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PREFACE 

Thirty-four years after the first description of the myofibroblast, the 
number of publications concerning this cell is very impressive and 
continuously expanding, and the work on the myofibroblast involves 

many laboratories throughout the world. The myofibroblast has been 
implicated in developmental and physiological phenomena, as well as in a 
variety of pathological situations, going from wound healing and fibrotic 
changes to asthma and cancer invasion. Many aspects of myofibroblast 
biology have been clarified, such as the role of TGF-P and ED-A cellular 
fibronectin in its differentiation and the role of a-smooth muscle actin 
in tension production by this cell; however several important problems 
concerning myofibroblast origin, ftmction and participation in pathological 
processes remain to be solved. 

The purpose of this book, as well of the Meeting "Tissue Repair, 
Contraction and the Myofibroblast" that took place in Nyon, near Geneva, 
Switzerland on November 18-20, 2004, is to put together the most recent 
advances in the understanding of myofibroblast biology and to present the 
main directions of research taking place worldwide to explore new aspects of 
myofibroblast physiological and pathological activities, such as: mechanisms 
of force generation by the myofibroblast; myofibroblast origin and diversity; 
interaction of the myofibroblast with other cells, normal and malignant 
epithelial cells in particular; and participation of the myofibroblast in the 
development of fibrosis in various organs. If we consider the animated and 
constructive discussions that took place during the Nyon Meeting, we are 
sure that this book will inspire new research in these fields. 

This book would not have existed without the help of the European 
Tissue Repair Society and the Swiss National Science Foundation as well as 
the several Sponsors who are listed in the acknowledgments. 

We hope that it will be the first of a long and fruitftil series. 

Christine ChaponnieVy Ph.D. 
Alexis Desmoulihe, Pharm.D., Ph.D. 

Giulio Gabhianiy M.D.y Ph.D. 
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INTRODUCTION 

The Evolution of the Concept 
of Myofibroblast: 
ImpHcations for Normal and Pathological 
Tissue Remodeling 

Alexis Desmoulifere, Christine Chaponnier and Giulio Gabbiani* 

Abstract 

The recognition of the role of the myofibroblast in granulation tissue contraction and 
connective tissue remodeling during fibrocontractive diseases has allowed a theoretical 
and practical progress in the understanding of these pathologies. The observation that 

TGF-p is the key cytokine in myofibroblast differentiation, correlated with its role in collagen 
synthesis promotion, shows a coordinated mechanism in connective tissue remodeling. Recent 
work has furnished new knowledge concerning the molecular mechanisms of tension produc­
tion by the myofibroblast and indicated that the N-terminal peptide of a-smooth muscle actin 
exerts an inhibitory action on myofibroblast contraction. Moreover the multiple derivation, 
both local and from circulating cells, of the myofibroblast begins to be understood. These data 
point to the myofibroblast as a major regulator of connective tissue remodeling and in turn of 
epithelial organization. 

Introduction 
After the first description of the myofibroblast in granulation tissue of an open wound by 

means of electron microscopy, as an intermediate cell between the fibroblast and the smooth 
muscle cell (SMC),^ the myofibroblast has been identified both in normal tissues, particularly 
in locations where there is a necessity of mechanical force development (for a review, see ref. 2), 
and in pathological tissues, in relation with hypertrophic scarring, fibromatoses and 
fibrocontractive diseases (for a review, see ref 3) as well as in the stroma reaction to epithelial 
tumors ( for a review, see ref 4). More recendy myofibroblasts have been described in the deep 
dermis of patients with systemic sclerosis (for a review, see ref 5) and in the bronchial submu-
cosa of asthmatic patients (for a review, see ref. 6). 

In an attempt to verify whether the myofibroblast expresses markers of the SMC pheno-
type, our laboratory has shown that a-SM actin, the actin isoform typical of vascular SMCs, is 
synthesized during fibroblast/myofibroblast modulation.'^ Indeed the presence of this protein 
represents at present the best marker of the myofibroblastic phenotype (for a review, see ref. 8). 

•Corresponding Author: Giulio Gabbiani—Department of Pathology and Imnnunology, 
CMU-University of Geneva 1 rue Michel-Servet, 1211 Geneva 4, Switzerland. 
Email: Giulio.Gabbiani@medecine.unige.ch 

Tissue Repairy Contraction and the Myofibroblast^ 
edited by Christine Chaponnier, Alexis Desmouli^re and Giulio Gabbiani. 
©2006 Landes Bioscience and Springer Science+Business Media. 
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When present in the myofibroblast, a-SM actin localizes in stress fibers, an organelle that has 
been at first considered characteristic of cultured cells, but is also present in vivo, particularly 
during myofibroblast differentiation. Myofibroblasts can also express other proteins character­
istic of SMCs, such as SM-myosin heavy chains, according to the pathological situation; how­
ever they have not been shown up to now to express late markers of SMC differentiation, such 
as smoothelin.^^ This allows distinguishing between the two phenotypes. 

Fibroblast/Myofibroblast Transition 
The mechanisms of fibroblast/myofibroblast transition have been the object of intensive 

investigation. Transforming growth factor (TGF)-P is now accepted as the most important 
factor in this transition since it stimulates both the synthesis of collagen type I ^ and of a-SM 
actin by fibroblastic cells. ̂  ' Connective tissue growth factor has also been proposed to play a 
role in myofibroblast differentiation.^ It is now accepted that during the healing of an open 
woimd, fibroblast/myofibroblast transition begins with the appearance of the protomyofibroblast, 
which contains stress fibers expressing only cytoplasmic p- and y-actin isoforms. This first 
transition is not yet well explored, but it probably depends on mechanical tension develop­
ment. Then follows the appearance of the differentiated myofibroblast under the influence of 
mechanical tension as well as of chemical mediators, such asTGF-P (Fig. 1). It should be noted 
that the action of TGF-p in stimulating both collagen type I and a-SM actin synthesis stricdy 
depends on the presence of cellular fibronectin and in particular of the ED-A splice variant of 
this glycoprotein.^^ Thus myofibroblast differentiation is a complex process, regulated by at 
least a cytokine, an extracellular matrix component as well as the presence of mechanical ten­
sion (Fig. 1). 

During the healing of an open wound, when epithelial reconstruction is achieved, an im­
portant wave of apoptosis is observed in the underlying granulation tissue affecting small vessel 
cells (endothelial cells, pericytes) and myofibroblasts, thus leading to the formation of scar 
tissue. The lack of apoptosis has been suggested as one of the mechanisms involved in the 
development of hypertrophic scars and possibly of other fibrotic changes. However this possi­
bility has not yet been thoroughly explored. 

The local derivation of fibroblastic cells from preexisting fibroblasts during wound healing 
has remained a dogma since the early work of Ross et al.̂ '̂  Subsequent work by several labora­
tories has shown that indeed local fibroblasts are a major source of myofibroblasts; however 
myofibroblasts can derive also from local mesenchymal cells such as SMCs, pericytes, hepatic 
stellate cells or mesangial cells. ̂ ^ The derivation of myofibroblasts from SMCs is particularly 
interesting in view of the recendy described different mechanisms of contraction of these two 
cells (see below). In the last years the possibility that myofibroblasts derive from local epithelial 
cells or from blood bone marrow derived cells, which was suggested very early in the literature 
(for review see refs. 17,18), has been again convincingly proposed. Thus, it appears that tubular 
epithelial cells of the kidney are at least in part the source of myofibroblasts during interstitial 
fibrosis ^̂  and that mesothelial cells can originate myofibroblasts during peritoneal fibrosis."^^ 
Moreover it is more and more accepted that a variable proportion of myofibroblasts present in 
different pathological situations, e.g., liver^ and pulmonary^ fibrosis, are bone marrow de­
rived. In this respect it is noteworthy that the description of circulating cells, called fibrocytes, 
which localize in areas of repair^ '̂̂ ^ and are probably an important source of myofibroblasts.^ 
Clearly the identification and characterization of such cells may have important implications 
for the understanding of reparative and fibrotic changes of many organs and for the planning 
of therapeutic strategies. 

Role of a-SM Actin in Tension Generation 
As discussed above, a-SM actin is the most used marker of the myofibroblastic phenotype 

(for a review, see ref. 27). However the question as to whether this protein is instrumental in 
force production by the myofibroblast has been debated for a long time. Recently our 
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«» focal adhesion sKe 
X cortical cytoplasmic actins 
^m cytoplasmic actins 

a-smooth muscle actin 
cellular fibronectin 
ED-A fibronectin 

TGFp l 
ED-A FN 

Mechanical Tension 

Proto-Myoflbrobiast 

Figure 1. Two-stage model of myofibroblast differentiation. In vivo, fibroblasts might contain actin in their 
cortex but they neither show stress fibres nor do they form adhesion complexes with the extracellular matrix. 
Under mechanical stress, fibroblasts will differentiate into proto-myofibroblasts, which form cytoplasmic 
actin-containing stress fibers that terminate in fibronexus adhesion complexes. Proto-myofibroblasts also 
express and organize cellular fibronectin—including the ED-A splice variant—at the cell surface. Function­
ally, these cells can generate contractile force. TGF-pi increases the expression of ED-A fibronectin. Both 
factors, in the presence of mechanical stress, promote the modulation of proto-myofibroblasts into differ­
entiated myofibroblasts that are characterized by the de novo expression of a-smooth muscle actin in more 
extensively developed stress fibres and by large fibronexus adhesion complexes (in vivo) or supermature focal 
adhesions (in vitro). Functionally, differentiated myofibroblasts generate greater contractile force than 
proto-myofibroblasts, which is reflected by a higher organization of extracellular fibronectin into fibrils. 
(From ref 10, ©2002 Nature Publishing Group, with permission.) 

laboratory has show^n that there is a good correlation between a -SM actin expression and the 
capacity of producing deformations in the silicone substrate on which fibroblastic cells are 
cultured; moreover transfection of swiss 3T3 fibroblasts with a -SM actin c D N A results in an 
increased contractility, which is significantly higher compared to that of fibroblasts transfected 
with the c D N A of a-cardiac actin or y-cytoplasmic actin. The increase in contractility takes 
place in the absence of any other change in protein expression, in particular of myosin heavy 
chain expression. These results strongly suggest that a -SM actin plays a direct role in tension 
production by myofibroblasts. 

Two other observations have helped in p inpoin t ing the mechanism of a - S M actin 
participation in tension production by myofibroblasts: (1) the decrease of the critical concen­
tration for a - S M actin polymerization by the Fab fragment of the specific ant ibody for 
this protein, suggesting that binding of a -SM actin epitope facilitates incorporation of the 
protein into filaments of stress fibers; and (2) the identification of the epitopic sequence for 
this antibody, i.e., the N-terminal sequence AcEEED. The identification of a putative com­
pound that in the cell would bind a-SM actin in a way similar to that of the antibody and thus 
increase its incorporation into stress fibers has not yet been possible, but we have shown that 
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microinjection in cultured myofibroblasts of the epitopic sequence decreases significantly and 
selectively a -SM actin incorporation into stress fibers. The sequence Ac-EEED is very acidic 
and does not penetrate spontaneously in cells. In order to perform more systematic studies, we 
have coupled it with an Antennapedia sequence that facilitates cell penetration. We have 
seen that such fusion peptide inhibits myofibroblast contractility both in vitro and in vivo, 
using an experimental model of splinted wound in the rat that facilitates the study of wound 
contraction by eliminating the role of epithelialisation. These observations open the possibil­
ity to influence wound contraction and/or myofibroblast dependent connective tissue remod­
eling in vivo and thus may be the basis for a new therapeutic strategy concerning several 
connective tissue diseases in which the myofibroblast appears a key player. 

Ihe fusion peptide should also represent a tiseful tool for the understanding of the molecu­
lar mechanisms regulating myofibroblast driven connective tissue remodeling. It is now ac­
cepted that wound contraction, as well as probably contracture formation, depends on the 
continuous long lasting production of isometric tension by single myofibroblasts (for a review, 
see rcf 32). The resulting connective tissue retraction can be stabilized by extracellular matrix 
deposition. This complex dynamic process could explain connective tissue remodehng in nor­
mal wound healing and in pathological situations such as liver cirrhosis or pulmonary fibrosis. 
Recent work aimed to understand the mechanism of force generation by stress fibers has indi­
cated that tension production by the myofibroblast is regulated differently with respect to the 
classical Ĉ .a* * depending reversible SM contraction and is rather under the control of a Rho/ 
Rho kinase and myosin phosphatase related pathway. ' ' ' These findings establish for the first 
time a clear difference between myofibroblast and SMC in terms of contraction mechanisms 
and suggest that the myofibroblast utilizes a more primitive mechanism of force production 
that bears some analogies with the extracellular matrix remodeling taking place during embryonic 
development. ^ In this respect it is noteworthy that myofiboblasts have been described in 
embryonic tissues of various species, including man, but their possible participation to devel­
opmental phenomena has nor been explored. If these assumptions will be verified, one can 
propose for the myofibroblast a physiological role during development and in normal tissues 
where the production of mechanical tension is required, and a role in the evolution of normal 
and pathological wound healing as well as of fibrocontractive diseases. It has been suggested 
that during development connective tissue remodeling plays an important role in epithelial 
morphogenesis, implying a cross talk between epithelial and mesenchymal cells. ̂  A pathological 
counterpart of this phenomenon could be the cross talk that starts to be understood between 
epithelial cancer cells and myofibroblasts of the stroma reaction. ^̂  

Conclusions and Perspective 
The concept of myofibroblast has generated a significant amount of research during the last 

thirty years. It appears that rather than being a typical contractile cell, the myofibroblast plays 
a remodeling function that is necessary during development and repair phenomena. Many 
aspects of myofibroblast biology are not yet clear. We indicate arbitrarily here some of them 
that stimulate particularly our curiosity: 

1. Very little has been done in the field of myofibroblast and of fibroblast heterogeneity, 
although early observations have shown that the agonists stimulating myofibroblast con­
traction are different for myofibroblasts derived from different organs. ̂ ^ Recent work has 
described markers distinguishing among different fibroblastic phenotypes.-^'' Work along 
these lines would bring an important contribution to the understanding of fibroblast 
biology and flinction. 

2. Myofibroblast apoptosis is a well-established phenomenon,'^ but its mechanisms are at 
present mysterious. Their understanding will help explaining the onset of pathological 
scarring and of fibrocontractive diseases. 

3. A clear knowledge of the cellular origin of myofibroblasts in different pathological 
phenomena will be instrumental for the planification of therapeutic strategies. 


