent with this idea, the Sec62/63 complex (but not BiP) is essential for signal se
quence recognition by the Sec61 complex. ̂ '̂̂ '̂̂ ^ Thus, the Sec complex, by selectively binding 
signal-containing substrates, mediates targeting to the translocon in a single mechanistic step 
that replaces the series of targeting reactions involving the ribosome, SRP, SR, and translocon. 
Once substrate is bound to the Sec complex, the Sec61 translocation channel is thought to be 
engaged and opened in a similar fashion to the signal-mediated gating step in cotranslational 
translocation. The substrate would then need to be moved unidirectionally through the Sec61 
channel across the membrane. 

Since vectorial movement of the substrate through the channel cannot exploit the energy 
of protein synthesis (as during cotranslational translocation), the actual transport step needs to 
occur differently. This function of biasing the direction of polypeptide movement is provided 
by BiP, a chaperone that binds the substrate on the lumenal side of the translocation channel to 
prevent its back-sliding into the cytosol.̂ '̂"̂ '̂"̂ '̂̂ ^ Subsequent rounds of binding and release, 
stimulated by ATP hydrolysis, allows BiP to act as a molecular ratchet to drive substrate trans
port into the lumen. The ATPase activity of BiP is regulated by Sec63p, a J-domain contain
ing component of the Sec complex, which presumably also serves the function of recruiting 
BiP to the translocation channel."^ '̂̂ ^ Thus, the substrate is largely 'pulled' across the mem
brane from the lumenal side in the post-translational pathway, in contrast to being 'pushed' 
from the cytosolic side in cotranslational translocation. 

A comparative analysis of these basic features of eukaryotic cotranslational and 
post-translational translocation reveals an important central theme (Fig. 2). It has become clear 
that the actual channel through which the polypeptide is translocated acts as a relatively passive 
conduit. It only acquires its functionality for substrate recognition and vectorial transport upon 
interaction with various binding partners. In cotranslational translocation, a key binding part
ner is the ribosome which acts to mediate translocon assembly, 'primes' the Sec61 complex for 
signal recognition, and couples the energy of protein synthesis to translocation. In 
post-translational translocation, the key binding partner is the Sec62/63 complex which, like 
the ribosome, facilitates translocon assembly, allows signal sequence recognition, and provides 
the driving force for translocation by recruiting and regulating the function of BiP at the trans
location site. Indeed, even in the bacterial system, the homolog of the Sec61 complex (termed 
the SecY complex) interacts with the cytosolic SecA ATPase that both receives the substrate at 
the channel and drives its subsequent translocation across the membrane.^ Thus, the highly 
conserved Sec61 channel can be exploited in several markedly different ways by various 
coassociating partners that mediate protein translocation across the eukaryotic ER or prokary-
otic plasma membrane. ' 
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Mammalian Co-translational Yeast Post-trans!ationai 

Figure 2. Pathways of ER protein translocation. The principal machinery and steps of the eukaryotic 
cotranslational and post-translational pathways are shown on the left and right, respectively. The compo
nents of each pathway that are conserved in all organisms (in both prokaryotes and eukaryotes) are shaded, 
and include the signal sequence, ribosome, SRP54 (along with a portion of its associated SRP RNA), SRa, 
and the Sec61 complex. Various other components that ftinction in each pathway are also shown. The GTP-
and GDP-bound states of the cotranslational targeting machinery are displayed with 'T ' and 'D ' respec
tively. The center two diagrams depict the comparable 'committed' stages of the two pathways to illustrate 
that in both, the Sec61 complex serves the same passive role as the channel while the associated components 
ftmaion to keep the polypeptide unfolded and move it vectorally into the lumen. 

Molecular Details 
Signal sequence recognition and targeting is understood in the greatest molecular detail 

for the cotranslational (i.e., SRP-dependent) pathway in eukaryotes. This is largely because 
the remarkable evolutionary conservation of this pathway from Bacteria to mammals has 
allowed the experimental results from multiple systems and approaches to be combined. In 
higher eukaryotes, SRP is a ribonucleoprotein composed of six proteins (named by their 
apparent molecular weights: SRP72, SRP68, SRP54, SRP19, SRP14, andSRP9) a n d a - 3 0 0 
nucleotide RNA (termed 7SL RNA or SRP RNA).^^'^^ Of these components , SRP54 and a 
portion of the RNA are directly involved in both signal sequence recognition and the inter
action with SR. Indeed, these two components define the minimal SRP that can be found in 
all organisms of every kingdom of life.^ In almost all Bacteria, only these two components 
are found, indicating that thev can perform all of the recognition and targeting functions 
necessary for translocation.^''^ 

Structural analysis of SRP54 homologues from several organisms ^' ^ has revealed that it 
is universally organized into three functional segments: the M, N , and G domains. Of these, 
the M domain recognizes signal sequences via a deep, hydrophobic groove lined by the flexible 
side chains of several methionines. Phosphates of the RNA backbone are near one end of this 
groove, and may interact with basic residues that are often (but not always) adjacent to the 
hydrophobic core of signal sequences and transmembrane domains. These and other conserved 
features of SRP54 help to explain how it can accommodate a wide range of signal sequences 
whose only common feature is a hydrophobic segment, and why signals from diversely differ
ent organisms are often interchangeable. 

In addition to signal sequence recognition, the other essential function of SRP is its inter
action with SR to ensure the targeting of nascent secretory and membrane proteins to the 
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translocon. The tight coordination of the series of interactions that imparts unidirectionality to 
the targeting phase of translocation is through the regulated GTPase activities of SRP and SR. 
The GTPase component of SRP resides in the G domain of SRP54 (see ref 35). In eukaryotes, 
SR is a heterodimer of a and p subunits, both of which are GTPases.^^'^^ Of these, SRa is 
highly conserved from prokaryotes to mammals and, together with SRP54 and SRP RNA, 
represents the minimal targeting machinery found in all organisms. Detailed mechanistic 
and structural analysis of this minimal SRP pathway, mosdy using the model bacterial system, 
has revealed the essential aspects of their regulation during cotranslational targeting. 

In the current working model, free SRP in the cytosol is in the GDP-bound state. Its 
association with the ribosome stimulates GTP binding, and subsequent association with the 
signal sequence inhibits GTP hydrolysis.^^'^^ Thus, the signal-SRP-ribosome ternary complex 
is likely to be in the GTP-bound state. Although less direct evidence exists for SRa, it is thought 
that its association with a vacant translocon at the membrane (directly in the case of prokary
otes, and indirectly via SRp in eukaryotes) may similarly allow GTP binding and prevent GTP 
hydrolysis. Thus, the SR-translocon complex would also be in the GTP-bound state. The 
GTP-bound forms of SRP54 and SRa have a high affinity for each other, allowing the deliv
ery of signal-containing RNCs to the close proximity of an appropriately vacant translocon. ' 

The interaction between the GTPase domains of SRa and SRP54 stimulate the hydroly
sis of GTP by each other (thereby acting as GTPase activating proteins, or GAPs, for one 
another).^ The change in conformation that accompanies this GTP hydrolysis results in a 
weakening of the interaction between SRa and SRP54, allowing this complex to be dissociated 
for another round of targeting.^ '̂ '̂̂ ^ Many of the molecular details of this generally appealing 
scheme remain to be elucidated. For example, SRP RNA,^ '̂̂ ^ as well as the translocon^ '̂̂ '̂  and 
the ribosome, clearly facilitate aspects of SRP-SR interactions and their GTPase activities. 
However, the precise mechanisms remain elusive at the present time. The recently emerging 
wealth of structural information on SRP and SR should help to illuminate the molecular de
tails of this framework. 

Beyond these essential functions performed by the minimal components, the significandy 
more complex eukaryotic SRP and SR are likely to confer additional functionality and advan
tages to the cell. One such eukaryotic-specific feature is the slowing of translation upon signal 
sequence binding by SRP, a phenomenon termed 'elongation-arrest'. The mechanism ap
pears to involve occlusion of the elongation factor binding site on the ribosome by the SRP9 
and SRP 14 subunits of SRP. The resulting decrease in translational rate serves to increase the 
time available for targeting to the translocation channel before excessive polypeptide synthesis 
precludes cotranslational transport. While translational attenuation by SRP is not essential for 
translocation, it appears to be physiologically important under at least some growth condi
tions in vivo.^^ Whether the other subunits of SRP (SRP68, SRP72, and SRP19), each of 
which is important for assembly (particularly SRP 19) and stability of the complete particle,^^ 
confer yet additional functionality to eukaryotic SRP remains largely unknown. Similarly, SRP, 
a homolog for which does not exist in prokaryotes, is likely to provide the bridge that further 
regulates the coordinated transfer of RNCs from SRP to the translocon. This appears to be 
accomplished by the regulation of SRP GTPase activity by both the ribosome ^ and the 
translocon, with accompanying conformational changes that are suggested to affect the 
RNC-SRP54-SRa-SRp interactions.^^ 

Signal sequences and transmembrane domains are also recognized by the translocon at the 
membrane in all modes of translocation. '̂ '̂'̂ '̂̂ ^ The purpose of this recognition is two-fold. 
First, it provides a mechanism for discriminating translocation substrates from other proteins. 
This is the sole discriminatory step in post-translational translocation, and a secondary (or 
'proofreading') step in cotranslational translocation. Second, signal recognition by the translocon 
is essential for its opening (or gating) in preparation for substrate transport. ' Since the core 


