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Preface

When we agreed to share all of our preparation of exercises in sampling theory
to create a book, we were not aware of the scope of the work. It was indeed
necessary to compose the information, type out the compilations, standardise
the notations and correct the drafts. It is fortunate that we have not yet
measured the importance of this project, for this work probably would never
have been attempted!

In making available this collection of exercises, we hope to promote the
teaching of sampling theory for which we wanted to emphasise its diversity.
The exercises are at times purely theoretical while others are originally from
real problems, enabling us to approach the sensitive matter of passing from
theory to practice that so enriches survey statistics.

The exercises that we present were used as educational material at the
École Nationale de la Statistique et de l’Analyse de l’Information (ENSAI),
where we had successively taught sampling theory. We are not the authors of
all the exercises. In fact, some of them are due to Jean-Claude Deville and
Laurent Wilms. We thank them for allowing us to reproduce their exercises.
It is also possible that certain exercises had been initially conceived by an
author that we have not identified. Beyond the contribution of our colleagues,
and in all cases, we do not consider ourselves to be the lone authors of these
exercises: they actually form part of a common heritage from ENSAI that has
been enriched and improved due to questions from students and the work of
all the demonstrators of the sampling course at ENSAI.

We would like to thank Laurent Wilms, who is most influential in the or-
ganisation of this practical undertaking, and Sylvie Rousseau for her multiple
corrections of a preliminary version of this manuscript. Inès Pasini, Yves-Alain
Gerber and Anne-Catherine Favre helped us over and over again with typing
and composition. We also thank ENSAI, who supported part of the scientific
typing. Finally, we particularly express our gratitude to Marjolaine Girin for
her meticulous work with typing, layout and composition.

Pascal Ardilly and Yves Tillé
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1

Introduction

1.1 References

This book presents a collection of sampling exercises covering the major chap-
ters of this branch of statistics. We do not have as an objective here to present
the necessary theory for solving these exercises. Nevertheless, each chapter
contains a brief review that clarifies the notation used. The reader can consult
more theoretical works. Let us first of all cite the books that can be considered
as classics: Yates (1949), Deming (1950), Hansen et al. (1993a), Hansen et al.
(1993b), Deming (1960), Kish (1965), Raj (1968), Sukhatme and Sukhatme
(1970), Konijn (1973), Cochran (1977), a simple and clear work that is very
often cited as a reference, and Jessen (1978). The post-mortem work of Há-
jek (1981) remains a masterpiece but is unfortunately difficult to understand.
Kish (1989) offered a practical and interesting work which largely transcends
the agricultural domain. The book by Thompson (1992) is an excellent pre-
sentation of spatial sampling. The work devoted to the basics of sampling
theory has been recently republished by Cassel et al. (1993). The modern ref-
erence book for the past 10 years remains the famous Särndal et al. (1992),
even if other interesting works have been published like Hedayat and Sinha
(1991), Krishnaiah and Rao (1994), or the book Valliant et al. (2000), dedi-
cated to the model-based approach. The recent book by Lohr (1999) is a very
pedagogical work which largely covers the field. We recommend it to discover
the subject. We also cite two works exclusively established in sampling with
unequal probabilities: Brewer and Hanif (1983) and Gabler (1990), and the
book by Wolter (1985) being established in variance estimation.

In French, we can suggest in chronological order the books by Thionet
(1953) and by Zarkovich (1966) as well as that by Desabie (1966), which are
now classics. Then, we can cite the more recent books by Deroo and Dussaix
(1980), Gouriéroux (1981), Grosbras (1987), the collective work edited by
Droesbeke et al. (1987), the small book by Morin (1993) and finally the manual
of exercises published by Dussaix and Grosbras (1992). The ‘Que Sais-je?’
by Dussaix and Grosbras (1996) expresses an appreciable translation of the
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theory. Obviously, the two theoretical works proposed by the authors Ardilly
(1994) and Tillé (2001) are fully adapted to go into detail on the subject.
Finally, a very complete work is suggested, in Italian, by Cicchitelli et al.
(1992) and, in Chinese, by Ren and Ma (1996).

1.2 Population, variable and function of interest

Consider a finite population composed of N observation units; each of the
units can be identified by a label, of which the set is denoted

U = {1, ..., N}.
We are interested in a variable y which takes the value yk on unit k. These
values are not random. The objective is to estimate the value of a function of
interest

θ = f(y1, ..., yk, ..., yN ).

The most frequent functions are the total

Y =
∑
k∈U

yk,

the mean
Y =

1
N

∑
k∈U

yk =
Y

N
,

the population variance

σ2
y =

1
N

∑
k∈U

(
yk − Y

)2
,

and the corrected population variance

S2
y =

1
N − 1

∑
k∈U

(
yk − Y

)2
.

The size of the population is not necessarily known and can therefore be
considered as a total to estimate. In fact, we can write

N =
∑
k∈U

1.

1.3 Sample and sampling design

A sample without replacement s is a subset of U . A sampling design p(.) is a
probability distribution for the set of all possible samples such that
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p(s) ≥ 0, for all s ⊂ U and
∑
s⊂U

p(s) = 1.

The random sample S is a random set of labels for which the probability
distribution is

Pr(S = s) = p(s), for all s ⊂ U.

The sample size n(S) can be random. If the sample is of fixed size, we denote
the size simply as n. The indicator variable for the presence of units in the
sample is defined by

Ik =
{

1 if k ∈ S
0 if k /∈ S.

The inclusion probability is the probability that unit k is in the sample

πk = Pr(k ∈ S) = E(Ik) =
∑
s�k

p(s).

This probability can (in theory) be deduced from the sampling design. The
second-order inclusion probability is

πk� = Pr(k ∈ S and � ∈ S) = E(IkI�) =
∑

s�k,�

p(s).

Finally, the covariance of the indicators is

∆k� = cov(Ik, I�) =
{

πk(1 − πk) if � = k
πk� − πkπ� if � �= k.

(1.1)

If the design is of fixed size n, we have∑
k∈U

πk = n,
∑
k∈U

πk� = nπ�, and
∑
k∈U

∆k� = 0.

1.4 Horvitz-Thompson estimator

The Horvitz-Thompson estimator of the total is defined by

Ŷπ =
∑
k∈S

yk

πk
.

This estimator is unbiased if all the first-order inclusion probabilities are
strictly positive. If the population size is known, we can estimate the mean
with the Horvitz-Thompson estimator:

Ŷ π =
1
N

∑
k∈S

yk

πk
.
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The variance of Ŷπ is

var(Ŷπ) =
∑
k∈U

∑
�∈U

yky�

πkπ�
∆k�.

If the sample is of fixed size (var(#S) = 0), then Sen (1953) and Yates and
Grundy (1953) showed that the variance can also be written

var(Ŷπ) = −1
2

∑
k∈U

∑
�∈U

(
yk

πk
− y�

π�

)2

∆k�.

The variance can be estimated by:

v̂ar(Ŷπ) =
∑
k∈S

∑
�∈S

yky�

πkπ�

∆k�

πk�
,

where πkk = πk. If the design is of fixed size, we can construct another esti-
mator from the Sen-Yates-Grundy expression:

v̂ar(Ŷπ) = −1
2

∑
k∈S

∑
�∈S,
� �=k

(
yk

πk
− y�

π�

)2
∆k�

πk�
.

These two estimators are unbiased if all the second-order inclusion proba-
bilities are strictly positive. When the sample size is ‘sufficiently large’ (in
practice, a few dozen most often suffices), we can construct confidence inter-
vals with a confidence level of (1 − α) for Y according to:

CI(1 − α) =
[
Ŷπ − z1−α/2

√
var(Ŷπ), Ŷπ + z1−α/2

√
var(Ŷπ)

]
,

where z1−α/2 is the (1− α/2)-quantile of a standard normal random variable
(see Tables 10.1, 10.2, and 10.3). These intervals are estimated by replacing
var(Ŷπ) with v̂ar(Ŷπ).
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Simple Random Sampling

2.1 Simple random sampling without replacement

A design is simple without replacement of fixed size n if and only if, for all s,

p(s) =

{(
N

n

)−1

if #s = n

0 otherwise,

or (
N

n

)
=

N !
n!(N − n)!

.

We can derive the inclusion probabilities

πk =
n

N
, and πk� =

n(n − 1)
N(N − 1)

.

Finally,

∆k� =
n(N − n)

N2
×
{

1 if k = �
−1

N − 1
if k �= �.

The Horvitz-Thompson estimator of the total becomes

Ŷπ =
N

n

∑
k∈S

yk.

That for the mean is written as

Ŷ π =
1
n

∑
k∈S

yk.

The variance of Ŷπ is

var(Ŷπ) = N2
(
1 − n

N

) S2
y

n
,
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and its unbiased estimator

v̂ar(Ŷπ) = N2(1 − n

N
)
s2

y

n
,

where
s2

y =
1

n − 1

∑
k∈S

(
yk − Ŷ π

)2

.

The Horvitz-Thompson estimator of the proportion PD that represents a sub-
population D in the total population is

p =
nD

n
,

where nD = #(S ∩ D), and p is the proportion of individuals of D in S. We
verify:

var(p) =
(
1 − n

N

) PD(1 − PD)
n

N

N − 1
,

and we estimate without bias this variance by

v̂ar(p) =
(
1 − n

N

) p(1 − p)
n − 1

.

2.2 Simple random sampling with replacement

If m units are selected with replacement and with equal probabilities at each
trial in the population U , then we define ỹi as the value of the variable y for
the i-th selected unit in the sample. We can select the same unit many times
in the sample. The mean estimator

Ŷ WR =
1
m

m∑
i=1

ỹi,

is unbiased, and its variance is

var(Ŷ WR) =
σ2

y

m
.

In a simple design with replacement, the sample variance

s̃2
y =

1
m − 1

m∑
i=1

(ỹi − Ŷ WR)2,

estimates σ2
y without bias. It is possible however to show that if we are inter-

ested in nS units of sample S̃ for distinct units, then the estimator

Ŷ DU =
1

nS

∑
k∈S̃

yk,

is unbiased for the mean and has a smaller variance than that of Ŷ WR. Ta-
ble 2.1 presents a summary of the main results under simple designs.
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Table 2.1. Simple designs : summary table

Simple sampling design Without replacement With replacement

Sample size n m

Mean estimator Ŷ =
1

n

∑
k∈S

yk Ŷ WR =
1

m

m∑
i=1

ỹi

Variance of the mean estimator var
(
Ŷ
)

=
(N − n)

nN
S2

y var
(
Ŷ WR

)
=

σ2
y

m

Expected sample variance E
(
s2

y

)
= S2

y E
(
s̃2

y

)
= σ2

y

Variance estimator of the mean
estimator

v̂ar
(
Ŷ
)

=
(N − n)

nN
s2

y v̂ar
(
Ŷ WR

)
=

s̃2
y

m

EXERCISES

Exercise 2.1 Cultivated surface area
We want to estimate the surface area cultivated on the farms of a rural town-
ship. Of the N = 2010 farms that comprise the township, we select 100 using
simple random sampling. We measure yk, the surface area cultivated on the
farm k in hectares, and we find∑

k∈S

yk = 2907 ha and
∑
k∈S

y2
k = 154593 ha2.

1. Give the value of the standard unbiased estimator of the mean

Y =
1
N

∑
k∈U

yk.

2. Give a 95 % confidence interval for Y .

Solution
In a simple design, the unbiased estimator of Y is

Ŷ =
1
n

∑
k∈S

yk =
2907
100

= 29.07 ha.

The estimator of the dispersion S2
y is

s2
y =

n

n − 1

(
1
n

∑
k∈S

y2
k − Ŷ

2
)

=
100
99

(
154593

100
− 29.072

)
= 707.945.
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The sample size n being ‘sufficiently large’, the 95% confidence interval is
estimated in hectares as follows:[

Ŷ ± 1.96

√
N − n

N

s2
y

n

]
=

[
29.07 ± 1.96

√
2010 − 100

2010
× 707.45

100

]
= [23.99; 34.15] .

Exercise 2.2 Occupational sickness
We are interested in estimating the proportion of men P affected by an oc-
cupational sickness in a business of 1500 workers. In addition, we know that
three out of 10 workers are usually affected by this sickness in businesses of
the same type. We propose to select a sample by means of a simple random
sample.

1. What sample size must be selected so that the total length of a confidence
interval with a 0.95 confidence level is less than 0.02 for simple designs
with replacement and without replacement ?

2. What should we do if we do not know the proportion of men usually
affected by the sickness (for the case of a design without replacement) ?

To avoid confusions in notation, we will use the subscript WR for estimators
with replacement, and the subscript WOR for estimators without replace-
ment.

Solution

1. a) Design with replacement.
If the design is of size m, the length of the (estimated) confidence
interval at a level (1 − α) for a mean is given by

CI(1 − α) =

[
Ŷ − z1−α/2

√
s̃2

y

m
, Ŷ + z1−α/2

√
s̃2

y

m

]
,

where z1−α/2 is the quantile of order 1 − α/2 of a random normal stan-
dardised variate. If we denote P̂WR as the estimator of the proportion
for the design with replacement, we can write

CI(1 − α) =

⎡⎣P̂WR − z1−α/2

√
P̂WR(1 − P̂WR)

m − 1
,

P̂WR + z1−α/2

√
P̂WR(1 − P̂WR)

m − 1

⎤⎦ .
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Indeed, in this case,

v̂ar(P̂WR) =
P̂WR(1 − P̂WR)

(m − 1)
.

So that the total length of the confidence interval does not exceed
0.02, it is necessary and sufficient that

2z1−α/2

√
P̂WR(1 − P̂WR)

m − 1
≤ 0.02.

By dividing by two and squaring, we get

z2
1−α/2

P̂WR(1 − P̂WR)
m − 1

≤ 0.0001,

which gives

m − 1 ≥ z2
1−α/2

P̂WR(1 − P̂WR)
0.0001

.

For a 95% confidence interval, and with an estimator of P of 0.3
coming from a source external to the survey, we have z1−α/2 = 1.96,
and

m = 1 + 1.962 × 0.3 × 0.7
0.0001

= 8068.36.

The sample size (m=8069) is therefore larger than the population
size, which is possible (but not prudent) since the sampling is with
replacement.

b) Design without replacement.
If the design is of size n, the length of the (estimated) confidence
interval at a level 1 − α for a mean is given by

CI(1 − α) =

[
Ŷ − z1−α/2

√
N − n

N

s2
y

n
, Ŷ + z1−α/2

√
N − n

N

s2
y

n

]
.

For a proportion P and denoting P̂WOR as the estimator of the pro-
portion for the design without replacement, we therefore have

CI(1 − α) =

⎡⎣P̂WOR − z1−α/2

√
N − n

N

P̂WOR(1 − P̂WOR)
n − 1

,

P̂WOR + z1−α/2

√
N − n

N

P̂WOR(1 − P̂WOR)
n − 1

⎤⎦ .

So the total length of the confidence interval does not surpass 0.02, it
is necessary and sufficient that
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2z1−α/2

√
N − n

N

P̂WOR(1 − P̂WOR)
n − 1

≤ 0.02.

By dividing by two and by squaring, we get

z2
1−α/2

N − n

N

P̂WOR(1 − P̂WOR)
n − 1

≤ 0.0001,

which gives

(n − 1) × 0.0001− z2
1−α/2

N − n

N
P̂WOR(1 − P̂WOR) ≥ 0,

or again

n

{
0.0001 + z2

1−α/2

1
N

P̂WOR(1 − P̂WOR)
}

≥ 0.0001 + z2
1−α/2P̂WOR(1 − P̂WOR),

or

n ≥
0.0001 + z2

1−α/2P̂WOR(1 − P̂WOR){
0.0001 + z2

1−α/2
1
N P̂WOR(1 − P̂WOR)

} .

For a 95% confidence interval, and with an a priori estimator of P of
0.3 coming from a source external to the survey, we have

n ≥ 0.0001 + 1.962 × 0.30 × 0.70{
0.0001 + 1.962 × 1

1500 × 0.30 × 0.70
} = 1264.98.

Here, a sample size of 1265 is sufficient. The obtained approximation
justifies the hypothesis of a normal distribution for P̂WOR. The impact
of the finite population correction (1−n/N) can therefore be decisive
when the population size is small and the desired accuracy is relatively
high.

2. If the proportion of affected workers is not estimated a priori, we are
placed in the most unfavourable situation, that is, one where the variance
is greatest: this leads to a likely excessive size n, but ensures that the
length of the confidence interval is not longer than the fixed threshold of
0.02. For the design without replacement, this returns to taking a pro-
portion of 50%. In this case, by adapting the calculations from 1-(b), we
find n ≥ 1298. We thus note that a significant variation in the proportion
(from 30% to 50%) involves only a minimal variation in the sample size
(from 1265 to 1298).
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Exercise 2.3 Probability of inclusion and design with replacement
In a simple random design with replacement of fixed size m in a population
of size N ,

1. Calculate the probability that an individual k is selected at least once in
a sample.

2. Show that

Pr(k ∈ S) =
m

N
+ O

(
m2

N2

)
,

when m/N is small. Recall that a function f(n) of n is of order of magni-
tude g(n) (noted f(n) = O(g(n))) if and only if f(n)/g(n) is limited,
that is to say there exists a quantity M such that, for any n ∈ N,
|f(n)|/g(n) ≤ M.

3. What are the conclusions ?

Solution

1. We obtain this probability from the complementary event:

Pr (k ∈ S) = 1 − Pr (k /∈ S) = 1 −
(

1 − 1
N

)m

.

2. Then, we derive

Pr (k ∈ S) = 1 −
(

1 − 1
N

)m

= 1 −
m∑

j=0

(
m

j

)(
− 1

N

)m−j

= 1 −
⎧⎨⎩

m−2∑
j=0

(
m

j

)(
− 1

N

)m−j

− m

N
+ 1

⎫⎬⎭ =
m

N
−

m−2∑
j=0

(
m

j

)(
− 1

N

)m−j

=
m

N
+ O

(
m2

N2

)
.

3. We conclude that if the sampling rate m/N is small, (m/N)2 is negligible
in relation to m/N. We then again find the probability of inclusion of a
sample without replacement, because the two modes of sampling become
indistinguishable.

Exercise 2.4 Sample size
What sample size is needed if we choose a simple random sample to find,
within two percentage points (at least) and with 95 chances out of 100, the
proportion of Parisians that wear glasses ?
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Solution
There are two reasonable positions from which to deal with these issues:

• The size of Paris is very large: the sampling rate is therefore negligible.
• Obviously not having any a priori information on the population sought

after, we are placed in a situation which leads to a maximum sample size
(strong ‘precautionary’ stance), having P = 50 %. If the reality is different
(which is almost certain), we have in fine a lesser uncertainty than was
fixed at the start (2 percentage points).

We set n in a way so that

1.96 ×
√

P (1 − P )
n

= 0.02, with P = 0.5,

hence n = 2 401 people.

Exercise 2.5 Number of clerics
We want to estimate the number of clerics in the French population. For that,
we choose to select n individuals using a simple random sample. If the true
proportion (unknown) of clerics in the population is 0.1 %, how many people
must be selected to obtain a coefficient of variation CV of 5 % ?

Solution
By definition:

CV =
σ(Np)
NP

=
σ(p)
P

,

where P is the true proportion to estimate (0.1 % here) and p its unbiased
estimator, which is the proportion of clerics in the selected sample. A CV of
5 % corresponds to a reasonably ‘average’ accuracy. In fact,

var(p) ≈ P (1 − P )
n

(f a priori negligible compared to 1).

Therefore,

CV =

√
(1 − P )

nP
≈ 1√

nP
= 0.05,

which gives

n =
1

0.001
× 1

0.052
= 400 000.

This large size, impossible in practice to obtain, is a direct result of the scarcity
of the sub-population studied.
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Exercise 2.6 Size for proportions
In a population of 4 000 people, we are interested in two proportions:

P1 = proportion of individuals owning a dishwasher,
P2 = proportion of individuals owning a laptop computer.

According to ‘reliable’ information, we know a priori that:

45 % ≤ P1 ≤ 65 %, and 5 % ≤ P2 ≤ 10 %.

What does the sample size n have to be within the framework of a simple
random sample if we want to know at the same time P1 near ± 2 % and P2

near ± 1 %, with a confidence level of 95 % ?

Solution
We estimate without bias Pi, (i = 1, 2) by the proportion pi calculated in the
sample:

var(pi) =
(
1 − n

N

) 1
n

N

N − 1
Pi(1 − Pi).

We want

1.96 ×
√

var(p1) ≤ 0.02, and 1.96 ×
√

var(p2) ≤ 0.01.

In fact ,
max

45%≤P1≤65 %
P1(1 − P1) = 0.5(1 − 0.5) = 0.25,

and
max

5 %≤P2≤10%
P2(1 − P2) = 0.1(1 − 0.1) = 0.09.

The maximum value of Pi(1 − Pi) is 0.25 (see Figure 2.1) and leads to a
maximum n (as a security to reach at least the desired accuracy).
It is jointly necessary that

Fig. 2.1. Variance according to the proportion: Exercise 2.6
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)
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(
1 − n

N

) 1
n

N

N − 1
× 0.25 ≤

(
0.02
1.96

)2

(
1 − n

N

) 1
n

N

N − 1
× 0.09 ≤

(
0.01
1.96

)2

,

which implies that {
n ≥ 1 500.62

n ≥ 1 854.74.

The condition on the accuracy of p2 being the most demanding, we conclude
in choosing: n = 1 855.

Exercise 2.7 Estimation of the population variance
Show that

σ2
y =

1
N

∑
k∈U

(
yk − Y

)2
=

1
2N2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)
2
. (2.1)

Use this equality to (easily) find an unbiased estimator of the population
variance S2

y in the case of simple random sampling where S2
y = Nσ2

y/(N − 1).

Solution
A first manner of showing this equality is the following:

1
2N2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)
2 =

1
2N2

∑
k∈U

∑
�∈U

(yk − y�)
2

=
1

2N2

(∑
k∈U

∑
�∈U

y2
k +

∑
k∈U

∑
�∈U

y2
� − 2

∑
k∈U

∑
�∈U

yky�

)

=
1
N

∑
k∈U

y2
k − 1

N2

∑
k∈U

∑
�∈U

yky� =
1
N

∑
k∈U

y2
k − Y

2

=
1
N

∑
k∈U

(yk − Y )2 = σ2
y .

A second manner is:
1

2N2

∑
k∈U

∑
�∈U
� �=k

(yk − y�)2 =
1

2N2

∑
k∈U

∑
�∈U

(yk − Y − y� + Y )2

=
1

2N2

∑
k∈U

∑
�∈U

{
(yk − Y )2 + (y� − Y )2 − 2(yk − Y )(y� − Y )

}
=

1
2N

∑
k∈U

(yk − Y )2 +
1

2N

∑
�∈U

(y� − Y )2 + 0 = σ2
y .
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The unbiased estimator of σ2
y is

σ̂2
y =

1
2N2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)
2

πk�
,

where πk� is the second-order inclusion probability. With a simple design
without replacement of fixed sample size,

πk� =
n(n − 1)
N(N − 1)

,

thus
σ̂2

y =
N(N − 1)
n(n − 1)

1
2N2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)
2 .

By adapting (2.1) with the sample S (in place of U), we get:

1
2n2

∑
k∈S

∑
�∈S
� �=k

(yk − y�)2 =
1
n

∑
k∈S

(yk − Ŷ )2,

where
Ŷ =

1
n

∑
k∈S

yk.

Therefore

σ̂2
y =

(N − 1)
N

1
n − 1

∑
k∈S

(
yk − Ŷ

)2

=
N − 1

N
s2

y.

We get

σ̂2
y =

N − 1
N

s2
y, and Ŝ2

y =
N

N − 1
σ̂2

y = s2
y.

This result is well-known and takes longer to show if we do not use the equality
(2.1).

Exercise 2.8 Repeated survey
We consider a population of 10 service-stations and are interested in the price
of a litre of high-grade petrol at each station. The prices during two consecu-
tive months, May and June, appears in Table 2.2.

1. We want to estimate the evolution of the average price per litre between
May and June. We choose as a parameter the difference in average prices.
Method 1: we sample n stations (n < 10) in May and n stations in June,
the two samples being completely independent ;
Method 2: we sample n stations in May and we again question these sta-
tions in June (panel technique).
Compare the efficiency of the two concurrent methods.
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Table 2.2. Price per litre of high-grade petrol: Exercise 2.8

Station 1 2 3 4 5 6 7 8 9 10
May 5.82 5.33 5.76 5.98 6.20 5.89 5.68 5.55 5.69 5.81
June 5.89 5.34 5.92 6.05 6.20 6.00 5.79 5.63 5.78 5.84

2. The same question, if we this time want to estimate an average price
during the combined May-June period.

3. If we are interested in the average price in Question 2, would it not be
better to select instead of 10 records twice with Method 1 (10 per month),
directly 20 records without worrying about the months (Method 3) ? No
calculation is necessary.

N.B.: Question 3 is related to stratification.

Solution

1. We denote pm as the simple average of the recorded prices among the n
stations for month m (m = May or June).
We have:

var(pm) =
1 − f

n
S2

m,

where S2
m is the variance of the 10 prices relative to month m.

• Method 1. We estimate without bias the evolution of prices by pJune−
pMay (the two estimators are calculated on two different a priori sam-
ples) and

var1(pJune − pMay) =
1 − f

n
(S2

May + S2
June).

Indeed, the covariance is null because the two samples (and therefore
the two estimators pMay and pJune) are independent.

• Method 2. We have only one sample (the panel). Still, we estimate the
evolution of prices without bias by pJune − pMay, and

var2(pJune − pMay) =
1 − f

n
(S2

May + S2
June − 2SMay, June).

This time, there is a covariance term, with:

cov (pMay, pJune) =
1 − f

n
SMay, June,

where SMay, June represents the true empirical covariance between the
10 records in May and the 10 records in June. We therefore have:

var1(pJune − pMay)
var2(pJune − pMay)

=
S2

May + S2
June

S2
May + S2

June − 2SMay, June
.
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After calculating, we find:

S2
May = 0.05601

S2
June = 0.0564711

SMay, June = 0.0550289

⎫⎪⎪⎬⎪⎪⎭ ⇒ var1(pJune − pMay)
var2(pJune − pMay)

≈ (6.81)2.

The use of a panel allows for the division of the standard error by 6.81.
This enormous gain is due to the very strong correlation between the
prices of May and June (ρ ≈ 0.98): a station where high-grade petrol is
expensive in May remains expensive in June compared to other stations
(and vice versa). We easily verify this by calculating the true average
prices in May (5.77) and June (5.84): if we compare the monthly average
prices, only Station 3 changes position between May and June.

2. The average price for the two-month period is estimated without bias,
with the two methods, by:

p =
pMay + pJune

2
.

• Method 1:
var1(p) =

1
4
× 1 − f

n
[S2

May + S2
June].

• Method 2:

var2(p) =
1
4
× 1 − f

n
[S2

May + S2
June + 2SMay, June].

This time, the covariance is added (due to the ‘+’ sign appearing in
p).

In conclusion, we have

var1(p)
var2(p)

=
S2

May + S2
June

S2
May + S2

June + 2SMay, June
= (0.71)2 = 0.50.

The use of a panel proves to be ineffective: with equal sample sizes, we
lose 29 % of accuracy.
As the variances vary in 1/n, if we consider that the total cost of a survey
is proportional to the sample size, this result amounts to saying that for
a given variance, Method 1 allows a saving of 50 % of the budget in
comparison to Method 2: this is obviously strongly significant.

3. Method 1 remains the best. Indeed, Method 3 amounts to selecting a sim-
ple random sample of size 2n in a population of size 2N , whereas Method
1 amounts to having two strata each of size N and selecting n individuals
in each stratum: the latter instead gives a proportional allocation.
In fact, we know that for a fixed total sample (2n here), to estimate
a combined average, stratification with proportional allocation is always
preferable to simple random sampling.
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Exercise 2.9 Candidates in an election
In an election, there are two candidates. The day before the election, an opin-
ion poll (simple random sample) is taken among n voters, with n equal to at
least 100 voters (the voter population is very large compared to the sample
size). The question is to find out the necessary difference in percentage points
between the two candidates so that the poll produces the name of the winner
(known by census the next day) 95 times out of 100. Perform the numeric
application for some values of n.
Hints: Consider that the loser of the election is A and that the percentage of
votes he receives on the day of the election is PA ; the day of the sample, we
denote P̂A as the percentage of votes obtained by this candidate A.
We will convince ourselves of the fact that the problem above posed in ‘com-
mon terms’ can be clearly expressed using a statistical point of view: find the
critical region so that the probability of declaring A as the winner on the day
of the sample (while PA is in reality less than 50 %) is less than 5 %.

Solution
In adopting the terminology of test theory, we want a ‘critical region’ of the
form ]c, +∞[, the problem being to find c, with:

Pr[P̂A > c|PA < 50 %] ≤ 5 %

(the event PA < 50 % is by definition certain; it is presented for reference).
Indeed, the rule that will decide on the date of the sample who would win the
following day can only be of type ‘P̂ greater than a certain level’. We make
the hypothesis that P̂A ∼ N (PA, σ2

A), with:

σ2
A =

PA(1 − PA)
n

.

This approximation is justified because n is ‘sufficiently large’ (n ≥ 100). We
try to find c such that:

Pr

[
P̂A − PA

σA
>

c − PA

σA

∣∣∣∣∣PA < 50 %

]
≤ 5 %.

However, PA remains unknown. In reality, it is the maximum of these proba-
bilities that must be considered among all PA possible, meaning all PA < 0.5.
Therefore, we try to find c such that:

max
{PA}

Pr
[
N (0.1) >

c − PA

σA

∣∣∣∣PA < 0.5
]
≤ 0.05.

Now, the quantity
c − PA√
PA(1−PA)

n
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is clearly a decreasing function of PA (for PA < 0.5). We see that the maximum
of the probability is attained for the minimum (c − PA)/σA, or in other words
the maximum PA (subject to PA < 0.5). Therefore, we have PA = 50 %. We
try to find c satisfying:

Pr

⎡⎣N (0, 1) >
c − 0.5√

0.25
n

⎤⎦ ≤ 0.05.

Consulting a quantile table of the normal distribution shows that it is neces-
sary for:

c − 0.5√
0.25

n

= 1.65.

Conclusion: The critical region is{
P̂A >

1
2

+ 1.65

√
0.25
n

}
, that is

{
P̂A >

1
2

+
1.65
2
√

n

}
.

The difference in percentage points therefore must be at least the following:

P̂A − P̂B = 2P̂A − 1 ≥ 1.65√
n

.

If the difference in percentage points is at least equal to 1.65/
√

n, then we
have less than a 5 % chance of declaring A the winner on the day of the
opinion poll while in reality he will lose on the day of the elections, that is, we
have at least a 95 % chance of making the right prediction. Table 2.3 contains
several numeric applications. The case n = 900 corresponds to the opinion
poll sample size traditionally used for elections.

Table 2.3. Numeric applications: Exercise 2.9

n 100 400 900 2000 5000 10000
1.65/

√
n 16.5 8.3 5.5 3.7 2.3 1.7

Exercise 2.10 Select-reject method
Select a sample of size 4 in a population of size 10 using a simple random
design without replacement with the select-reject method. This method is
due to Fan et al. (1962) and is described in detail in Tillé (2001, p. 74). The
procedure consists of sequentially reading the frame. At each stage, we decide
whether or not to select a unit of observation with the following probability:

number of units remaining to select in the sample
number of units remaining to examine in the population

.
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Use the following observations of a uniform random variable over [0, 1]:

0.375489 0.624004 0.517951 0.0454450 0.632912
0.246090 0.927398 0.32595 0.645951 0.178048

Solution
Noting k as the observation number and j as the number of units already
selected at the start of stage k, the algorithm is described in Table 2.4. The
sample is composed of units {1, 4, 6, 8}.

Table 2.4. Select-reject method: Exercise 2.10

k uk j
n − j

N − (k − 1)
Ik

1 0.375489 0 4/10 = 0.4000 1
2 0.624004 1 3/9 = 0.3333 0
3 0.517951 1 3/8 = 0.3750 0
4 0.045450 1 3/7 = 0.4286 1
5 0.632912 2 2/6 = 0.3333 0
6 0.246090 2 2/5 = 0.4000 1
7 0.927398 3 1/4 = 0.2500 0
8 0.325950 3 1/3 = 0.3333 1
9 0.645951 4 0/2 = 0.0000 0
10 0.178048 4 0/1 = 0.0000 0

Exercise 2.11 Sample update method
In selecting a sample according to a simple design without replacement, there
exist several algorithms. One method proposed by McLeod and Bellhouse
(1983), works in the following manner:

• We select the first n units of the list.
• We then examine the case of record (n + 1). We select unit n + 1 with a

probability n/(n + 1). If unit n + 1 is selected, we remove one unit from
the sample that we selected at random and with equal probabilities.

• For the units k, where n + 1 < k ≤ N , we maintain this rule. Unit k is
selected with probability n/k. If unit k is selected, we remove one unit
from the sample that we selected at random and with equal probabilities.

1. We denote π
(k)
� as the probability that individual � is in the sample at

stage k, where (� ≤ k), meaning after we have examined the case of record
k (k ≥ n). Show that π

(k)
� = n/k. (It can be interesting to proceed in a

recursive manner.)
2. Verify that the final probability of inclusion is indeed that which we obtain

for a design with equal probabilities of fixed size.
3. What is interesting about this method?
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Solution

1. • If k = n, then π
(k)
� = 1 = n/n, for all � ≤ n.

• If k = n + 1, then we have directly π
(n+1)
n+1 = n/(n + 1). Furthermore,

for � < k,

π
(n+1)
� = Pr [unit � being in the sample at stage (n + 1)]

= Pr [unit (n + 1) not being selected at stage n]
+Pr [unit (n + 1) being selected at stage n]
×Pr [unit � not being removed at stage n]

= 1 − n

n + 1
+

n

n + 1
× n − 1

n
=

n

n + 1
.

• If k > n+1, we use a recursive proof. We suppose that, for all � ≤ k−1,

π
(k−1)
� =

n

k − 1
, (2.2)

and we are going to show that if (2.2) is true then, for all � ≤ k,

π
(k)
� =

n

k
. (2.3)

The initial conditions are confirmed since we have proven (2.3) for
k = n and k = n + 1. If � = k, then the algorithm directly gives

π
(k)
k =

n

k
.

• If � < k, then we calculate in the sample, using Bayes’ theorem,

πk
� = Pr [unit � being in the sample at stage k]

= Pr [unit k not being selected at stage k]
×Pr [unit � being in the sample at stage k − 1]
+Pr [unit k being selected at stage k]
×Pr [unit � being in the sample at stage k − 1]
×Pr [unit � not being removed at stage k]

= (1 − n

k
) × π

(k−1)
� +

n

k
× π

(k−1)
� × n − 1

n

= π
(k−1)
�

k − 1
k

=
n

k
.

2. At the end of the algorithm k = N and therefore π
(N)
� = n/N , for all

� ∈ U .


