Reviews in Fluorescence 2006

Chris D. Geddes Joseph R. Lakowicz (Eds.)

Reviews in Fluorescence 2006

Chris D. Geddes Institute of Fluorescence University of Maryland Biotechnology Institute Baltimore, MD 21201 USA chris@cfs.umbi.umd.edu Joseph R. Lakowicz Center for Fluorescence Spectroscopy University of Maryland Baltimore, MD 21201 USA lakowicz@cfs.umbi.umd.edu

ISBN-10: 0-387-29342-6 ISBN-13: 978-0387-29342-4

Printed on acid-free paper.

© 2006 Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, Inc., 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

Printed in the United States of America. (TB/MVY)

987654321

springer.com

PREFACE

This is the third volume in the Reviews in Fluorescence series. To date, two volumes have been both published and well received by the scientific community. Several book reviews have also favorably described the series as an "excellent compilation of material which is well balanced from authors in both the US and Europe". Of particular mention we note the recent book review in JACS by Gary Baker, Los Alamos.

In this 3rd volume we continue the tradition of publishing leading edge and timely articles from authors around the world. We hope you find this volume as useful as past volumes, which promises to be just as diverse with regard to content.

Finally, in closing, we would like to thank Dr Kadir Aslan for the typesetting of the entire volume and our counterparts at Springer, New York, for its timely publication.

Professor Chris D. Geddes Professor Joseph R. Lakowicz

August 20th 2005. Baltimore, Maryland, USA.

CONTRIBUTORS AND BIOGRAPHIES

Ousama M. A'Amar. Boston University, Department of Biomedical Engineering, Boston, MA

Ousama M. A'Amar is Senior Research Associate at the Biomedical Engineering Department of Boston University, MA since 2001. He received his BS in Electronics Engineering in 1989. He received his MS (1993) and PhD (1997) in automatic control and digital signal processing from the National Polytechnic Institute of Lorraine, France. His MS and PhD research work focused on optical biomedical signals; mainly Autofluorescence and Induced-Fluorescence for cancer diagnosis and treatment. In 1996, he received the European Diploma in Medical Lasers from the University Nancy I, France and won the Young Researcher Prize of the French Society of Medical Lasers (SFLM). He worked as: Assistant Professor at the department of Biomedical Engineering, Amman University, Jordan (1998/1999-2002/2003); Postdoctoral Research Associate at the Bioscience Division of Los Alamos National Laboratory, NM (1999-2001). He works in the field of biomedical optics and his research activities focus on optical biomedical signals and optical spectroscopy for cancer diagnosis and Photodynamic Therapy.

Amit Agrawal. Emory University and Georgia Institute of Technology, Atlanta, GA

Amit Agrawal is a graduate student in the third year in the Nie research group in biomedical engineering department at Georgia institute of technology and Emory University. He has a Master's degree (5 yr) in chemistry from Indian institute of technology Kanpur. His research includes ultrasensitive biological detection inside living cells and developing material and nanoparticles for use in novel cancer diagnostics schemes. His work involves nanoparticle functionalization, delivery and targeting of nanoparticles and design of novel spectroscopic and imaging instrument set ups. He is the author of several conference papers and peer reviewed journal articles.

Onur Alptürk. Department of Chemistry, Louisiana State University, Baton Rouge, LA

Christopher D. Anderson. Department of Surgery, Vanderbilt University Medical Center, Nashville, TN

CONTRIBUTORS

Renato J. Aguilera. Department of Biological Sciences, University of Texas at El Paso., El Paso, TX

Dr. Renato Aguilera obtained his Ph.D. from UC Berkeley in 1987 and was a professor at the University of California at Los Angeles from 1989 to 2002. Dr. Aguilera subsequently joined the biology department at the University of Texas at El Paso where he serves as the Director of the Biology Graduate Program and the RISE Research Scholars Program. He is also a member of the Board of Scientific Counselors of the National Institutes of Environmental Health and Safety (NIEHS). His work on the transcriptional regulation of the lymphocyte-specific Recombination Activating Genes (RAG) has been highly recognized and he has made significant contributions to others fields as well. Dr. Aguilera has many publications in high impact journals and holds a patent on an enzyme (DNase II) that is essential for engulfment-mediated DNA degradation. Most recently, Dr. Aguilera group has developed fluorescence-based assays for the rapid identification of cytotoxic and antimicrobial compounds generated by combinatorial chemistry.

Egidijus Auksorius. Imperial College London, U.K.

Richard K. P. Benninger. Imperial College London, U.K.

Axel Bergmann. Becker&Hickl GmbH, Nahmitzer Damm, Berlin, Germany.

Pieter de Beule. Imperial College London, U.K.

Irving J. Bigio. Boston University, Department of Biomedical Engineering and Electrical and Computer Engineering, Boston, MA

Franz Stanzel is head of the Bronchology Unit at the Asklepios Fachkliniken Munich-Gauting, Center for Respiratory Diseases and Thoracic Surgery, one of the biggest lung hospitals in Germany. He is a clinician of pulmonary medicine with a special interest on bronchology and the secretary of the Endoscopy Section of the German Society of Pneumology. Dr. Stanzel works since several years on interventional diagnostic and therapeutic procedures with the focus of lung cancer. The development of an autofluorescence bronchoscopy system together with Karl Häußinger braught early lung cancer into the center of his interest. He is an internationally accepted expert on autofluorescence bronchoscopy. Dr. Stanzel published a lot of scientific articles, papers, review articles and book chapters on bronchoscopy, interventional bronchology and fluorescent bronchoscopy

Rebecca A. Bozym. University of Maryland School of Medicine, Baltimore, MD

John D. Brennan. Department of Chemistry, McMaster University, Hamilton, Canada

John D. Brennan is an Associate Professor in the Department of Chemistry at McMaster University and holds the Canada Research Chair in Bioanalytical Chemistry. He has B.Sc., M.Sc. and Ph.D. degrees in analytical chemistry (fluorescence-based biosensors) from the University of Toronto and postdoctoral experience at the National Research Council of Canada in protein biophysics (time-resolved fluorescence). His current research primarily involves the entrapment of proteins within silica materials for the development of bioanalytical assays and devices. As part of this research, fluorescence methods are widely employed to examine the behaviour of proteins entrapped in silica. Dr Brennan has published over 80 scientific articles various aspects of protein immobilization and applications of fluorescence spectroscopy.

Denis Boudreau. Department of chemistry and Centre d'optique, photonique et laser, Université Laval, Québec, Canada

Denis Boudreau is Full Professor in the Department of Chemistry, and member of the Centre d'optique, photonique et laser (COPL) research center at Université Laval, Quebec City, Canada. He has a B.Sc. from Université de Sherbrooke, Canada, and a Ph.D. in analytical chemistry (plasma mass spectrometry) from the Université de Montréal, Canada. He is the Editor of Spectrochimica Acta Electronica. Dr Boudreau has published over 40 scientific articles, papers, review articles and book chapters on various aspects of chemical trace analysis.

Jan Willem Borst. MicroSpectroscopy Centre, Wageningen University, Dreijenlaan Wageningen, The Netherlands

Ru-xiu Cai. Department of Chemistry, Wuhan University, Wuhan, China.

Cai Ruxiu is a professor. Supervisor of PhD, Director of the Group of Molecular spectroscopy (includes fluorescence, stopped-flow fluorescence, Catalytic kinetic fluorescence) in Analytical Science center at Wuhan University, China. She has a M.S from Wuhan University. She was visiting professor at Lawrence Berkeley National Laboratory, Energy and Environment Division, U.S.A in 1997, and worked at University of Arizona. Tucson in 1990, 1992. She is the committee of Editor of the Journal of Analytical Science. Professor Cai get continually National science foundation founding for six times.and has published 150 Scientific articles, papers, review articles and book chapters on the principles and applications of fluorescence spectroscopy, UV-Visible spectroscopy and kinetic Analysis.

Nils Calander. Physics Department, Chalmers University of Technology, Göteborg, Sweden.

Ravi S. Chari. Department of Surgery, Vanderbilt University Medical Center, Nashville, TN

Ravi S. Chari is Associate Professor of Surgery and Cancer Biology, and Chief, Division of Hepatobiliary Surgery and Liver Transplantation at Vanderbilt University in Nashville, TN. He received his MD from the University of Saskatchewan, and his surgical training at Duke University. He is secretaryelect for the Society of University Surgeons and a member of the Scientific Committee of the International Hepato-Pancreato-Biliary Association (IHPBA) and was Program Chair of the 2004 IHPBA World Congress. He is a member of the Editorial Boards of the Journal of Surgical Research, HPB, World Journal of Surgery and Surgery. Dr Chari has published 100 scientific articles, papers, review articles and book chapters on liver and biliary surgery.

Herbert C. Cheung. Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL.

Herbert C. Cheung is Professor of Biochemistry, University of Alabama at Birmingham School of Medicine. He holds joint appointments as Adjunct Professor in the Department of Physics and Senior Scientist in the Comprehensive Cancer Center. He received a master degree in physical chemistry from Cornell University, and a bachelor's degree in chemistry and a Ph. D. in physical chemistry and physics from Rutgers University. Following a period of industrial research in polymer physics, he was a senior fellow at the Cardiovascular Research Institute, University of California San Francisco, where he began a career in fluorescence spectroscopy and in the biophysics of muscle contraction. His current work is focused on use of FRET in both equilibrium and kinetic studies to study conformational switching in molecular motors and cardiac myofilaments.

Robert M. Clegg. Physics Department, University of Illinois Champaign-Urbana, Illinois.

Wen-Ji Dong. Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL.

Jacinta D'souza. Department of Biological Sciences, Tata Institute of Fundamental Research Road, Mumbai, India.

Rory R. Duncan. Centre for Integrative Physiology, University of Edinburgh Medical School, Edinburgh, UK.

Christopher Dunsby. Imperial College London, U.K.

Guy Duportail. Faculte' de Pharmacie, Universite, Louis Pasteur de Strasbourg, Illkirch, France.

Daniel S. Elson. Imperial College London, U.K.

Jorge O. Escobedo. Department of Chemistry, Louisiana State University, Baton Rouge, LA.

Carol A. Fierke. University of Michigan, Ann Arbor, MI

Paul M. W. French. Imperial College London, U.K.

Xiaohu Gao. Emory University and Georgia Institute of Technology, Atlanta, GA

Xiaohu Gao is currently a postdoctoral fellow in the group of Dr. Shuming Nie. He earned his BS degree in chemistry from Nankai University (China), and his PhD degree in bioanalytical chemistry and nanotechnology from Indiana University – Bloomington. In the last 5 years, he published more than 20 papers, filed 4 patent applications, and delivered 15 invited talks at major conferences and academic institutions.

Neil Galletly. Imperial College London, U.K.

Anne Gibaud. Institut Curie, Paris, France.

Jean-François Gravel. Department of chemistry and Centre d'optique, photonique et laser, Université Laval, Québec, Canada

Jean-François Gravel is a Research Associate in the Department of Chemistry at Université Laval, Quebec City, Canada. He has a B.Sc. in chemistry and a Ph.D. in analytical chemistry (laser spectrochemical analysis) from the Université Laval, Canada. Dr Gravel has authored or co-authored over 15 scientific articles, papers, review articles and book chapters on laser spectrochemical analysis.

Laszlo Hegyi. Imperial College London, U.K.

Mark A. Hink. MicroSpectroscopy Centre, Wageningen University, Dreijenlaan Wageningen, The Netherlands

Arie van Hoek. MicroSpectroscopy Centre, Wageningen University, Dreijenlaan Wageningen, The Netherlands

Richard G.H. Immink. Laboratory for Biophysics, Wageningen University, Dreijenlaan, Wageningen, The Netherlands

Carey K. Johnson. Department of Chemistry, University of Kansas, Lawrence, KS.

CONTRIBUTORS

Kyu Kwang Kim. Department of Chemistry, Louisiana State University, Baton Rouge, LA

Mamata Kombrabail. Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India.

G. Krishnamoorthy. Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India.

G. Krishnamoorthy did his Masters in Science from University of Madras, India in 1974 and Ph.D. in Physical Biochemistry from the Tata Institute of Fundamental Research, Mumbai, India in 1980. Subsequently he had postdoctoral research training at the Biochemistry department, Cornell University during 1981-84. Following his return to India, he joined the Faculty at the Tata Institute of Fundamental Research, Mumbai as Research Associate. At present he holds the position of Professor in the department of chemical sciences. His research interest covers application of time domain fluorescence spectroscopy to a variety of problems in macromolecular systems of biological and artificial origins. His current focus lies on the elucidation of site-specific dynamics in proteins, nucleic acids, DNA-protein complexes, cell membranes and cell interior with emphasis on correlation of dynamics and function.

Peter M. P. Lanigan. Imperial College London, U.K.

John Lever. Imperial College London, U.K.

Wei-Chiang Lin. Department of Neuro-Engineering, Miami Children's Hospital, Miami, FL

Zhi-hong Liu. Department of Chemistry, Wuhan University, Wuhan, China.

Bernard Malfoy. Institut Curie, Paris, France

C. Mazzuca. Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Rome, Italy

James McGinty. Imperial College London, U.K.

Yves Mely. Faculte' de Pharmacie, Universite, Louis Pasteur de Strasbourg, Illkirch, France.

P.M. Krishna Mohan. Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India.

Jessica Montoya. Department of Biological Sciences, University of Texas at El Paso., El Paso, TX

Ian Munro. Imperial College London, U.K.

Nabanita Nag. Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India.

Mark A. A. Neil. Imperial College London, U.K.

Isabella Nougalli-Tonaco. MicroSpectroscopy Centre, Wageningen University, Dreijenlaan Wageningen, The Netherlands

Shuming Nie. Emory University and Georgia Institute of Technology, Atlanta, GA

Shuming Nie is a Professor of Biomedical Engineering, Chemistry, Hematology, and Oncology, and also directs the program in cancer nanotechnology and bioengineering in the Winship Cancer Institute. He is the author of more than 80 peer-reviewed papers, the inventor of 12 patents, and the speaker of more than 250 invited talks and keynote lectures. After serving on the chemistry faculty at Indiana University for 8 years, he and his group moved to the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory in 2002. His research interest is primarily in the areas of biomolecular engineering and nanotechnology, with a focus on bioconjugated nanoparticles for cancer molecular imaging, molecular profiling, pharmacogenomics, and targeted therapy. Professor Nie has received many awards and honors including the Rank Prize (London, UK), the Georgia Distinguished Cancer Scholar Award, the Beckman Young Investigator Award, the National Collegiate Inventors Award, and the Distinguished Overseas Scholar Award. Professor Nie received his BS degree from Nankai University (China) in 1983, earned his MS and PhD degrees from Northwestern University (1984-1990), and did postdoctoral research both at Georgia Tech and Stanford (1991-1993).

John P. Nolan. La Jolla Bioengineering Institute, La Jolla, CA

John P. Nolan is a Senior Scientist and Principal Investigator at the La Jolla Bioengineering Institute, La Jolla, California. He has B.S. degrees from the University of Illinois, Urbana-Champaign in biology and chemistry and a Ph.D. in biochemistry from the Pennsylvania State University. He did post-doctoral work at Penn State and Los Alamos National Laboratory, where he was also a Technical Staff Member and Director of the NIH National Flow Cytometry Resource. Dr. Nolan's research interests are in the area of development and application of technology for the quantitative molecular analysis of biological systems. Jamie K. Pero. Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Jamie K. Pero received an Honors B.S. degree in Chemistry in 2002 from the University of Utah and is currently a Ph.D. Candidate in Analytical Chemistry in the Department of Chemistry at the University of North Carolina at Chapel Hill. She has received several honors, has participated in a wide variety of community service and humanitarian projects, and has thus far published two scientific articles.

B. *Pispisa*. Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Rome, Italy

Basilio Pispisa is Full Professor of Physical Chemistry at the University of Roma Tor Vergata (Rome, Italy). He has a doctorate degree from the University of Pisa, and spent a few years in USA, at the Polymer Research Institute of the Polytechnic Institute of Brooklyn (New York). He is fellow of the American Peptide Society, of the Biophysical Society, of the Protein Society and of the European Peptide Society.

E. Shane Price. Department of Chemistry, University of Kansas, Lawrence, KS.

Todd P. Primm. Department of Biological Sciences, Sam Houston State University, Hunsville, TX.

T. Ramreddy. Department of Chemical Sciences, Tata Institute of Fundamental Research, Mumbai, India.

B.J. Rao. Department of Biological Sciences, Tata Institute of Fundamental Research Road, Mumbai, India

Jose Requejo-Isidro. Imperial College London, U.K.

Gang Ruan. Emory University and Georgia Institute of Technology, Atlanta, GA

Gang Ruan is a postdoctoral research fellow in the joint Department of Biomedical Engineering of Georgia Institute of Technology (School of Engineering) and Emory University (School of Medicine). He received his PhD from the National University of Singapore. He has published 9 scientific journal articles. Dr Ruan's current research interest is biomolecular engineering and bionanotechnology.

Oleksandr Rusin. Department of Chemistry, Louisiana State University, Baton Rouge, LA

Ann Sandison. Imperial College London, U.K.

Brian D. Slaughter. Department of Chemistry, University of Kansas, Lawrence, KS.

Andrew M. Smith. Emory University and Georgia Institute of Technology, Atlanta, GA

Andrew Smith is a third-year graduate student in the biomedical engineering department at Georgia Institute of Technology and Emory University. He obtained his BS degree from Georgia Institute of Technology. His research interest is in the areas of biomolecular engineering and nanotechnology, with a particular focus on the development of near-infrared-emitting quantum dots for molecular profiling and imaging applications. He is the author of seven publications in the last two years.

Steven A. Soper. Department of Chemistry, Louisiana State University, Baton Rouge, LA

Steven A. Soper, Ph.D. is currently a professor of Chemistry and Mechanical Engineering at Louisiana State University (LSU) in Baton Rouge, LA. Steve received his Ph.D. from the University of Kansas in 1989 and then, was a post-doctoral fellow at Los Alamos National Laboratory where he was involved in developing fluorescence single molecule detection for high throughput DNA sequencing. He joined the faculty at LSU in 1991 and has been working on new fluorescence detection strategies for the analysis of DNA.

Pat Soutter. Imperial College London, U.K.

Gordon W. Stamp. Imperial College London, U.K.

L. Stella. Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Rome, Italy

Robert M. Strongin. Department of Chemistry, Louisiana State University, Baton Rouge, LA

Clifford Talbot. Imperial College London, U.K.

Nancy L. Thompson. Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC.

Nancy L. Thompson received a Ph.D. in Physics from the University of Michigan at Ann Arbor in 1982 and was then a Damon Runyon – Walter Winchell Postdoctoral Fellow in the Department of Chemistry at Stanford University. She has been a member of the Faculty of the Department of Chemistry at the University of North Carolina at Chapel Hill since 1985 where

CONTRIBUTORS

she currently holds the position of Professor of Chemistry. She has received several honors including a National Science Foundation Presidential Young Investigator Award, the Margaret Oakley Dayhoff Award from the Biophysical Society, a Dreyfus Teacher-Scholar Award, and the Hettleman Prize from the University of North Carolina at Chapel Hill. She has served on a variety of Editorial Boards and published numerous scientific articles in the fields of membrane biophysics and fluorescence microscopy.

Richard B. Thompson. University of Maryland School of Medicine, Baltimore, MD

Dr. Thompson was born in Ohio and raised north of Chicago, Illinois. He received a B.A. in Biology from Northwestern University; while there, he began biochemical studies with E. Margoliash. He received the Ph.D. in Biochemistry from the University of Illinois in Urbana-Champaign working under the direction of Thomas O. Baldwin. He trained as a postdoctoral fellow in the laboratory of Joseph Lakowicz at the University of Maryland at Baltimore before moving to the U.S. Naval Research Laboratory as a National Research Council Associate. At the Naval Research Laboratory he began work on fluorescence-based biosensors under Paul Schoen and subsequently became a Supervisory Research Chemist under the direction of Frances Ligler; he received a Navy Special Act Award for activity related to Operation Desert Storm. He joined the faculty of the University of Maryland School of Medicine in the Department of Biochemistry and Molecular Biology where he is now Associate Professor. He serves on the Editorial Boards of the Journal of Fluorescence and the Journal of Biomedical Optics, as well as panels for the National Research Council, National Institutes of Health, National Science Foundation, and other agencies.

Dina Tleugabulova. Department of Chemistry, McMaster University, Hamilton, Canada

Dina Tleugabulova is Postdoctoral Fellow in the Department of Chemistry at McMaster University, Hamilton, Canada. She has a B.Sc. and M.Sc in physical chemistry from Moscow State University, Russia and a Ph.D. in biology from the University of Havana, Cuba. Dr. Tleugabulova has published scientific articles on protein separation, pharmaceutical analysis and principles and applications of fluorescence anisotropy.

Khuong Truong. IMSTAR. Paris France

Jay R. Unruh. Department of Chemistry, University of Kansas, Lawrence, KS.

Andrew Wallace. Imperial College London, U.K.

Armando Varela-Ramirez. Department of Biological Sciences, University of Texas at El Paso., El Paso, TX

M. Venanzi. Department of Chemical Sciences and Technologies, University of Roma Tor Vergata, Rome, Italy.

Li Zhu. Department of Chemistry, Louisiana State University, Baton Rouge, LA.

Li Zhu came to LSU in the fall of 2000 as a Ph.D. student from Nankai University in Tianjin, China. Li's dissertation work focused on developing near-IR time-resolved fluorescence detection for multiplexing applications in genomics. She received her Ph.D. in the fall of 2005 and is working at GE Global Research Center in Niskayuna, NY.

Antonie J.W.G. Visser. MicroSpectroscopy Centre, Wageningen University, Dreijenlaan Wageningen, The Netherlands

Nicolas Vogt. Institut Curie, Paris, France

Jun Wang. Department of Chemistry, Wuhan University, Wuhan, China.

Weihua Wang. Department of Chemistry, Louisiana State University, Baton Rouge, LA

Xiangyang Xu. Department of Chemistry, Louisiana State University, Baton Rouge, LA

CONTENTS

PREFACE	. v
CONTRIBUTORS	vii
1. THE HISTORY OF FRET	
Robert M. Clegg	
1.1. INTRODUCTION	
1.2. PRELUDE TO THE HISTORICAL BACKGROUND	
1.2.1. The End of the Dark Ages: the Pre-Field Era	3
1.2.2. Middle Ages: Experiments That Eventually Changed Our	
World View	. 5
1.2.3. Renaissance: Enter the Theory of Electrodynamics	
and Fields	. 6
1.2.4. The Beginning of the Modern Age: The Field Surrounding a	ın
Oscillating Charge	
1.3. FIELDS, SPECTROSCOPY AND QUANTUM MECHANICS	. 9
1.3.1. Fields	. 9
1.3.2. Quantum Mechanics and Spectroscopy	. 9
1.4. THE FIRST EXPERIMENTAL OBSERVATION OF ENERGY	
TRANSFER AT A DISTANCE – SENSITIZED LUMINESCENC	
IN VAPORS	
1.4.1. Sensitized Fluorescence	
1.4.2. Spectroscopic and Collisional Cross-Sections in Vapors	. 12
1.5. THE FIRST QUANTUM MECHANICAL THEORY OF ENERG	
TRANSFER	. 12
1.5.1. A Few of the Pre-Quantum Theories that calculated the	
Spectroscopic Cross-Sections of Atomic Vapors	
1.5.2. Some Details of the Kallmann and London Paper	. 14
1.6. LONDON FORCES (VAN DER WAALS) AND DEBYE AND	
KEESOM INTERACTIONS	
1.6.1. London Interactions: Induced-Dipole-Induced-Dipole	. 17
1.6.2. Keesom and Debye Interactions: Dipole-Dipole and Dipole	
Induced-Dipole	19
1.7. FRET BETWEEN ORGANIC CHROMOPHORES IN	
CONDENSED SYSTEMS	. 20

1.7.1. Experimental Observations of Energy Transfer in Solution	20
1.7.2. The Theories of J. Perrin and F. Perrin	21
1.7.3. A Derivation of the Perrins' Estimated Distances for Two	
Electron Oscillators in Exact Resonance	23
1.7.4. The Contribution of W. Arnold and J.R. Oppenheimer	
to FRET in Photosynthesis	30
1.8. FÖRSTER'S SEMINAL CONTRIBUTION: THE MODERN,	
PRACTICAL DEPICTION OF FRET	
(FÖRSTER RESONANCE ENERGY TRANSFER)	. 37
1.9. MATURATION OF FRET	41
1.10. EPILOGUE	42
1.11. ACKNOWLEDGMENTS	42
1.12. REFERENCES	43

B. Pispisa, L. Stella, C. Mazzuca, and M. Venanzi

2.1. INTRODUCTION	47
2.2. THE PROPERTIES OF THE FLUORESCENT ANALOGS	48
2.3. AGGREGATION IN WATER	50
2.4. WATER-MEMBRANE PARTITION AND AGGREGATION	53
2.5. BIOACTIVITY: MECHANISM OF MEMBRANE	
PERTURBATION	60
2.6. POSITION OF TRICHOGIN INTO THE MEMBRANE:	
TRANSLOCATION, DEPTH-DEPENDENT QUENCHING, AND	
DISTRIBUTION ANALYSIS	61
2.6.1. Peptide Translocation	61
2.6.2. Depth-Dependent Quenching and Peptide	
Distribution Analysis	64
2.7. PEPTIDES ORIENTATION INSIDE THE MEMBRANE	65
2.8. CONCLUDING REMARKS	67
2.9. ACKNOWLEDGMENTS	68
2.10. REFERENCES	68

Nils Calander

. 71
. 72
. 72
. 73

 3.3. THEORY OF SURFACE PLASMON RESONANCE AT PLANAR STRUCTURES	
3.3.3. Conclusions of surface plasmon resonance at planar structures	84
3.4. THEORY OF SURFACE-PLASMON RESONANCE OPTICAL FIELD ENHANCEMENT AT PROLATE SPHEROIDS	85
3.4.1. The Field Enhancement at Spheroids	88
Enhancement at Prolate Spheroids	94
Coordinates	94
MOLECULES BY SURFACE PLASMON RESONANCE	98 104
4. CURRENT DEVELOPMENT IN THE DETERMINATION OF INTRACELLULAR NADH LEVEL	107
4.2. SIGNIFICANCE OF DETERMINING INTRACELLULAR	107
NADH LEVEL 4.3. DETERMINATION OF INTRACELLULAR NADH LEVEL 4.3.1. Enzymatic Assays	
4.3.2. Fluorometric Methods4.3.3. Micro-Fluorescence Photometry	112 116
4.3.4. Laser Scanning Confocal Microphotographics 4.3.5. Two-Photon Excitation Micrographics	117
4.4. REGULATION OF INTRACELLULAR NADH LEVEL4.4.1. Effect of Vitamins on Intracellular NADH Level4.4.2. The Time Course of Intracellular NADH in Yeast Apoptosis	118 119
4.5. REFERENCES	123
5. PREDICTION OF THERMAL TISSUE DAMAGE USING FLUORESCENCE SPECTROSCOPY	125
Christopher D. Anderson, Wei-Chiang Lin, and Ravi S. Chari	

5.1. INTRODUCTION	125
5.2. FLUORESCENCE SPECTROSCOPY TO DETECT THERMAL	
TISSUE DAMAGE	126
5.3. MEASUREMENTS OF FLUORESCENCE SPECTRA IN VIVO	127

5.4. SPECTRAL CORRELATES TO THERMAL DAMAGE	130
5.5. FLUORESCENCE SPECTRA CORRELATE WITH HISTO	OLOGIC
TISSUE DAMAGE	132
5.7. DETECTION OF ABSOLUTE CELL DEATH	133
5.8. CONCLUSIONS AND FUTURE DIRECTIONS	136
5.9. REFERENCES	137

Jorge O. Escobedo, Oleksandr Rusin, Weihua Wang, Onur Alptürk, Kyu Kwang Kim, Xiangyang Xu, Robert M. Strongin

6.1. INTRODUCTION	139
6.2. HOMOCYSTEINE METABOLISM	141
6.3. NEW PERSPECTIVES ON HOMOCYSTEINE'S ROLE IN	
DISEASE	143
6.4. OVERVIEW OF KNOWN METHODS FOR BIOLOGICAL THIO	L
DETECTION	144
6.5. DETECTION OF CYSTEINE AND HOMOCYSTEINE	147
6.6. HIGHLY SELECTIVE DETECTION OF CYSTEINE AND SITE-	
SPECIFIC PEPTIDE LABELING	149
6.7. HIGHLY SELECTIVE DETECTION OF HOMOCYSTEINE	151
6.8. AUTOMATED POST-COLUMN DETECTION OF CYSTEINE A	
HOMOCYSTEINE	156
6.9. BIOTHIOL DETECTION BASED ON SIMPLE ARRAYS	156
6.10. CONCLUSIONS	158
6.11. ACKNOWLEDGMENT	
6.12. REFERENCES	158

Franz Stanzel

7.1. INTRODUCTION	
7.2. PHENOMENON AND TECHNIQUES	165
7.2.1. Drug-Induced Fluorescence	165
7.2.2. Autofluorescence	165
7.3. INVESTIGATIONS AND DATA	167
7.3.1. Drug-Induced Fluorescence	167
7.3.2. Autofluorescence Bronchoscopy	168
7.4. DISCUSSION	169
7.5 CONCLUSIONS	174
7.6. REFERENCES	175

8.	QUANTUM DOTS AS FLUORESCENT LABELS FOR	
	MOLECULAR AND CELLULAR IMAGING	181

Gang Ruan, Amit Agrawal, Andrew M. Smith, Xiaohu Gao, and Shuming Nie

8.1. INTRODUCTION	181
8.2. PROBE DEVELOPMENT	182
8.3. NOVEL OPTICAL PROPERTIES	185
8.4. DELIVERY OF QD PROBES INTO CELLS	187
8.5. APPLICATIONS IN INTRACELLULAR IMAGING	189
8.5.1 Cellular staining	189
8.5.2. Intracellular studies	189
8.6. ACKNOWLEDGMENT	191
8.7. REFERENCES	191

John P. Nolan

9.2. OPTICAL MEASUREMENTS USING FLOW CYTOMETRY 196 9.3. SOLID PHASE ASSAYS USING MICROPARTICLES 197 9.4. DETECTION AND SENSOR APPLICATIONS 200 9.5. MOLECULAR INTERACTIONS AND FUNCTION 202 9.5.1. Enzyme-Substrate Interactions 202 9.5.2. Ligand-Receptor Interactions 205 9.5.3. Protein Immobilization 207 9.6. GENETIC ANALYSIS 208 9.7. SUMMARY AND FUTURE DIRECTIONS 210 9.8. ACKNOWLEDGEMENT 210 9.9. REFERENCES 211	9.1. INTRODUCTION	. 195
9.4. DETECTION AND SENSOR APPLICATIONS 200 9.5. MOLECULAR INTERACTIONS AND FUNCTION 202 9.5.1. Enzyme-Substrate Interactions 202 9.5.2. Ligand-Receptor Interactions 205 9.5.3. Protein Immobilization 207 9.6. GENETIC ANALYSIS 208 9.7. SUMMARY AND FUTURE DIRECTIONS 210 9.8. ACKNOWLEDGEMENT 210	9.2. OPTICAL MEASUREMENTS USING FLOW CYTOMETRY	. 196
9.5. MOLECULAR INTERACTIONS AND FUNCTION2029.5.1. Enzyme-Substrate Interactions2029.5.2. Ligand-Receptor Interactions2059.5.3. Protein Immobilization2079.6. GENETIC ANALYSIS2089.7. SUMMARY AND FUTURE DIRECTIONS2109.8. ACKNOWLEDGEMENT210	9.3. SOLID PHASE ASSAYS USING MICROPARTICLES	. 197
9.5.1. Enzyme-Substrate Interactions2029.5.2. Ligand-Receptor Interactions2059.5.3. Protein Immobilization2079.6. GENETIC ANALYSIS2089.7. SUMMARY AND FUTURE DIRECTIONS2109.8. ACKNOWLEDGEMENT210	9.4. DETECTION AND SENSOR APPLICATIONS	200
9.5.2. Ligand-Receptor Interactions2059.5.3. Protein Immobilization2079.6. GENETIC ANALYSIS2089.7. SUMMARY AND FUTURE DIRECTIONS2109.8. ACKNOWLEDGEMENT210	9.5. MOLECULAR INTERACTIONS AND FUNCTION	202
9.5.3. Protein Immobilization2079.6. GENETIC ANALYSIS2089.7. SUMMARY AND FUTURE DIRECTIONS2109.8. ACKNOWLEDGEMENT210	9.5.1. Enzyme-Substrate Interactions	202
9.6. GENETIC ANALYSIS2089.7. SUMMARY AND FUTURE DIRECTIONS2109.8. ACKNOWLEDGEMENT210	9.5.2. Ligand-Receptor Interactions	. 205
9.7. SUMMARY AND FUTURE DIRECTIONS2109.8. ACKNOWLEDGEMENT210	9.5.3. Protein Immobilization	. 207
9.8. ACKNOWLEDGEMENT 210	9.6. GENETIC ANALYSIS	. 208
	9.7. SUMMARY AND FUTURE DIRECTIONS	. 210
9.9. REFERENCES	9.8. ACKNOWLEDGEMENT	. 210
	9.9. REFERENCES	. 211

Nancy L. Thompson, and Jamie K. Pero

10.1. ABSTRACT	215
10.2. INTRODUCTION	216
10.3. CONCEPTUAL BASIS AND EXPERIMENTAL DESIGN	217
10.4. THEORETICAL MODELS FOR DATA ANALYSIS	221
10.5. APPLICATIONS	225
10.6. FUTURE DIRECTIONS	229
10.7. ACKNOWLEDGEMENTS	233
10.8. REFERENCES	233

11. FLUORESCENCE PROBES OF PROTEIN DYNAMICS AND CONFORMATIONS IN FREELY DIFFUSING MOLECULES 239

Carey K. Johnson, Brian D. Slaughter, Jay R. Unruh, and E. Shane Price

11.1. INTRODUCTION	239
11.2. FLUORESCENCE CORRELATION SPECTROSCOPY TO	
PROBE PROTEIN DYNAMICS	240
11.2.1. FCS Measurements of Intramolecular Dynamics	241
11.2.2. FCS Cross-Correlation Measurements	242
11.2.3. FCS of Calmodulin	243
11.3. BURST-INTEGRATED SINGLE-MOLECULE ANALYSIS	246
11.4. TIME-REVOLVED FLUORESCENCE MEASUREMENTS	248
11.4.1. CaM Conformational Substates by Ensemble Time-Resol	ved
Fluorescence Measurements	248
11.4.2. Associated-Anisotropy Analysis to Assess the Influence	
of Dye-Protein Interactions	252
11.5. CONCLUSION	255
11.6. ACKNOWLEDGEMENT	255
11.7. REFERENCES	256

12. BIOLOGICAL APPLICATION OF FLIM BY TCSPC 261

Axel Bergmann, and Rory R. Duncan

12.1. INTRODUCTION	261
12.2. PHYSICAL BACKGROUND OF FLUORESCENCE LIFETIME	2
IMAGING	262
12.2.1 Fluorescence Lifetime as a Separation Parameter	262
12.2.2. The Fluorescence Lifetime as an Indicator of the Local	
Environment	263
12.2.3 Fluorescence Resonance Energy Transfer	264
12.3. THE LASER SCANNING MICROSCOPE	265
12.3.1 Suppression of out-of-focus light	265
12.3.2 Scan Rates	265
12.3.3 Two-Photon Excitation with Direct Detection	266
12.4. REQUIREMENTS FOR FLUORESCENCE LIFETIME	
IMAGING IN SCANNING MICROSCOPES	267
12.4.1 Efficiency	267
12.4.2 Principle of Time-Correlated Single Photon Counting	
12.4.3 Imaging by Multi-Dimensional TCSPC	269

12.5. BIOLOGICAL APPLICATION OF FLIM	270
12.5.1 Biological FLIM Data Acquisition	270
12.5.2 TCSPC-FLIM	270
12.5.3 FLIM Data Analysis and FRET Calculations	271
12.5.4 FLIM to Measure FRET In Cells	271
12.5.5 Dual channel FLIM	273
12.6. FUTURE PERSPECTIVES	273
12.7. REFERENCES	274

13. TIME-RESOLVED FLUORESCENCE ANISOTROPY APPLIED TO SILICA SOL-GEL GROWTH AND SURFACE MODIFICATION. 277

Dina Tleugabulova, and John D. Brennan

13.1. INTRODUCTION
13.1.1 Characterization of Silica Growth and Modification 278
13.2. SURVEY OF TRFA THEORY 280
13.2.1 What Is Measured in TRFA?
13.2.2 TRFA Data Analysis 282
13.2.3 Rotational Diffusion of Probes in Non-Interacting
Environments
13.2.4 Restricted Dynamics in the Presence of Probe-Host
Interactions
13.3. PARTICLE GROWTH STUDIES 290
13.3.1 Particle Growth in DGS Sols 290
13.3.2 Particle Growth in SS Sols 295
13.4. MONITORING SILICA SURFACE MODIFICATION 296
13.4.1 Background 296
13.4.2 Ludox
13.4.3 Monitoring Adsorption by TRFA 297
13.5. CONCLUSIONS AND OUTLOOK 304
13.6. ACKNOWLEDGEMENTS 305
13.7. REFERENCES

Nabanita Nag, T. Ramreddy, Mamata Kombrabail, P.M. Krishna Mohan, Jacinta D'souza, B.J. Rao, Guy Duportail, Yves Mely, and G. Krishnamoorthy

14.1. INTRODUCTION	311
14.2. FLUORESCENCE PROBES FOR DNA DYNAMICS	313
14.3. PROBING DNA DYNAMICS WITH NON-SPECIFIC PF	OBES 316

14.3.1. DNA condensation	316
14.3.2. YOYO-1 as an indicator of DNA condensation	317
14.3.3. Structure and dynamics of condensed DNA	318
14.3.4. DNA condensation by the nucleocapsid protein probed b	у
YOYO-1 Fluorescence	323
14.3.5. DNA Dynamics in Chromosomes from Picogreen	
Fluorescence	323
14.4. DNA DYNAMICS FROM SITE-SPECIFIC FLUORESCENCE	
PROBES	325
14.4.1. DNA dynamics in RecA DNA filaments	326
14.4.2. Position-dependent DNA dynamics	328
14.4.3. Mismatch recognition and DNA dynamics	329
14.5. CONCLUSIONS	332
14.6. ACKNOWLEDGMENTS	332
14.7. REFERENCES	332

Jan Willem Borst , Isabella Nougalli-Tonaco , Mark A. Hink, Arie van Hoek, Richard G.H. Immink, and Antonie J.W.G. Visser

15.1. INTRODUCTION	341
	343
15.3. FRET SENSORS	344
15.3.1 Cameleons (Ycam)	344
	345
	345
15.4. INTENSITY BASED FRET IMAGING	346
15.4.1 Confocal and wide-field FRET imaging	346
15.4.2 Spectral imaging	346
15.4.3 Acceptor photo-bleaching	
15.5. FLUORESCENCE LIFETIME IMAGING	
MICROSCOPY (FLIM)	348
	349
15.5.2 FLIM analysis	349
15.6. APPLICATIONS WITH PLANT TRANSCRIPTION FACTORS 3	350
15.6.1 Sub-cellular localization via confocal microscopy	350
15.6.2 Molecular interaction imaging via FRET-FLIM	351
15.6.3 Molecular interaction imaging via FRET-FLIM	354
15.7. ACKNOWLEDGMENTS	355
15.8. REFERENCES	355

16. SPECTROSCOPY FOR THE ASSESSMENT OF MELANOMAS . 359

Ousama M. A'Amar, and Irving J. Bigio

16.1. INTRODUCTION	
	359
16.2. SKIN MELANOMA	
16.3. FLUORESCENCE SPECTROSCOPY	
16.3.1. Instrumentation	
16.3.2. Melanoma Diagnosis by Autofluorescence	363
16.3.3. Melanoma Diagnosis with exogenous fluorophe	ores 368
16.4. ELASTIC SCATTERING SPECTROSCOPY	369
16.4.1. Principles of Elastic Scattering Spectroscopy	369
16.4.2. Instrumentation	
16.4.3. Preclinical Trials	
16.4.4. Clinical Studies	
16.5. CORRECTION OF FLUORESCENCE IN TURBID M	IEDIA 376
16.6. CONCLUSIONS	
16.7. REFERENCES	379
17. QUANTITATIVE FLUORESCENCE HYBRIDIZATION USING AUTOMATED IMAGE CYTOMETRY	1
17. QUANTITATIVE FLUORESCENCE HYBRIDIZATION USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI	N
USING AUTOMATED IMAGE CYTOMETRY	387
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI	387 oy
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI Khuong Truong, Anne Gibaud, Nicolas Vogt, and Bernard Malfo	387 oy 387
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI	
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI	
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI Khuong Truong, Anne Gibaud, Nicolas Vogt, and Bernard Malfo 17.1. INTRODUCTION 17.2. CHROMOSOME IMBALANCES IN HUMAN DISEA 17.2.1. Cancers. 17.2.2. Constitutional diseases 17.3. EXPERIMENTAL APPROACHES FOR THE IN SITU	
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI Khuong Truong, Anne Gibaud, Nicolas Vogt, and Bernard Malfo 17.1. INTRODUCTION 17.2. CHROMOSOME IMBALANCES IN HUMAN DISEA 17.2.1. Cancers 17.2.2. Constitutional diseases 17.3. EXPERIMENTAL APPROACHES FOR THE IN SITU DETERMINATION OF CHROMOSOME IMBALAN	
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI Khuong Truong, Anne Gibaud, Nicolas Vogt, and Bernard Malfo 17.1. INTRODUCTION 17.2. CHROMOSOME IMBALANCES IN HUMAN DISEA 17.2.1. Cancers. 17.2.2. Constitutional diseases 17.3. EXPERIMENTAL APPROACHES FOR THE IN SITU DETERMINATION OF CHROMOSOME IMBALAN 17.3.1. Metaphase chromosomes	
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI Khuong Truong, Anne Gibaud, Nicolas Vogt, and Bernard Malfo 17.1. INTRODUCTION 17.2. CHROMOSOME IMBALANCES IN HUMAN DISEA 17.2.1. Cancers. 17.2.2. Constitutional diseases 17.3. EXPERIMENTAL APPROACHES FOR THE IN SITU DETERMINATION OF CHROMOSOME IMBALAN 17.3.1. Metaphase chromosomes 17.3.2. Interphase chromosomes	
USING AUTOMATED IMAGE CYTOMETRY ON INTERPHASE NUCLEI Khuong Truong, Anne Gibaud, Nicolas Vogt, and Bernard Malfo 17.1. INTRODUCTION 17.2. CHROMOSOME IMBALANCES IN HUMAN DISEA 17.2.1. Cancers. 17.2.2. Constitutional diseases 17.3. EXPERIMENTAL APPROACHES FOR THE IN SITU DETERMINATION OF CHROMOSOME IMBALAN 17.3.1. Metaphase chromosomes	

xxviii

Rebecca A. Bozym, Richard B. Thompson, and Carol A. Fierke

18.1. INTRODUCTION	399
18.2. TSQ DERIVATIVES	402
18.3. FLUORESCENT INDICATORS BASED ON FLUORESCEIN	
18.3.1. The Zinpyr family	402
18.3.2. The Zinspy Family	
18.3.3. The ZnAFs	
18.4. ZINC INDICATORS BY MOLECULAR PROBES	406
18.5. A ZINC INDICATOR BASED ON BENZOXAZOLE	408
18.6. LANTHANIDE CHEMOSENSORS FOR ZINC	408
18.7. EXCITED-STATE INTRAMOLECULAR PROTON	
TRANSFER	409
18.8. PEPTIDES AS ZINC INDICATORS	
18.9. CARBONIC ANHYDRASE AS A BIOSENSOR FOR ZINC	411
18.10. CONCLUSION	414
18.11. REFERENCES	415

Jean-François Gravel, and Denis Boudreau

19.1. ABSTRACT	421
19.2. INTRODUCTION	422
19.3. LASER INDUCED BREAKDOWN SPECTROSCOPY	423
19.4. LASER PHOTOFRAGMENTATION	
FRAGMENT DETECTION	425
19.5. LONG RANGE REMOTE SENSING OF HALOCARBONS	BY
NON-LINEAR LASER PROPAGATION	431
19.6. FUTURE DIRECTIONS	438
19.7. ACKNOWLEDGEMENTS	438
19.8. REFERENCES	438

Herbert C. Cheung, and Wen-Ji Dong

20.1. INTRODUCTION	445
20.2. CALCIUM ACTIVATION OF CARDIAC MUSCLE	446
20.2.1. Equilibrium Conformation of Cardiac Troponin	446
20.3. KINETICS OF CONFORMATIONAL TRANSITIONS IN cTM	

20.4. CONFORMATION OF N-DOMAIN OF cTnC	
IN MYOFILAMENT	455
20.5. FRET-BASED CONSTRUCTION OF MOLECULAR M	ODELS 458
20.6. NUCLEOTIDE-DEPENDENT KINESIN CONFORMAT	TIONS . 460
20.7. SUMMARY	461
20.8. ACKNOWLEDGEMENTS	462
20.9. REFERENCES	462

Renato J. Aguilera, Jessica Montoya, Todd P. Primm, and Armando Varela-Ramirez

21.1 ABSTRACT	. 463
21.2. BRIEF OVERVIEW ON THE PROPERTIES OF GFP	. 464
21.3. GFP AS A BIOSENSOR	. 464
21.4. GFP-BASED TOXICITY ASSAYS IN MULTICELLULAR	
ORGANISMS	. 466
21.5. RECENT GFP-ASSAYS FOR DRUG DISCOVERY	. 467
21.6. USING THE HELA-GFP ASSAY TO DETERMINE THE	
CYTOTOXICITY OF ANTIBACTERIAL COMPOUNDS	. 468
21.7. LARGE-SCALE SCREENING OF COMPOUNDS ON	
EUKARYOTIC AND PROKARYOTIC CELLS	. 470
21.8. SUMMARY	. 472
21.9. ACKNOWLEDGEMENTS	. 473
21.10. REFERENCES	. 474

Daniel S. Elson, Neil Galletly, Clifford Talbot, Jose Requejo-Isidro, James McGinty, Christopher Dunsby, Peter M. P. Lanigan, Ian Munro, Richard K. P. Benninger, Pieter de Beule, Egidijus Auksorius, Laszlo Hegyi, Ann Sandison, Andrew Wallace, Pat Soutter, Mark A. A. Neil, John Lever, Gordon W. Stamp, and Paul M. W. French

22.1. INTRODUCTION	. 477
22.2. FLUORESCENCE LIFETIME	. 480
22.2.1. Fluorescence lifetime of endogenous fluorophores	. 482
22.3. FLUORESCENCE LIFETIME DETERMINATION	. 483
22.3.1. Single-point measurement of fluorescence lifetime	. 484
22.3.2. Fluorescence Lifetime Imaging (FLIM)	. 487
22.3.3. Complex decay profiles and the stretched exponential	
function	492

22.3.4. Wide-field time-domain FLIM instrumentation	493
22.4. MULTIWELL PLATE IMAGING OF ENDOGENOUS	
FLUOROPHORES	495
22.5. FLIM MICROSCOPY OF BIOLOGICAL TISSUE	495
22.5.1. Cartilage	497
22.5.2. Artery wall and atherosclerotic plaques	500
22.5.3. Neoplastic tissue	501
22.6. TOWARDS IN VIVO IMAGING	503
22.6.1. Real-Time FLIM	504
22.6.2. Endoscopic FLIM	506
22.7. EMERGING TECHNOLOGY FOR FLIM AND MDFI	508
22.7.1. Tunable continuum source for fluorescence excitation	509
22.7.2. Hyperspectral FLIM instrumentation	514
22.8. CONCLUSIONS	
22.9. ACKNOWLEDGEMENTS	518
22.10. REFERENCES	518

Li Zhu, and Steven A. Soper

23.1. BACKGROUND AND RELEVANCE	. 525
23.1.1. What Is DNA Sequencing?	. 526
23.1.2. Gel Electrophoresis for DNA Sequencing	. 530
23.1.3. Fluorescence Detection for DNA Sequencing	. 535
23.2. DYE-PRIMER/DYE-TERMINATOR CHEMISTRY IN DNA	
SEQUENCING	. 536
23.3. FLUORESCENT DYES FOR DNA LABELING AND	
SEQUENCING	. 537
23.3.1. Visible Fluorescent Dyes	. 538
23.3.2. Near-IR Fluorescent Dyes	. 541
23.4. FLUORESCENCE-BASED DNA SEQUENCING	
STRATEGIES	. 546
23.4.1. Color Discrimination Methods	. 547
23.4.2. Lifetime Discrimination Methods	. 552
23.4.3. Combination of Color-Discrimination and Time-Resolved	1
Methods	559
23.5. INSTRUMENTAL FORMATS FOR FLUORESCENCE-BASED	
DNA SEQUENCING	563
23.5.1. Fluorescence-scanning Detectors	
23.5.2. Fluorescence-imaging Detectors	

	23.5.3. Time-resolved Fluorescence Scanning Detectors	567
	23.5.4. Time-resolved Fluorescence Imaging Detectors	569
23.6.	REFERENCES	569
INDEX		589

THE HISTORY OF FRET: From conception through the labors of birth

Robert M. Clegg¹

1.1. INTRODUCTION

This chapter is an excursion into the historical development of energy transfer. This chapter is not concerned with a detailed review of applications, or a review of modern theoretical developments; this is available elsewhere (Van Der Meer *et al.*, 1994; Wu and Brand, 1994; Clegg, 1996). The topic is the emergence of Förster resonance energy transfer FRET. I also examine the ideas, experiments and theories that formed the scientific backdrop that preceded and led up to FRET.

FRET is a physical process whereby the excited state energy of one chromophore molecule, the "donor", can be transferred to a neighboring chromophore, the acceptor, in the ground state. This can take place whenever the two molecules are close enough, usually separated by less that 7 nm provided certain other conditions are met.

FRET is one of the major experimental methods for discovering whether two molecules are in close proximity, or for determining the distance between two specific locations on macromolecules and in molecular complexes. Energy transfer is used to follow conformational changes of macromolecules, either statically or in real time. It has recently become a major experimental technique in the field of single molecules. Since the "efficiency" of energy transfer (that is, the fraction of energy absorbed by the donor that is transferred to the acceptor) is usually measured with fluorescence tools, and fluorescence is sensitive, specific and widely available, FRET has become very popular. The chromophores (donors and acceptors) that are used for accomplishing this measurement are usually attached (often covalently) to other macromolecules, such as proteins, nucleic acids, and lipids. The energy transfer can be detected relatively easily and it is often used qualitatively to signify intimate interaction

¹ Robert M. Clegg, Physics Department, University of Illinois Champaign-Urbana, Illinois

between two "labeled" biomolecules. Sometimes one or both of the participating chromophores occur naturally in biological macromolecules, such as tryptophan or chlorophyll. However, the number and variety of synthetic fluorescence probes available for labeling has expanded tremendously in the last several years. Several readable reviews of FRET for a general audience are readily available (Clegg, 1992; Van Der Meer *et al.*, 1994; Clegg, 1996; Clegg, 2004a).

The FRET measurement is now applied routinely with a wide variety of samples: micro structures (such as DNA and protein chips and micro/nano assay arrays), living biological cells, and even whole organisms. It is a very powerful technique, fairly simple, and can be carried out in most laboratories with their existing spectrometers and microscopes. Although the technique has been readily available and applied since the early 1950s, the use of FRET has literally exploded in the last few years, in academic research as well as industrial applications, especially in biotechnology and bioengineering. This flurry of activity has many reasons. First, FRET measures interactions and dynamics on a spatial scale that is unique. Also, our ability to produce well defined and pure macromolecules in the laboratory has increased dramatically in the last few years, and it is relatively easy to label them specifically with fluorophores. In the last several years we have developed the ability to produce hybrids of specific proteins with fluorescent proteins (for instance, GFP, YFP, CFP and RFP, respectively green-, yellow-, cyan-, and red-fluorescence proteins) that can be produced in vivo under genetic control in the living cell (and in tissue); certain pairs of these proteins can undergo FRET. These fluorescence proteins have revolutionized the field of biological fluorescence, especially the measurement of FRET, in the fluorescence microscope. A great number of excellent synthetic fluorophores are available commercially, with the required chemical groups attached for specific labeling to biomolecules. In addition there have been many instrumentation improvements and innovations that make the FRET measurement much more sensitive and convenient. These biological, and chemical, instrumentation advances have expanded tremendously the range of applications, and the ease of carrying out the experiments.

In spite of the wide spread use of such a well known and useful technique, and the availability of several excellent treatise and reviews of the underlying theory, not to mention the hundreds of experimental applications published every year, little is published about the historical development of the major concepts. The historical events are not only interesting in themselves, but understanding and appreciating the major theoretical insights realized by the pioneers of energy transfer, and the scientific context in which they worked, provides insight into the mechanism, and leads to a better appreciation of the original contributions. A short history of the contributions of the Perrins and Foerster to FRET has been published recently (Clegg, 2004b). This chapter is a more extensive examination of the state of affairs and the general state of knowledge that was prevalent in physics at the time, leading up to the first observations and theoretical explanations of energy transfer.