The Biology of Dendritic Cells and HIV Infection

The Biology of Dendritic Cells and HIV Infection

Edited by

Sandra Gessani Istituto Superiore di Sanità Rome, Italy

Filippo Belardelli Istituto Superiore di Sanità Rome, Italy

Sandra Gessani Istituto Superiore di Sanità Department of Cell Biology and Neurosciences Viale Regina Elena, 299 00161 Rome Italy gessani@iss.it Filippo Belardelli Istituto Superiore di Sanità Department of Cell Biology and Neurosciences Viale Regina Elena, 299 00161 Rome Italy belard@iss.it

Cover illustration: Illustration of dendritic cells and T cells. The education of killer T cells by dendritic (Langerhans) cells occurs in a lymph node. These dendrites have processed antigenic information obtained from an autologous vaccine made with proteins purified from the patient's own cancer cells. Killer T cells then target all cells tagged with the antigen.

Library of Congress Control Number: 2006925170

ISBN-10: 0-387-33784-9 (5) ISBN-13: 978-0-387-33784-5 (6)

e-ISBN-10: 0-387-33785-7 e-ISBN-13: 978-0-387-33785-2

Printed on acid-free paper.

© 2007 Springer Science+Business Media, LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

We dedicate this book in memory of the late Prof. Giovanni Battista Rossi,

who was for many years chairman of the Department of Virology of the Italian National Institute of Health until he passed away (February 20, 1994). Prof. Rossi, Giovanni to his friends, was the promoter and scientific coordinator of the Italian National Project on AIDS (1987-1993) and the organizer of the VII International Conference on AIDS (Florence, June 1991). All these activities had earned him the admiration of the international scientific community. Giovanni was both a mentor and a friend. We commenced our scientific careers in his laboratory working on the differentiation of Friend virus-transformed mouse leukemia cells and on the antiviral and antitumoral effects of interferons. He inspired us to start research projects on AIDS, with the vision that the knowledge of cytokines could be instrumental in the understanding of complex aspects of the pathogenesis and immunology of HIV infection. Giovanni at the time knew little about dendritic cells, because it took several years to understand the crucial importance of these cells in the regulation of the immune response after the pioneering work of Ralph Steinman and Zanvil Cohn in 1973. However, having personally known his great curiosity and interest in cell differentiation, we are certain that he would have been captivated by the recent knowledge of the biology of dendritic cells and its potential importance in the development of novel strategies of immunotherapy of cancer and HIV infection. Giovanni's major interest was in the research of cell differentiation, HIV, and cancer. It is now becoming evident that differentiation of dendritic cells can play an important role in pathogenesis and control of both cancer and HIV infection. It is a pity that Giovanni had not had the chance to witness the recent exciting progress in dendritic cell biology! Dedicating this book to him is in strong recognition not only of his commitment to AIDS research but also to his interdisciplinary vision of biomedical research.

Preface

whis book represents a special effort to bring together the most recent information on the biology of dendritic cells (DCs) focusing on the role of these cells in the pathogenesis and immunity of HIV-1 infection. The recent progress in immunology has revealed the key importance of DCs in the regulation of the immune response to infections as well as to certain malignant, allergic, and autoimmune diseases. In particular, research on DCs has recently emerged as a fundamental aspect for the comprehension of the mechanisms underlying the pathogenesis of viral diseases, as well as for the progress on the development of prophylactic and therapeutic vaccines. Recent findings have led to substantial conceptual advances in our understanding of the role of DCs in HIV infection and clarified that DCs are important targets and reservoirs of HIV, playing a crucial role in several aspects of viral pathogenesis. Interestingly, HIV can exploit many of the cellular processes responsible for the generation and regulation of the adaptive immune responses to gain access to its main target cells, namely the CD4⁺ T lymphocytes. Hence, the central role of DCs in stimulating T-cell activation not only provides a route for viral transmission but also represents a vulnerable point where HIV-1 can interfere with the initiation of T cell-mediated immunity. Recent studies have revealed that several HIV proteins can profoundly influence the phenotype and functions of DCs even in the absence of a productive infection, often resulting in an abnormal immune response. This knowledge has resulted in the identification of some major mechanisms involved in the pathogenesis of HIV-1 infection. In addition, the recent advances in DC biology have opened perspectives in the research on new adjuvants and novel strategies for the in vivo targeting of antigens to DCs, which are instrumental in the development of HIV vaccines.

This book is of special interest to researchers in the fields of basic and applied immunology, virology, cell biology, and vaccine development and to practitioners and students. It offers the reader 14 chapters written by international experts on DCs and the pathogenesis and immunology of HIV infection. The text is divided into three parts. Part I includes a detailed overview of the biology, ontogeny, function, and therapeutic potential of human DC subsets, which is intended to give readers an introduction to the field of DCs and to their possible clinical exploitation, as well as provide a framework for a fuller understanding of the content of subsequent chapters. Part II focuses on some general aspects of the immunopathogenesis of HIV infection and provides a comprehensive overview of cells and factors involved in the innate and adaptive immune response to HIV-1. These general concepts are of relevance for a deeper understanding of the functional consequences of HIV-1 interaction with DCs. This then becomes the specific topic of Part III, which also focuses on the mechanisms leading to immune evasion and dysfunction and on the importance of DCs as targets and tools for the immunotherapy of HIV infection. We have now begun to understand the complex interactions between HIV and DCs in the pathogenesis of AIDS and have learned lessons about how to prepare potentially effective DCs for cancer vaccines. We assume that in the future, DC-based therapeutic vaccines can represent a topic of increasing interest for the immunotherapy of HIV-1-infected patients. Although DC-based vaccines will certainly not solve the drastic needs of HIV-infected individuals in the developing countries, the progress of the research in this field will help us to identify novel and practical strategies for the in vivo targeting of HIV antigens to DCs. We thank all the authors for their generous participation in this initiative, which permitted us to provide the reader with a comprehensive overview on the biology of DCs and their role in the pathogenesis and immunity of HIV-1 infection.

Rome, Italy

Sandra Gessani Filippo Belardelli

Acknowledgments

Although many individuals have offered help or suggestions in the preparation of this book, several deserve special mention. We are grateful to Cinzia Gasparrini, Alessandro Spurio, Barbara Varano, and Paola De Castro for their invaluable editorial assistance. We would also like to give great thanks to all the people who read parts or all of the chapters and advised us on how to make them better.

Rome, Italy

Sandra Gessani Filippo Belardelli

Contents

Preface		vii	
Acknowled	gments	ix	
Contributo	Contributorsxxi		
Part I	General Aspects of Dendritic Cell Biology, Functions, and Clinical Application	1	
Chapter 1	Dendritic Cell Biology: Subset Heterogeneity and Functional Plasticity	3	
1 1 Intro	Vassili Soumelis, Yong-Jun Liu, and Michel Gilliet	3	
	n and Development of Human DC Subsets		
-	omic, Phenotypic, and Functional Features of DC Subsets		
	Thymic DCs		
	Blood DCs		
1.3.3	Skin and Mucosal DCs	9	
1.3.4	DCs in Solid Organs	9	
1.3.5	DCs in Secondary Lymphoid Organs		
1.4 Innat	e Functions of DC Subsets	11	
1.4.1	Invariant Receptors on DCs	11	
1.4.2	Antigen Uptake and Processing by DC Subsets	14	
1.4.3	Cytokine and Chemokine Production by DCs	15	
1.4.4	Cross-talk Between DCs and Other Innate Immunity Cell Types	16	
1.4.5	DC Maturation and Migration to the Secondary Lymphoid Organs	17	
1.5 Role	of DC Subsets in Adaptive Immunity	18	
1.5.1	MDCs in Adaptive Immune Responses	18	
	pDCs in Adaptive Immune Responses		
1.5.3	Molecular Basis for DC-mediated Th1/Th2 Polarization	22	
1.6 DCs :	and Tolerance	23	

1.7 Concluding Remarks	25
References	25

Chapter 2	Dendritic Cells and Their Role in Linking Innate and Adaptive Immune Responses	45
2.1 Introc	luction	45
2.2 DC C	Prigins, Subsets, and Differentiation	46
2.3 Plasti	city and Trafficking Pathways	51
2.4 DC-7	Γ Cell Interactions	55
2.4.1	Antigen Uptake	56
2.4.2	Antigen Processing	56
	2.4.2.1 MHC Class II Presentation	56
	2.4.2.2 MHC Class I Presentation	58
2.4.3	Costimulation and Suppression Molecules	59
2.4.4	Events at the DC-T Cell Interface	60
2.5 DCs 1	Link Innate and Acquired Immunity	61
2.5.1	Influence of the Microenvironment on DC Phenotype and Function	61
	2.5.1.1 Exogenous Signals	64
	2.5.1.2 Endogenous Signals	64
2.5.2	DCs in T-Cell Activation and Differentiation	66
2.5.3	Regulation of Pulmonary Immunity by Lung DCs	68
2.5.4	DCs and B-Cell Function	69
2.6 Conc	luding Remarks	69
Reference	es	

Chapter 3Dendritic Cell and Pathogen Interactions
in the Subversion of Protective Immunity.Sohn E. Connolly, Damien Chaussabel, and Jacques Banchereau

3.1 Introduction	85
3.2 Dendritic Cell Biology	86
3.2.1 Dendritic Cells Are Composed of Subsets	86
3.2.1.1 Distinct DC Subsets Are Endowed with Distinct	
Functional Properties	86
3.2.2 Dendritic Cell Ontogeny	88
3.2.2.1 DC Progenitors and Precursors	88
3.2.3 Antigen Capture, Processing, and Presentation	88
3.2.3.1 Presentation via MHC Class I	90
3.2.3.2 Presentation via MHC Class II	91
3.2.3.3 Presentation via CD1 Family of MHC Molecules	91
3.2.4 Dendritic Cell Maturation	92

3.2.4.1 Maturation Signals92
3.2.5 DC Migration
3.2.6 Dendritic Cells and Tolerance96
3.2.6.1 Central Tolerance
3.2.6.2 Peripheral Tolerance Through DCs96
3.2.6.3 Inhibitory Receptors
3.2.7 Dendritic Cell Death
3.3 Subversion of Dendritic Cell Function by Pathogens
3.3.1 Pathogens Evade Dendritic Cell Antigen Processing
3.3.1.1 Evasion of DC Uptake
3.3.1.2 Inhibition of Classical Class I Processing and Presentation
3.3.1.3 Upregulation of Inhibitory Nonclassical Class I Molecules
3.3.1.4 Inhibition of Class II Processing and Presentation102
3.3.1.5 Inhibition of CD1 Processing and Presentation104
3.3.2 Selective Targeting of DC Subsets by Pathogens104
3.3.3 Pathogens Target DC Precursors105
3.3.4 Inhibition of DC Maturation by Pathogens106
3.3.4.1 Inhibition of DC Activation106
3.3.4.2 Pathogen Modulation of DC Maturation107
3.3.5 Pathogen-mediated Inhibition of DC Migration
3.3.6 Viral Modulation of DC Tolerance109
3.3.7 Pathogen-mediated Dendritic Cell Death
3.4 Concluding Remarks
References

Chapter 4 Dendritic Cells as Keepers of Peripheral Tolerance 129 Sabine Ring, Alexander H. Enk, and Karsten Mahnke

4.1 Introduction	
4.2 The Concept of "Steady State" versus "Activated" DC	
4.3 Factors That Affect Tolerogenic DCs	136
4.3.1 TNF-α and Semimature DCs	136
4.3.2 Vitamin D ₃ Affects DC Maturation	139
4.3.3 IL-10 Modulates DCs for Tolerance Induction	143
4.4 Molecular Mechanisms Involved in Tolerance Induction	144
4.4.1 Costimulatory Molecules	
4.4.2 RelB Translocation Is Crucial for DC Maturation	146
4.4.3 The Role of Indoleamine 2,3-dioxygenase (IDO)	
in Tolerance Induction	148
4.5 Are There Specialized Subsets of Tolerogenic DCs?	151
4.5.1 Surface Marker Expression	151
4.5.2 Cytokine Expression	
4.6 "Designer DC": Tailored for Tolerance Induction	

xiii

4.7 Concluding Remarks	
References	159

Chapter 5	Adjuvants, Dendritic Cells, and Cytokines: Strategies for Enhancing Vaccine Efficacy	171
	Paola Rizza, Imerio Capone, and Filippo Belardelli	1 / 1
5.1 Intro	luction	171
5.2 Brief	Historical Background on Adjuvants	172
5.3 The 1	Need of New Adjuvants for Vaccine Development and crucial	
impo	rtance of Adjuvant-Dendritic Cell Interactions for the Polarization	
of Im	mune Response	175
5.4 New	Classification of Vaccine Adjuvants	179
5.5 Ligar	ds for TLRs and Their Potential Role as Adjuvants	183
5.5.1	PAMP-dependent Targeting of DCs	183
5.5.2	CpG Oligonucleotides	184
5.5.3	PAMP-independent Activation of DCs	186
5.5.4	Small-Molecule Immune Potentiators: Imidazoquinolines	187
5.6 Intera	action of Cytokines with DCs: Importance for Vaccine Development	187
5.7 Conc	luding Remarks	194
Referenc	es	195

Chapter 6	<i>Ex Vivo</i> –Generated Dendritic Cells for Clinical Trials versus <i>In Vivo</i> Targeting to Dendritic Cells:	•••
	Critical Issues Joannes F.M. Jacobs, Cândida F. Pereira, Paul J. Tacken, I. Jolanda M. de Vries, Cornelus J.A. Punt, Gosse J. Adema,	203
6.1 Introd	and Carl G. Figdor luction	203

0.1 Introduction	
6.2 DC Culture, from Bench to Clinical-Grade Product	
6.2.1 Introduction	205
6.2.2 Precursor Isolation	205
6.2.3 Differentiation into DC Phenotype	
6.2.4 Maturation	207
6.2.4.1 Maturation Signals	207
6.2.4.2 Effect of Maturation on the Function of DCs	
6.2.5 The Immune Target	209
6.2.5.1 MHC Class I and Class II Loading	209
6.2.5.2 Antigen Source	210
6.2.5.2.1 Loading DCs with Peptides	210
6.2.5.2.2 Loading DCs with Proteins	211

6.2.5.2.3 Loading DCs with Whole Target	212
6.2.5.2.4 Loading DCs with RNA or DNA	212
6.2.5.3 Methods for Loading DCs with Antigen	213
6.2.5.4 Loading of DCs with Antigens: Summary	214
6.2.6 Storage	214
6.3 DC Quality Check	214
6.3.1 Introduction	214
6.3.2 DC Phenotype and Purity	215
6.3.3 Function	215
6.4 Vaccine Administration	
6.5 Immunomonitoring	
6.6 Targeting DCs In Vivo	
6.6.1 Introduction	
6.6.2 Maturing DCs In Vivo	219
6.6.3 Targeting Antigens to the MHC Class I and II Pathway	219
6.6.4 Drug Delivery Systems	
6.6.4.1 Live Vectors to Deliver DNA to DCs	221
6.6.4.2 Microparticles to Deliver DNA, Protein, or Peptides	
to DCs	221
6.6.4.3 Receptor Ligands to Deliver Protein or Peptides to DCs	
6.6.5 Targeting DC Surface Receptors	224
6.6.5.1 Mac-1	225
6.6.5.2 Gb3	
6.6.5.3 CD40	225
6.6.5.4 Fc Receptors	
6.6.5.5 C-type Lectin Receptors	
6.7 Concluding Remarks	
References	

Chapter 7	Immunopathogenesis of HIV Infection Elisa Vicenzi, Massimo Alfano, Silvia Ghezzi, and Guido Pol	
7.1 Introc	luction	245
7.2 The L	ife Cycle of HIV-1 in CD4 ⁺ T Cells and Mononuclear Phagocytes	246
7.3 CCR:	5- versus CXCR4-dependent HIV-1 Infections	252
7.4 Intrin	sic Resistance to HIV Infection	259
7.5 HIV (Cytopathicity	261
7.6 HIV 1	Replication in Lymphoid Organs and Central Nervous System	265
7.7 Host	Determinants of HIV Propagation: Cytokines and Chemokines	268

7.8 Concluding Remarks	273
References	274

Chapter 8	Innate Cellular Immune Responses in HIV	
	Infection Barbara Schmidt, Nicolai A. Kittan, Sabrina Haupt, and Jay A. Levy	
8.1 Chara	cteristics of Innate Immunity	
8.2 Cells	and Soluble Factors Involved in Innate Immunity Against HIV	
8.3 Plasm	acytoid and Myeloid Dendritic Cells and Their Association	
with l	HIV Infection	
8.3.1	Overview	
8.3.2	PDC Characteristics	
8.3.3	Relationship of Dendritic Cells to the HIV Clinical State	
8.3.4	HIV Interaction with Dendritic Cells and IFN Production	
8.4. The I	Role of Noncytotoxic CD8 ⁺ T Cells in Anti-HIV Responses	
8.4.1	Overview	
8.4.2	The CD8 ⁺ T-Cell Antiviral Factor (CAF)	

Chapter 9 Adaptative Immune Responses in HIV-1 Infection333

8.4.3 Mechanism of Action3108.4.4 Characteristics of CAF3108.4.5 Relationship of CNAR to Clinical State3118.5 Other Innate Immune Cells3128.5.1 Natural Killer Cells3128.5.2 NK-T Cells3138.5.3 $\gamma\delta$ T Cells3158.6 Concluding Remarks316References317

Mara Biasin and Mario Clerici

9.1 Introduction to the Characteristics of Specific Immunity	
9.2 Functional Immune Disregulation in the Different Phases	
of HIV-1 Infection	
9.3 Cellular Immune Response to HIV-1	
9.3.1 Differentiation and Functions of CTLs	
9.3.2 CTLs in HIV-1 Infection	
9.3.3 Viral Escape from CTLs	
9.3.4 Antiviral Soluble Factors	
9.3.5 Alteration of T-Helper Functions in HIV-1 Infection	
9.3.6 Immunologic Profile of People Living in Different	
Areas of the World	

9.4 Humoral Immune Responses in HIV-1 Infection	
9.4.1 Differentiation and Functions of B Cells	
9.4.2 Antibody Responses in HIV-1 Infection	
9.4.3 Viral Escape from Antibodies	
9.5 Immune Responses in HIV-Exposed Seronegative Individuals	
9.6 Immune Responses in Long-Term Nonprogressors	
9.7 Concluding Remarks	
References	

Chapter 10	Binding and Uptake of HIV by Dendritic Cells and Transfer to T Lymphocytes: Implications for Pathogenesis	381
	Anthony L. Cunningham, John Wilkinson, Stuart Turville, Melissa Pope	
10.1 Intro	duction	
10.2 Trans	mission of HIV	
10.3 HIV	Infection of Female Genital Tract	
10.4 The I	Role of Dendritic Cells in HIV Infection	
10.4.	I Immature versus Mature DCs	
10.4.2	2 HIV Receptors on DCs	
	10.4.2.1 C-type Lectin Receptors	
	10.4.2.2 Diversity of CLR Expression on DCs	
10.5 Trans	smission of HIV to T Cells by DCs	
10.5.	1 Effect of Maturation	
10.5.2	2 HIV, CLRs, and Nonepithelial DCs	
10.5.	3 Control of HIV Spread and Vaginal Microbicides	
	4 Targeting the Virus	
10.5.	5 Targeting the Cell	
	els for Examining HIV Infection and Testing of Vaginal	
Micro	bicides in the Genital Mucosa	
10.6.	1 Monocyte-derived Dendritic Cells and Monocyte-derived	
	Langerhans Cells	
10.6.2	2 Ex Vivo Cervical Explants	
10.6.	3 Macaque Models	
	luding Remarks	
Reference	چ ۶	

Chapter 11	Loss, Infection, and Dysfunction of Dendritic	40.5
	Cells in HIV Infection	
	Steven Patterson, Heather Donaghy, and Peter Kelleher	
11.1 Ove	rview	
11.2 Intro	oduction to Myeloid and Plasmacytoid DCs	
11.2	.1 Myeloid DCs	
	11.2.1.1 Phenotype and Location	
	11.2.1.2 Maturation	
	11.2.1.3 Development	
	11.2.1.4 Function	
11.2.	2 Plasmacytoid DCs	
	11.2.2.1 Location and Development	
	11.2.2.2 Maturation and Function	
11.3 Prac	tical Issues in DC Research	411
11.4 Diff	erentiation of Blood Myeloid DCs	412
11.5 DCs	and Transmission of HIV	415
11.6 Loss	s of DCs in HIV Infection	416
	.1 Tissue Langerhans Cells	
	.2 Blood DCs	
11.6	.3 Anti-retroviral Drugs and DC Numbers	
11.7 Infe	ction of DCs by HIV	
11.7	.1 In Vitro Studies	
	11.7.1.1 HIV Receptor Expression on DCs	
11.7	2.2 In Vitro Infection Studies	
	11.7.2.1 Blood Plasmacytoid DCs	
	11.7.2.2 Blood Myeloid DCs	
	11.7.2.3 Monocyte-derived DCs	
	11.7.2.4 Langerhans Cells	
11.7	.3 DC Infection In Vivo	
	11.7.3.1 Blood DCs	
	11.7.3.2 Langerhans Cells	
	function of DCs in HIV Infection	
	.1 Blood Myeloid DCs	
	.2 Monocyte-derived DCs	
	.3 Langerhans Cells	
11.8	.4 Plasmacytoid DCs	
	cluding Remarks	
Reference	es	

Chapter 12	HIV Exploitation of DC Biology to Subvert the Host Immune Response	447
	Manuela Del Cornò, Lucia Conti, Maria Cristina Gauzzi, Laura Fantuzzi, and Sandra Gessani	
12.1 Intro	duction	447
12.2 The	Host Response to Viral Infection	
12.2.	1 Innate Immune Response	
12.2.	2 Adaptive Immune Response	451
12.3 Viru	s-induced Phenotypic and Functional Alterations of Human DCs	454
12.3.	1 Interference with DC Generation and Survival	456
12.3.	2 Loss of DC Morphology	456
12.3.	3 Interference with DC Maturation	457
12.3.	4 Modulation of DC Migration	458
12.4 DCs	in HIV Pathogenesis: Protective or Defective?	459
12.4.	1 HIV-1 Effects on DC Differentiation/Maturation	464
12.4.	2 Modulation of Cytokine/Chemokine Secretion	
12.4	3 Regulation of DC Chemotactic Functions	
12.4.	4 Effect on DC Survival	
12.4.	5 Effect on DC Cytotoxic Activity	
12.5 Cond	cluding Remarks	474
Reference	28	474

Chapter 13 Cross-Presentation by Dendritic Cells: Role in HIV Immunity and Pathogenesis

in HIV Immunity and Pathogenesis Concepción Marañón, Guillaume Hoeffel, Anne-Claire Ripoche, and Anne Hosmalin	485
13.1 Introduction	485
13.2 Antigen Presentation Pathways	485
13.2.1 MHC Class II-restricted Antigen Presentation	
13.2.2 MHC Class I-restricted Antigen Presentation	
13.3 Direct Presentation of HIV from Infected DCs	489
13.4 Cross-Presentation of HIV	490
13.4.1 Cross-Presentation of Defective HIV	
13.4.2 Cross-Presentation from Apoptotic, HIV-infected Cells	491
13.4.3 Cross-Presentation from Live, HIV-infected Cells	492
13.4.3.1 Evidence of Cross-Presentation from Live,	
HIV-infected Cells	492
13.4.3.2 Mechanisms of Antigen Internalization from Live	
Cells into DCs	494
13.5 Comparison of Cross-Presentation from Live or from Dead Cells	
13.5.1 Uptake and Antigen-processing Pathways	
13.5.2 Role of DC Maturation	497

13.5.3 Is Death Necessary to Cross-Presentation?	498
13.6 Role of Cross-Presentation from Infected Cells in HIV Immunity	
and Pathogenesis	499
13.7 Concluding Remarks	501
References	502
Chapter 14 Immunotherapy of HIV Infection: Dendritic	515
Cells as Targets and Tools Imerio Capone, Giuseppe Tambussi, Paola Rizza, and Adria	
Lazzarin	40
	515
14.1 Introduction	515
14.2 The Rationale for Combining HAART with Immunotherapy in the Treatment of HIV-1 Infection	516
14.2.1 Drug Therapy Limitations	
14.2.1 Drug Therapy Limitations	
14.2.2 Initiale Control of Priv-1	517
of HIV-1 Infection	510
14.3.1 Introduction	
14.3.2 IL-2 Treatment in HIV-infected Patients	
14.3.3 The Use of Immunomodulatory Drugs in Primary HIV Infection	
14.3.3.1 Use of Cyclosporin A Alongside HAART	
14.3.3.2 Mycophenolic Acid in Patients Undergoing Supervised	
Interruption of Therapy	523
14.4 The Dendritic Cell as Target for the Development	
of HIV-1 Vaccines	524
14.5 Dendritic Cells as Tools for the Development of Therapeutic	
Vaccines Against HIV	526
14.5.1 Introduction	526
14.5.2 Studies in Hu-PBL-SCID Mouse Model	529
14.5.3 Studies in Non-Human Primate Model	530
14.5.4 Clinical Studies with DC-based Vaccines	
in HIV-infected Individuals	531
14.6 Concluding Remarks	533
References	534

Index541

Contributors

Gosse J. Adema

Tumor Immunology, Medical Centre Nijmegen, Nijmegen, The Netherlands

Massimo Alfano

AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Center of Excellence on Physiopathology of Cell Differentiation, Milan, Italy

Jacques Banchereau

Baylor Institute for Immunology Research, Dallas, Texas, USA

Filippo Belardelli

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Mara Biasin

Chair of Immunology, DISP LITA Vialba, Milan University Medical School, Milan, Italy

Imerio Capone

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Damien Chaussabel

Baylor Institute for Immunology Research, Dallas, Texas, USA

Mario Clerici

Chair of Immunology, DISP LITA Vialba, Milan University Medical School, Milan, Italy

John E. Connolly

Baylor Institute for Immunology Research, Dallas, Texas, USA

Lucia Conti

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Manuela Del Cornò

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Anthony L. Cunningham

Centre for Virus Research, Westmead Millennium Institute, Westmead; and University of Sydney, Sydney, Australia

I. Jolanda M. de Vries

Departments of Pediatric Hemato-Oncology, Medical Centre Nijmegen; and Tumor Immunology, Medical Centre Nijmegen, Nijmegen, The Netherlands

Heather Donaghy

Centre for Virus Research, Westmead Millennium Institute, Westmead, New South Wales, Australia

Alexander H. Enk

Department of Dermatology, University of Heidelberg, Heidelberg, Germany

Laura Fantuzzi

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Carl G. Figdor

Tumor Immunology, Medical Centre Nijmegen, Nijmegen, The Netherlands

Maria Cristina Gauzzi

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Sandra Gessani

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Silvia Ghezzi

AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Center of Excellence on Physiopathology of Cell Differentiation, Milan, Italy

xxii

Michel Gilliet

Department of Immunology, MD Anderson Cancer Center, Houston, Texas, USA

Sabrina Haupt

Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Erlangen, Germany

Guillaume Hoeffel

Institut Cochin, Département d'Immunologie, INSERM U567, CNRS, UMR 8104, IFR 116, Université Paris V René Descartes, Paris, France

Anne Hosmalin

Institut Cochin, Département d'Immunologie, INSERM U567, CNRS, UMR 8104, IFR 116, Université Paris V René Descartes, Paris, France

Joannes F.M. Jacobs

Departments of Pediatric Hemato-Oncology, Medical Centre Nijmegen, Nijmegen, The Netherlands

Peter Kelleher

Department of Immunology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom

Nicolai A. Kittan

Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Erlangen, Germany

Adriano Lazzarin

Infectious Disease Clinic, San Raffaele Scientific Institute, Milan, Italy

Jay A. Levy

Department of Medicine, Division Hematology/Oncology, University of California, San Francisco, California, USA

Mary F. Lipscomb

Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA

Yong-Jun Liu

Department of Immunology, MD Anderson Cancer Center, Houston, Texas, USA

Karsten Mahnke

Department of Dermatology, University of Heidelberg, Heidelberg, Germany

Concepción Marañón

Institut Cochin, Département d'Immunologie, INSERM U567, CNRS, UMR 8104, IFR 116, Université Paris V René Descartes, Paris, France

Barbara J. Masten

Department of Pathology, University of New Mexico School of Medicine, Albuquerque, New Mexico, USA

Steven Patterson

Department of Immunology, Imperial College School of Medicine, Chelsea and Westminster Hospital, London, United Kingdom

Cândida F. Pereira

Tumor Immunology, Medical Centre Nijmegen, Nijmegen, The Netherlands

Guido Poli

Vita-Salute San Raffaele, Milan, Italy

Melissa Pope

Center for Biomedical Research, Population Council, New York, New York, USA

Cornelus J.A. Punt

Medical Oncology, Radboud University, Medical Centre Nijmegen, Nijmegen, The Netherlands

S. Ring

Department of Dermatology, University of Heidelberg, Heidelberg, Germany

Anne-Claire Ripoche

Institut Cochin, Département d'Immunologie, INSERM U567, CNRS, UMR 8104, IFR 116, Université Paris V René Descartes, Paris, France

xxiv

Paola Rizza

Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy

Barbara Schmidt

Institute of Clinical and Molecular Virology, German National Reference Centre for Retroviruses, Erlangen, Germany; and Department of Medicine, Division Hematology/Oncology, University of California, San Francisco, California, USA

Vassili Soumelis

Inserm U520, Institut Curie, Paris

Paul J. Tacken

Tumor Immunology, Medical Centre Nijmegen, Nijmegen, The Netherlands

Giuseppe Tambussi

Infectious Disease Clinic, San Raffaele Scientific Institute, Milan, Italy

Stuart Turville

Center for Biomedical Research, Population Council, New York, New York, USA

Elisa Vicenzi

AIDS Immunopathogenesis Unit, San Raffaele Scientific Institute, Center of Excellence on Physiopathology of Cell Differentiation, Milan, Italy

Julie A. Wilder

The Lovelace Respiratory Research Institute, Albuquerque, New Mexico, USA

John Wilkinson

Centre for Virus Research, Westmead Millennium Institute, Westmead; and University of Sydney, Sydney, Australia Part I

General Aspects of Dendritic Cell Biology, Functions, and Clinical Application

Chapter 1

Dendritic Cell Biology: Subset Heterogeneity and Functional Plasticity

Vassili Soumelis, Yong-Jun Liu, and Michel Gilliet

1.1 Introduction

The immune system is central to the homeostasis of living organisms and has evolved to protect us against a broad variety of microbial pathogens. Cells of the innate immune system represent the frontline of the defense against invading pathogens and play a key role in controlling infections during the time needed for the induction of an adaptive immune response. In addition, innate immune responses are essential to the efficient priming of naïve T and B cells and the generation of an appropriate adaptive immune response. In this respect, dendritic cells (DCs) have the unique capacity to link innate and adaptive immunity, since they sense invading pathogens at the site of infection, capture and process foreign antigens (Ag), and then migrate to the secondary lymphoid organs where they activate naïve T cells in an Ag-specific manner. The three major defining criteria of mature DCs were proposed by Steinman in 1991 (Steinman, 1991): (1) dendritic morphology; (2) constitutive expression of high levels of major histocompatibility complex (MHC) class II molecules; and (3) capacity to induce strong proliferation of naïve CD4⁺ T cells in a mixed lymphocyte reaction (MLR). Other important features of DCs include the lack of lineage-specific markers, the expression of a variety of costimulatory molecules that will provide signals for the activation and the polarization of T cells (Lanzavecchia and Sallusto, 2001), and the ability to interact, either directly or indirectly, with various immune cell types of the innate or adaptive immune systems (Banchereau and Steinman, 1998; Banchereau et al., 2000; Pulendran et al., 2001a).

DCs form a dynamic "system" with several levels of complexity and diversity according to their lineage origin, stage of differentiation, as well

as anatomic location. In each of these different states, DCs exhibit great plasticity, which allows them to adjust their functional properties depending on the nature of the pathogens (Liu *et al.*, 2001).

In this chapter, we summarize current knowledge of the basic developmental, phenotypic, and functional characteristics of DC subsets, trying to underline their differences and complementarities. We chose to focus on human DCs, given the scope of this book. Studies on mouse DCs are only described briefly when bringing important knowledge on the general physiology of DCs. DCs from non-human primates are not specifically discussed but share most major characteristics of human DCs, including subset diversity, phenotype, and function. This general overview should serve as a basis to understand more specific chapters on the role of DCs in HIV infection.

1.2 Origin and Development of Human DC Subsets

DCs are continuously produced from hematopoietic stem cells within the bone marrow, and FLT-3 ligand represents the key DC growth and differentiation factor in vivo (Pulendran et al., 2001a). The principal developmental pathways of human DCs from hematopoietic stem cells of the bone marrow are illustrated in Figure 1.1. CD34⁺ stem cells differentiate into common lymphoid progenitors (CLPs) and common myeloid progenitors (CMPs). CMPs appear to differentiate into CLA⁺ and CLA⁻ populations, which subsequently differentiate into CD11c⁺CD1a⁺ and CD11c⁺CD1a⁻ DC, respectively (Strunk et al., 1997). Whereas CD11c⁺CD1a⁺ DCs migrate into the skin epidermis and become Langerhans cells, CD11c⁺CD1a⁻DCs migrate into the skin dermis and other tissues and become interstitial DCs (Ito et al., 1999). TGF-B plays a critical role in Langerhans cell (LC) development as demonstrated by the fact that the in vitro generation of Langerhans cells from CD34⁺ progenitors can be greatly enhanced by TGF- β (Caux *et al.*, 1999) and Transforming growth factor (TGF)-B knockout mice lack Langerhans cells (Borkowski et al., 1996). In their peripheral locations, both Langerhans cells and interstitial DCs are immature DCs that are readily activated by products of microbial invasion. Langerhans cells and interstitial DCs display different phenotypes and functions (Caux et al., 1997). While Langerhans cells express CD1a, Lag-antigen, E-cadherin, and Birbeck granule-associated Ag langerin (Romani et al., 2003), interstitial DCs express CD2, CD9, CD68, and factor XIIIa. Interstitial DCs, but not Langerhans cells, have the ability to take up large amounts of antigens by the mannose receptors and to produce IL-10, which may contribute to naïve B-cell activation and IgM production in the presence of CD40-ligand (CD40L) and IL-2.

In addition to these two subsets of immature myeloid DCs (MDCs), stem cells also give rise to two types of DC precursors: monocytes and plasmacytoid DC precursors (pDCs) (Liu *et al.*, 2001). DC precursors are defined by their low expression levels of costimulatory molecules, their failure to induce significant naïve T-cell activation, the lack of DC morphology and mobility in culture, and the ability to colonize non lymphoid tissues in the absence of stimulation. Monocytes are of myeloid origin, and express the myeloid antigens CD11b, CD11c, CD13, CD14, and CD33 (Liu *et al.*, 2001), mannose receptors, and CD1a, b, c, and d.

Stem cells differentiate into CLPs and CMPs. CMPs appear to differentiate into CLA⁺ and CLA⁻ populations, which subsequently differentiate and migrate into the skin epidermis to become Langerhans cells and the skin dermis to become interstitial DCs, respectively. In their peripheral locations, both Langerhans cells and the interstitial DCs are immature DCs that can be readily activated by products of microbial invasion. Stem cells also give rise to two types of DC precursors: monocytes and pDCs. Monocytes differentiate into immature DCs in culture with granulocytemacrophage colony-stimulating factor (GM-CSF) and Interleukin (IL)-4 and can be further activated into mature DCs by stimulating with proinflammatory cytokines such as Tumor Necrosis Factor (TNF)-a, microbial products such as Lipopolysaccharide (LPS) or T cell-derived CD40L. Monocytes may also differentiate into Langerhans cells in vivo (Fig. 1.1, dashed line). pDCs represent the natural type 1 interferor (IFN)-producing cell (IPC) and have the ability to differentiate into mature DCs in culture with IL-3 or upon viral activation through Toll-like receptor (TLR)7 or 9.

Whereas the presence of macrophage colony-stimulating factor (M-CSF) leads to the differentiation of monocytes into macrophages, culture with GM-CSF and IL-4 leads to their differentiation into immature DCs with the ability to produce large amounts of IL-12 upon subsequent trigger with CD40L. These immature monocyte-derived DCs (MoDCs) resemble interstitial DCs and can be further activated into mature DCs by stimulating with proinflammatory cytokines such as TNF- α , microbial products such as LPS or T cell–derived CD40L. Addition of TGF- β to GM-CSF and IL-4 can drive the *in vitro* differentiation of monocytes into langerin⁺, Birbeck granules⁺ Langerhans cells (Geissmann *et al.*, 1998). This suggests that monocytes form a circulating pool of precursors capable of differentiating into various phagocytic cells in the tissue depending on the local factors they will encounter. *In vivo* monocyte-to-DC transformation may occur after transmigration from the blood to tissues across the endothelial barrier (Randolph *et al.*, 1998; Randolph *et al.*, 1999).

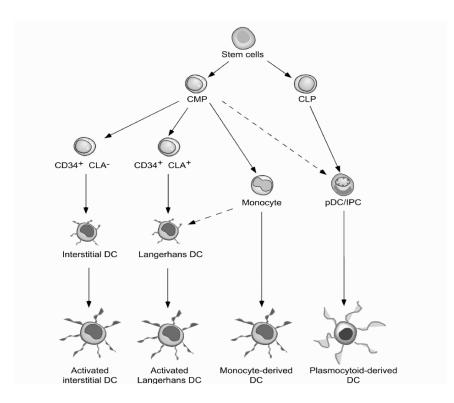


FIGURE 1.1. Pathways of human DC development.

The second DC-precursor subset generated from stem cells is the pDC subset. pDCs represent the natural type 1 IFN-producing cell (IPC) (see Section 1.4) and have the ability to differentiate into mature DCs in culture with IL-3 or upon viral activation through TLR7 or 9 (see Section 1.5). pDCs have plasmacytoid morphology and are lineage-CD4⁺CD11c⁻ cells that express BDCA2 (a novel C-type lectin receptor) and BDCA4 (which is identical to neuropilin-1), two specific markers of blood pDCs (Dzionek et al., 2000; Dzionek et al., 2001). pDC also express CD45RA, lack myeloid markers, and express high levels of the IL-3 receptor (CD123). The developmental path and molecular regulation of pDCs are not fully understood. To date, FLT3L ligand is the only known cytokine that is critical for pDC development from hematopoietic stem cells (HSCs) in humans and mice (Blom et al., 2000; Chen et al., 2004; Gilliet et al., 2002). The ability of FLT3L to promote pDC development in vivo was confirmed by experiments showing that administration of FLT3L into human volunteers led to an increase in the number of peripheral blood pDCs (Pulendran et al., 2000) and that FLT3L-transgenic mice have increased numbers of pDC, whereas FLT3L-deficient mice have less pDCs (Manfra et al., 2003). Whereas the other human DC subsets described above are of myeloid origin (called myeloid DCs; MDCs), it has been suggested that pDC/IPC are of lymphoid origin. This notion has been supported by findings such as their expression of many lymphoid markers, the lack of surface myeloid markers, and the production of mRNA for germ-line IgK and for pre-T cell receptor (Grouard et al., 1997; Rissoan et al., 1999c). Moreover, two separate studies further support the lymphoid origin of pDCs in humans and mice: (a) overexpression of the dominantnegative transcription factors Id2 or Id3 in human CD34⁺ hematopoietic progenitor cells blocks development of pDCs, T cells, and B cells, but not of myeloid DCs (Spits et al., 2000); (b) knock down of Spi-B mRNA in human CD34⁺ hematopoietic progenitor cells strongly inhibits their potential to differentiate into pDCs (Schotte et al., 2004). However, more recent studies revealed that FLT3⁺ cells within either CLPs or CMPs could differentiate into both MDCs and pDCs in cultures and in vivo (Chicha et al., 2004). As a result of these seemingly divergent findings, several different hypotheses have been proposed regarding the developmental origin of pDCs, including the existence of a common DC precursor in blood that can give rise to all DC subsets, pDCs arising as a branch of the committed lymphoid lineage (Corcoran et al., 2003), and lineage conversion (Zuniga et al., 2004).

1.3 Anatomic, Phenotypic, and Functional Features of DC Subsets

Although the *in vitro* differentiation pathways of human DC subsets from different precursors are being well characterized, the correspondence with DCs observed *in vivo* or *in situ* in the tissue (resident or "naturally occurring" DCs) is not always clear (Shortman and Liu, 2002). However, both human and mouse studies have greatly advanced our understanding of the heterogeneity of DCs in peripheral tissue, which is based on the subset, activation state, and distinct microenvironments depending on the anatomic localization.

1.3.1 Thymic DCs

The thymus is a primary lymphoid tissue where T-cell differentiation and selection occurs and leads to the generation of naïve $CD4^+$ and $CD8^+$

T cells with a diverse TCR repertoire, and also naturally occurring $CD4^+CD25^+$ regulatory T cells (Apostolou *et al.*, 2002; Jordan *et al.*, 2001; Watanabe *et al.*, 2005) as well as some of the double-negative invariant T-cell subsets, such as NKT cells (Benlagha *et al.*, 2005; Tilloy *et al.*, 1999) or mucosa-associated invariant T (MAIT) cells (Treiner *et al.*, 2003). Human thymus contains pDCs and two subsets of mature CD11c⁺ MDCs: CD11b⁺CD45RO^{low} DC that lack myeloid markers, and a minority of CD11b⁺CD45RO^{low} DC sexpressing many myeloid markers (Bendriss-Vermare *et al.*, 2001; Vandenabeele *et al.*, 2001). Thymic pDCs were shown to produce type I IFN in HIV-1–infected thymus, which exerts antiviral effects (Gurney *et al.*, 2004) and upregulates MHC class I expression on thymocytes (Keir *et al.*, 2002). Whether thymic pDCs play a role in the differentiation and/or selection of T-cell subsets is not known.

Thymic MDCs differ from other peripheral MDC subsets in two major ways: (1) they derive from an intrathymic precursor and die within the thymus, suggesting a nonmigratory behaviour (Ardavin *et al.*, 1993); (2) they mostly present self-Ag rather than foreign Ag (Steinman *et al.*, 2003). Thymic MDCs may be involved in the induction of central tolerance through the process of negative selection as well as the generation of the naturally occurring $CD4^+CD25^+$ regulatory cells (Watanabe *et al.*, 2005) (see Section 1.6).

1.3.2 Blood DCs

Human DC subsets in the blood are well characterized because of tissue accessibility. Human blood contains two types of DC precursors, monocytes and pDCs, which can be induced to differentiate into DCs after ex vivo culture (Grouard et al., 1997; Rissoan et al., 1999a; Sallusto and Lanzavecchia, 1994) and have been described in Section 1.2. In addition, human blood contains a subset of immature CD11c⁺ MDCs (O'Doherty *et al.*, 1994). Blood CD11c⁺ MDC subsets are considered naïve cells that are migrating from the bone marrow to the peripheral tissue. This assumption is based on their immature phenotype and on the fact that DCs do not recirculate from peripheral tissue to blood, as suggested by mouse studies (Austyn et al., 1988; Kupiec-Weglinski *et al.*, 1988). It is currently believed that blood $CD11c^+$ MDCs locate to the secondary lymphoid organs and peripheral tissues as resting interstitial DCs and that they are related to the in vitro generated monocyte-derived or CD34derived interstitial DCs (Shortman and Liu, 2002). MDCs are lineage-CD4^{+/-} CD11c⁺ cells expressing CD45RO, myeloid markers, such as CD13 and CD33, and the MHC-like molecule CD1c. These phenotypic markers allow clear distinction of blood MDCs from blood pDCs (which lack CD11c but express CD123 and BDCA2) and can be used to purify the two subsets for in vitro studies (Duramad et al., 2003; Rissoan et al., 1999a; Soumelis et al., 2002).

Blood pDCs express L-selectin and migrate to the secondary lymphoid organs through the high endothelial venules (Yoneyama *et al.*, 2004).

1.3.3 Skin and Mucosal DCs

In the skin and mucosa, DCs form a dense network of resident cells, both within pluri-stratified epithelia (epidermis, anogenital and oropharyngeal epithelium) as well as in subepithelial areas. The best-studied epithelial DC is the Langerhans cell (LC) of the epidermis. As described in Section 1.2, LCs are immature MDCs expressing CD1a, Lag-antigen, E-cadherin, and Birbeck granule-associated Ag langerin (Romani *et al.*, 2003). LC activation induces their migration out of the epidermis, as it is observed *in vivo* in mouse studies (Baldwin *et al.*, 2004; Ratzinger *et al.*, 2002; Romani *et al.*, 2003), *ex vivo* in cultures of human skin explants (Larsen *et al.*, 1990; Schuler *et al.*, 1993), and *in situ* in skin inflammatory diseases, where LC density is markedly decreased in areas of inflammation (Soumelis *et al.*, 2002).

DCs in subepithelial areas, such as the dermis, have a phenotype of interstitial DCs (Shortman and Liu, 2002). In the mucosa of the intestinal tract, DCs are absent in the epithelium but are abundant in the subepithelial region. Here DCs are lined-up under the basal membrane and protrude thin dendrites through the epithelium into the intestinal lumen to sample for foreign Ag (Kelsall and Rescigno, 2004; Rescigno *et al.*, 2001).

In contrast with these MDC subsets, pDCs are not resident cells of normal skin and mucosa (Gilliet *et al.*, 2004; Wollenberg *et al.*, 2002) but are present in HPV-related cervical cancer (Bontkes *et al.*, 2005), skin melanoma lesions (Salio *et al.*, 2003), lupus erythematosus (Farkas *et al.*, 2001), psoriasis (Nestle *et al.*, 2005), allergic contact dermatitis (Bangert *et al.*, 2003) and in the nasal mucosa as early as 6 h after allergen challenge (Jahnsen *et al.*, 2000), suggesting an active recruitment of blood pDCs to the site of peripheral inflammation. Furthermore, pDC recruitment to the skin has been observed in a therapeutic setting in which skin tumors were treated topically with TLR7 agonist imiquimod (Urosevic *et al.*, 2005). As will be discussed further, pDC trafficking has many similarities with T cells, both being attracted to the site of inflammation by chemokines (SDF-1/CXCR3-ligands).

1.3.4 DCs in Solid Organs

DCs are found in small numbers in all organs except brain (Hart and Fabre, 1981). They have characteristics of interstitial DCs. In each organ,