INTEGRATED CIRCUIT PACKAGING, ASSEMBLY AND INTERCONNECTIONS

INTEGRATED CIRCUIT PACKAGING, ASSEMBLY AND INTERCONNECTIONS

William J. Greig Consultant Somerville, New Jersey, USA

William J. Greig Consultant 10 Imperial Drive Somerville, NJ 08876

Integrated Circuit Packaging, Assembly and Interconnections

Library of Congress Control Number: 2006927423

ISBN 0-387-28153-3	e-ISBN 0-387-33913-2
ISBN 978-0387-28153-7	e-ISBN 978-0387-33913-9

Printed on acid-free paper.

© 2007 Springer Science+Business Media LLC

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks and similar terms, even if the are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

987654321

springer.com

DEDICATION

To my family,

my wife Joan

and

our children, their spouses and grandchildren

Karen – Christopher, Ryan, Kevin Billy and Cathy – Alli, Jeff, Shauna Joni and Fred – Danny, Kerri, Traci Jo Jimmy and Colleen – Maggie, Molly, Katie, Claire Ronny and Meryl – RJ, Connor Steven Kenny

Table of Contents

List of Figures	xiii
List of Tables	xxi
Preface	xxiii
Acknowledgements	XXV
About the Author	xxvii

1 Electronic Manufacturing and the Integrated Circuit......1

1 — MICROELECTRONICS AND THE TRANSISTOR	1
1.1 — The Integrated Circuit and Moore's Law (2-5)	
1.2 — Electronics Manufacturing and the Technology Drivers	
1.3 — A Technology Driver—The Integrated Circuit	
1.4 — The International Roadmap for Semiconductors (ITRS)	

2 Integrated Circuit Manufacturing: A Technology Resource... 15

2 — IC MANUFACTURING TECHNOLOGIES	15
2.1 — Overview of the IC Manufacturing Processes	
2.2 — The Manufacturing Environment	
2.3 — The Photolithographic Process	
2.4 — IC Methodologies and Packaging, Assembly, Interconnections	

3 — THE IC PACKAGE	
3.1 — Trends in IC Packaging	
3.2 — Area Array Packages—PGA, BGA	
3.3 — BGA Surface Mount Assembly	
3.4 — BGA Attributes	
3.5 — BGA Concerns	
3.6 — The Future	
3.7 — Lead-Free Manufacturing	

vii	in Integrated Circuit Packaging, Assembly and Interconnections	
4	The Chip Scale Package	47
	4 — THE CHIP SCALE PACKAGE, CSP	47
	4.1 — Chip Scale Package Manufacturing Technologies	
	$4.2 - \text{The } \mu \text{BGA}^{\text{TM}}$	52
	4.3 — Wafer Level Packaging—The WLP	55
	4.4 — Reliability Concerns	57
	4.5 — Summary	
5	Multichip Packaging	61
	5 — MULTICHIP PACKAGING (MCP)	61
	5.1 — MCP Substrate/Package Technologies	
	5.2 — The Hybrid Circuit	62
	5.3 — The Multichip Module (MCM)	65
	5.4 — 3-D Packaging	
	5.5 — 3-D Packaging and the Flex Circuit	
	5.6 — Die Stacking Using Silicon Thru-Vias	75
	5.7 — System in Package (SiP)/System on Package (SoP)	
	5.8 — Summary—Benefits of Multichip Packaging	79
6	Known Good Die (KGD)	81
	6 — THE KGD STORY	
	6.1 — The Semiconductor Assembly/Packaging/Test Process	
	6.2 — The Bare Die Problem	
	6.3 — Addressing the Bare Die Problem—Wafer Lot Acceptance Testing.	
	6.4 — Known Good Die (KGD)	
	6.5 — Wafer Level Burn-in and Test (WLBT)	
	6.6 — Industry Responsiveness	92
7	Packaging Options—Chip on Board	93
	7 — DIRECT CHIP ATTACH (DCA) AND CHIP ON BOARD (COB)	93
	7.1 — The COB Process	94
	7.2 — Flip Chip On Board (FCOB)	98
	7.3 — Summary	.101
8	Chip & Wire Assembly	103
	8 — CHIP & WIRE ASSEMBLY	.103
	8.1 — Die/Wire Bonding and Bonder Equipment Development	
	8.2 — Impact of the IC on Bonding and Bonder Development	
	8.3 — The Chip and Wire Assembly Process	

	8.4 — Bonding Wire: Au, Al, and Cu	106
	8.5 — Bonding Methods	
	8.6 — Types of Bonds	110
	8.7 — The Ball Bonding Process	110
	8.7 - 11c Dati Doliulig 110cess	110
	8.8 — Wedge Bonding.	
	8.9 — Obstacles to Quality and Reliable Wire Bonding	
	8.10 — Metallurgical Concerns and Surface Finishes	114
	8.11 — Handling and Storage	118
	8.12 — Verifying Wire Bonding Quality	
	8.13 — Responding to the IC and End Product	
	8.14 — Wire Bonding on Organic Substrates, The PBGA and PWB	125
	8.14 — whe boliding on Organic Substrates, the r DOA and r w D	127
	8.15 — Summary	127
0	Tono Automated Danding TAD	120
9	Tape Automated Bonding—TAB	. 149
9	- BACKGROUND-MINIMOD	129
	9.1 — Tape Automated Bonding	129
	9.2 — The TAB Tape	129
	9.3 — TAB Assembly	
	9.4 — Reliability Concerns	
	9.5 — Areas of Applications	
	9.6 — Summary	140
10	Flin Chin The Pumping Processes	1/2
10	Flip Chip—The Bumping Processes	. 143
	0 — BACKGROUND	143
		143
	0 — BACKGROUND 10.1 — IBM's Flip Chip Transistor 10.2 — Wafer Bumping	143 143
	0 — BACKGROUND 10.1 — IBM's Flip Chip Transistor 10.2 — Wafer Bumping	143 143
	 0 — BACKGROUND	143 143 147 150
	 0 — BACKGROUND	143 143 147 150 160
	 0 — BACKGROUND	143 143 147 150 160 161
	 0— BACKGROUND	143 143 147 150 160 161 163
	 0 — BACKGROUND	143 143 147 150 160 161 163
	 0— BACKGROUND	143 143 147 150 160 161 163
1	 0 — BACKGROUND	143 143 147 150 160 161 163 165
1	 0— BACKGROUND	143 143 147 150 160 161 163 165
1	 0— BACKGROUND	143 143 147 150 160 163 163 165
1	 0 — BACKGROUND	143 143 147 150 160 163 165 169 169
1	 0 — BACKGROUND	143 147 150 160 161 163 165 169 169 170
1	 0 — BACKGROUND	143 143 147 150 160 161 165 169 169 170 171
1	 0 — BACKGROUND	143 143 147 150 160 161 165 169 169 170 171
1	 0 — BACKGROUND	143 143 147 150 160 161 165 169 169 170 171
1	 0— BACKGROUND	143 143 147 150 160 161 163 165 169 169 170 171 173 182
1	 0— BACKGROUND	143 143 147 150 160 161 163 165 169 170 171 173 182 183
1	 0— BACKGROUND	143 147 150 160 161 163 165 169 170 171 173 182 183 183

Х	Integrated Circuit Packaging, Assembly and Interconnections	
	11.8 — Adhesive Bumps	
	11.9 — Summary: Advantages of Flip Chip as a First Level Interconnect	t189
12	8 8	
	Technology	193
1	12 — HIGH DENSITY PACKAGE/SUBSTRATE MANUFACTURING TECHNOLOGIES	
	12.1 — Thin Film Technology	
	12.2 — The Patterning Process	
	12.3 — Processing an HDI Substrate Interconnect	
	12.4 — Thin Film Materials	
	12.5 — Alternative Thin Film Processes for MCP Applications	
	12.6 — High Density Interconnects—Cost and Yield Considerations	
13	HDI Substrate Manufacturing Technologies: Thick Film	
	Technology	221
	87	
1	13 — THICK FILM TECHNOLOGY	
	13.1 — The Thick Film Process	
	13.2 — The Patterning Process	222
	13.3 — Thick Film Screen Printing and MCM-C/HDI	227
	13.4 — Advanced Thick Film Patterning Processes	229
14	HDI Substrate Manufacturing Technologies: Cofired	
17	Ceramic	233
		200
1	4 — THE COFIRED CERAMIC TAPE TECHNOLOGY	233
	14.1 — IBM's Multilayer Interconnect (MLI) Packaging Program	234
	14.2 — The Co-fired Ceramic Technology	236
	14.3 — The Cofired Ceramic Tape Process	237
	14.4 — High Temperature Cofired Ceramic HTCC	
	14.5 — Low Temperature Co-fired Ceramic LTCC	
	14.6 — Comparing Thick Film, HTCC and LTCC	
	14.7 — Advanced LTCC Processes	
	14.8 — Summary Co-fired Ceramic Process Technologies	243
15	Substrate Manufacturing Technologies: Organic Package	25
	and Interconnect Substrate	
1	15 — THE LEVEL 2.0 PRINTED WIRING BOARD	
	15.1 — Overview of Conventional MLB Processing	
	15.2 — The PBGA and the MCM-L	248

Table of Contents

15.3 — Impact of the IC on Packaging and Interconnect Technology	
15.4 — Vias and HDI	251
15.5 — IBM's SLC and HDI PWB Build Up Technology (BUT)	253
15.6 — Current Status Microvia HDI PWBs	256
15.7 — Enhancing HDI PWBs—Embedded Passives	257
15.8 — Technology Status	259
Acronymns and Definitions	261
Microelectronics Glossary	265
Index	289

List of Figures

Figure 1-1. Moore's Law	2
Figure 1-2. The Electronic Manufacturing Process	4
Figure 1-3(a). Single Chip Packaging	5
Figure 1-3(b). Multichip Packaging	5
Figure 1-3(c). Chip On Board	6
Figure 1-4(a). Chip & Wire	6
Figure 1-4(b). TAB	6
Figure 1-4(c). Flip Chip	7
Figure 1-5. Printed Circuit Board (PCB) or Printed Wiring Board Assembly	
(PWBA)	7
Figure 1-6. IC circa 1970, Single Level Al Metallization ≈20 Micrometers	
Minimum Line Width	8
Figure 1-7(a). IC circa 2000, Multilevel Metallization	9
Figure 1-7(b). SEM Photomicrograph Multilevel Copper Interconnect,	
Minimum Line Width ≈2 micrometers	9
Figure 1-8(a). Peripheral and Area Array I/O formats	
Figure 1-8(b). I/O Capabilities: Peripheral Format vs. Area Array	
Figure 1-9. Area Array Packages—BGAs	14
8 , 0	
Figure 2-1. A 300 mm (12") and 200 mm (8") Diameter Silicon Wafer	16
Figure 2-2. Schematic Cross-Section of a Si Integrated Circuit	
Figure 2-3. A Class 1 Cluster Cell within a Class 10 Cleanroom	
Figure 2-4. Robotic Wafer Handling	
Figure 2-5. Si Wafer Fab, The Front End Processes	
Figure 2-6. The Basic Pattern Transfer Process	
Figure 2-7(a). An Array Photomask	
Figure 2-7(b). A Reticle	
Figure 2-8. Deposition of Liquid Photoresist by Spinning	24
Figure 2-9. Positive and Negative Acting Photoresist	25
Figure 2-10. The Basic Exposure System	26
Figure 2-11. (a) Contact Printer; (b) Proximity Printer	26
Figure 2-12. Projection Printer	27
Figure 2-13. The Wafer Stepper Projection System	28
Figure 2-14. The Step and Scan Projection System	28
Figure 3-1. Transistor and an Early IC Package (TO-5 Outline)	31
Figure 3-2. IC Package History and Trends	
Figure 3-3(a). Ceramic and Plastic Dual Inline Packages	
Figure 3-3(b). PCB with Through-Hole Solder Attached DIPs	
Figure 3-4(a). Small Outline IC Packages (SOIC)	
Figure 3-4(b). PCB with Surface Mounted Components	35

Figure 3-5. Plastic Quad Flat Pack, PQFP	35
Figure 3-6. Peripheral leaded Package vs. Area Array Package	
Figure 3-7. The Pin Grid Array Package (PGA)	
Figure 3-8(a). BGA Package	37
Figure 3-8(b). BGA—Typical Bump Diameters And Pitch	37
Figure 3-9. Ceramic BGA Configurations	
Figure 3-10. Ceramic BGA, Ceramic Column BGA, Pad BGA	
Figure 3-11. Intel's Pentium 4 in Plastic BGA	
Figure 3-12. PBGA Configurations with Rigid Laminate	39
Figure 3-13. Schematic Flip Chip in Package (FCIP) PBGA	40
Figure 3-14. Tape BGA Configurations	
Figure 3-15. CBGA, PBGA, TBGA	
Figure 4-1. BGA vs. CSP	47
Figure 4-2. CSP Packages	
Figure 4-3(a). Lead Frame Based CSP (Small Outline No-Leads, SON)	49
Figure 4-3(b). Laminate-Based CSP	49
Figure 4-3(c). Tape Based CSP	50
Figure 4-4. The CSP Loop	50
Figure 4-5. Schematic of CSP on Rigid Organic Substrate	
Figure 4-6(a). Embedded CSP	51
Figure 4-6(b). Metallurgical Cross-Section Embedded CSP	52
Figure 4-7(a). Chip & Wire Bonded µBGA [™] (Face-Up)	
Figure 4-7(b). The µBGA [™] Tape Lead Bonded Face-Down	
Figure 4-8. µBGA™ "Interposer" Tape Format and a Singulated CSP	
Figure 4-9. µBGA [™] Lead Bonding Assembly Process	
Figure 4-10. µBGA™ Lead Bonding Die Attach	
Figure 4-11. µBGA™ Structured Compliancy	
Figure 4-12. The UltraCSP [®] Process	
Figure 4-13. WL-CSP	
Figure 4-14. The ShellCase CSP	
Figure 4-15. Flip Chip International's <i>Ultra</i> CSP [®] with Polymer Collar	<i>5</i> / 58
Figure 5-1. Multichip vs. Single Chip Packaging	61
Figure 5-2. Hybrid Circuit with Transistors and Diodes (Circa 1960s)	
Figure 5-3. Multiple ICs on Multilevel Thick Film Conductor Pattern (Circa	
early 1980s)	64
Figure 5-4. RF/Microwave Hybrid Circuit	
Figure 5-5(a). MCM-D (mounted on PWB)	
Figure 5-5(b). MCM-C Cofired Ceramic Package	
Figure 5-5(c). Laminate MCM-L in Molded BGA Package. Top—Molded	
Package; Left—Wire Bonded ICs; Right—Bottom of Package	66
Figure 5-6. Earliest 3-D Packaging: The RCA Micromodule	
Figure 5-7. 3-D IC Stacking Options	
Figure 5-8. Stacked TSOPs	
Figure 5-9. (a) Schematic 3-D Memory Cube; (b) TI's 3-D Memory Cube	
Figure 5-10(a). Wire Bonded Stacked Die	
Ligure e re(u). Il le Dollaca Suchea Die	

xiv

List of Figures

Figure 5-10(b). 2 Die Stack Flip Chip/Wire Bonded	70
Figure 5-11. A 2 Die Stacking/Package Process Flow	70
Figure 5-12. 3 Die Stack	71
Figure 5-13. SEM of a 4 Stacked Die Assembly with 2 Spacers	71
Figure 5-14. Various Stacked Die Configurations	72
Figure 5-15. Folded Flex: Hearing Aid Application	72
Figure 5-16. Folded Flex Stacked Packages	73
Figure 5-17(a). Flex inner layers with Packaged and Unpackaged Components	73
Figure 5-17(b). Finished Cube Showing Inner Layer Interconnections	73
Figure 5-18. (a) Single Chip Neo-Stack [™] inner layer; (b) Multichip Inner	
Layer	74
Figure 5-18(c). 19-Layer Smart Flash Stack including Two Neo-Stack™	
Layers	74
Figure 5-19(a). Vertical Integration Silicon Through-Via Die-to-Die Stacking	
Process	76
Figure 5-19(b). Cu filled Silicon Through Vias	
Figure 5-20. Schematic Cross-Section of Vertically Interconnected Stacked	
Die	77
Figure 5-21. MCM vs. SiP vs. SoP	
Figure 5-22. Cost/Benefits SiP/SoP vs. SoC	
0	
Figure 6-1. (a) IC Wafer on Film Frame; (b) Wafer Sawing	82
Figure 6-2. Waffle Pack, Gel-Pak®, Tape, Film Frame	
Figure 6-3. IC Plastic Encapsulated Package Process	
Figure 6-4. MCP Assembly/Test Process Flow	
Figure 6-5. Multichip Assembly/Electrical Yield vs. Electrical Yield of Die	
Figure 6-6. The DiePak Die Carrier	
Figure 6-7. Die Flow for Package Device and KGD Die in Temporary Carrier	
Figure 6-8. KGD Testing—Options 2, 3, 4	
Figure 6-9. Cost/Reliability Tradeoffs	
Figure 6-10. Wafer Level Burn-in and Test	
0	
Figure 7-1. (left) Chip on Board Assembly; (right) MCM-L	93
Figure 7-2. SMT/COB Assembly	
Figure 7-3(a). COB Assembly: Die Attach, Wire Bonding, Encapsulation	
(Glob Top)	95
Figure 7-3. (b) Wedge Bonding on PWB; (c) Ball Bonding on PWB	
Figure 7-4. Assemblies Before and After Glob Top Encapsulation	
Figure 7-5. SMT/COB Process Flow	
Figure 7-6. Flip Chip/SMT Assembly Process	
Figure 7-7. SMT/Flip Chip On Board, FCOB	
Figure 7-8. Comparing QFP, TAB, COB, Flip Chip Footprint on PWB	
Figure 8-1. Classic Wedge Wire Bond	.103
Figure 8-2. Classic Wire Ball Bond	
Figure 8-3. IC Assembly Process for PEMs	.106

Figure 8-5. Metallurgical Cross Sections of Au and Cu Ball Bonds on Al with	
Data on Growth Rates at Elevated Temperatures	
Figure 8-6. Bonding Tools—Capillary and Wedge Bonding Tools	110
Figure 8-7. SEM Au Ball Bond and Al Wedge Bond	
Figure 8-8. The Ball Bonding Process	
Figure 8-9. The Wedge Bonding Process	
Figure 8-10. SEM—Thick Film and EDAX Analysis	
Figure 8-11. Wire Bonding on Screen Printed Thick Film	
Figure 8-12. Schematic Ball Shear (left) and Wire Pull Testing (right)	
Figure 8-13. Wire Bonding Failure Modes/Sites	
Figure 8-14(a). Two and Three Staggered Row I/O Pad Configurations	
Figure 8-14(b). 3 Staggered Rows of Bond Pads	
Figure 8-15. Capillary Re-Design for Fine Pitch Applications	122
Figure 8-16. Fine Pitch Ball Bonding	
Figure 8-17. PBGA Showing Fan Out of Package Pads and Long Loop Wire	
Bonds	123
Figure 8-18. No Sweep Encapsulant	
Figure 8-19. High Density Fine Pitch Wire Bonding with Insulated Wires	
Figure 8-20. Wire Bonding Responding to Changing Packaging Technologies.	
Figure 8-21. Bond Pad "Cupping" on "Soft" Substrate	127
5 11 6	
Figure 9-1. Schematic of a Single Frame TAB Assembly	130
Figure 9-2. Microprocessor IC TAB Tape—35mm Tape	
Figure 9-3. Close-up of TAB Tape (70 mm) for Very High I/O Count IC	
Figure 9-4. Types of TAB Tapes	
Figure 9-5. Tape Layout with Annular Ring	
Figure 9-6. Excised TAB Assembly in Carrier for Testing	
Figure 9-7(a). Schematic Bumped Die TAB	
Figure 9-7(b). Bumped Tape TAB	
Figure 9-7(c). TAB Lead on Al Pad	
Figure 9-8. TAB Inner Lead Bonding Process	
Figure 9-9. TAB Package/Substrate Attachment Options	
Figure 9-10. Face Up and Flip TAB Bonding	
Figure 9-11. TAB Failure Sites	138
Figure 9-12. Microprocessor Module (~5"x5") with all TAB Device Assembly	140
5 1 ,	
Figure 10-1. (a) IBM's Flip Chip Transistor; (b) Multichip Transistor	
Assembly	144
Figure 10-2. IC with Bumps Directly on Bond Pads	144
Figure 10-3. IC I/O Pad Formats: (L to R) Dual Row Peripheral, Peripheral +	
Partial, Area Array	145
Figure 10-4(a). Direct Bump on Pad	
Figure 10-4(b). Schematic Redistribution Layer (RDL)	
Figure 10-4(c). Schematic of Relocated Pad and Bump	
Figure 10-4(d). SDRAM Flip Chip with Redistributed Bond Pads	
Figure 10-5(a). Al Pad as Received	

Figure 10-5(b). Al Pad after Electroless Ni/Immersion Au Plating (5 microns	
thick)	150
Figure 10-6. Ball Placement by Vacuum Process	151
Figure 10-7(a). The Evaporation Bumping Process (C-4)	152
Figure 10-7(b). Schematic of C-4 Evaporated Bump Before and After Reflow	153
Figure 10-7(c). Solder Dammed Substrate Pad (C-4)	153
Figure 10-8. The Electroplated Solder Bumping Process	154
Figure 10-9. Schematic Cross-section of Bump Site Pre-Plating and AS-Plated	
Bump	155
Figure 10-10. SEM Electroplated Cu Bumps	155
Figure 10-11. Electroplated Au Bumps	
Figure 10-12(a). Wafer Bumping Process Using Stencil Printing	157
Figure 10-12(b). Bumping by Stencil Printing	157
Figure 10-13(a). C4NP Mold with Cavities Corresponding to Bump Locations	158
Figure 10-13(b). Molten Solder Filling of Mold Cavities	158
Figure 10-13(c). Molten Solder Bump Transfer to Wafer	158
Figure 10-14. Continuous Mode Solder Jet Technology	159
Figure 10-15. (a) Schematic Cross-section of NiAu Bump; (b) 20µm	
Ni-Au Bump	160
Figure 10-16. Stencil Printed Conductive Epoxy Bump (75µm)	162
Figure 10-17. Elastomeric Bumps	
Figure 10-18. Au Stud Bumps as Bonded and After Coining	164
Figure 10-19. Coined Stud Bumps As Bonded	164
Figure 10-20. Stacked and Area Array Stud Bumps	165
Figure 11-1. (right) Manual Flip Chip Aligner Bonder; (left) Schematic of	
Bi-directional Viewing of Die and Package/Substrate Footprint	
Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options	171
Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process	171 172
Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment	171 172 172
Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment Figure 11-5. SMT/Flip Chip Assembly	171 172 172 173
Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment Figure 11-5. SMT/Flip Chip Assembly Figure 11-6(a). Schematic of a FCOB Solder Joint Fatigue Failure	171 172 172 173
Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment Figure 11-5. SMT/Flip Chip Assembly Figure 11-6(a). Schematic of a FCOB Solder Joint Fatigue Failure Figure 11-6(b). Metallurgical Cross-Section of Solder Fatigue Cracking in	171 172 172 173 174
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment	171 172 172 173 174
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment Figure 11-5. SMT/Flip Chip Assembly	171 172 172 173 174 175 175
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment Figure 11-5. SMT/Flip Chip Assembly Figure 11-6(a). Schematic of a FCOB Solder Joint Fatigue Failure	 171 172 172 173 174 175 175 176
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process	 171 172 172 173 174 175 175 176 177
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process	 171 172 172 173 174 175 175 176 177
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment Figure 11-5. SMT/Flip Chip Assembly	171 172 172 173 174 175 175 176 177 178
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process Figure 11-4. Solder Reflow and Self-Alignment	171 172 172 173 174 175 175 176 177 178 178
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options	171 172 172 173 174 175 175 176 177 178 178
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options Figure 11-3. Flip Chip Solder Reflow Process	171 172 172 173 174 175 175 176 177 178 178 178
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options	171 172 172 173 174 175 175 176 177 178 178 178 179 180
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options	171 172 172 173 174 175 175 176 177 178 178 178 179 180
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options	171 172 172 173 174 175 175 175 176 177 178 178 179 180 185
 Bi-directional Viewing of Die and Package/Substrate Footprint Figure 11-2. Solder Reflow Options	171 172 172 173 174 175 175 175 176 177 178 178 179 180 185

Figure 11-17. Non-conductive Adhesive FC Bonding Contact Resistance vs.	
Applied Force	187
Figure 11-18. Conductive Polymer Bumps and Attachment	189
Figure 12-1. Thin Film Cleanroom	
Figure 12-2. Subtractive Etch and Selective Plate Up Patterning Processes	
Figure 12-3. Thin Film Process for WL-CSP (Ultra CSP®)	
Figure 12-4. Dry Film Lamination and Patterning	198
Figure 12-5. (Left) Dry Film Applied Over Previously Patterned Structure;	
(Right) Substrate Vias or Holes	198
Figure 12-6. Electrodeposited Resist: Patterned for Selective Plate-up of 25um	
Lines Over Previously Patterned 45um Thick 100um Wide Feature	
Figure 12-7. Subtractive Etch Process; The "Etch Factor"	
Figure 12-8. Planarization of a Deposited Dielectric	
Figure 12-9. Photodefineable vs. Photosensitive (+/-) Via Patterning	
Figure 12-10. Achievable Via Diameters Using Laser and Photo-Patterning	207
Figure 12-11. Metallurgical Cross-Section Thin Film Multilayer Interconnect	
on Ceramic Substrate	208
Figure 12-12. Thin Film Interconnects on Co-fired Ceramic Substrate	209
Figure 12-13. Thin Film Multilayer Interconnect on PWB (MCM-L/D)	209
Figure 12-14. Si Substrate Supporting Multilevel Thin Film Interconnect for	
MCM	210
Figure 12-15. Schematic Cross-Section of a Si Substrate with Embedded	
Active and Passive Devices	211
Figure 12-16. DRAM Chips Flip Chip Assembled on Electrically Tested	
ASICs	211
Figure 12-17. GE HDI "Chips First" MCM	
Figure 12-18. The "Chips First" (GE HDI) MCM Process Flow	
Figure 12-19. GE HDI MCM and SMT Printed Circuit Board Assembly	
Figure 12-20. The Low Cost GE HDI or Embedded Chip Build Up (ECBU)	
Process	214
Figure 12-21(a). An ECBU MCM with Embedded Active and Passives	
Figure 12-21(b). An ECBU MCM with Embedded Actives and Passives and	
Package Devices and Discrete Passives Mounted on Top Layer	215
Figure 12-22. The Intel BBUL Process for Microprocessors	
Figure 12-23. Intel's Current Microprocessor Package and the BBUL	
Figure 12-24. Intel's Multichip BBUL	
Figure 12-25. Substrate Size/Yield and Defect Density	
Figure 12-25. Substrate Size Tield and Defect Defisity	
Figure 13-1. The Multilayer Thick Film Process Sequence	222
Figure 13-2(a). Photo-Patterned Emulsion (2 mils 1/s) on 360 SS Mesh	224
Figure 13-2(b). Fully Patterned Screen	
Figure 13-3. Screen Printing Process	
Figure 13-4. Manual Screen Printer	
Figure 13-5. Thick Film Printing Variables Requiring Monitoring	
Figure 13-6. Automatic Thick Film Screen Printer	
Figure 13-7. Screen Printed Thick Film Au Conductor trace	

Figure 13-8(a). Thick Film Multilayer Interconnect Board (MIB)	228
Figure 13-8(b). Cofired Ceramic MIBs Populated with Ceramic Chip Carrier	
Packages	.229
Figure 13-9. Diffusion Patterning TM Process	.230
Figure 13-10. Dupont Fodel® Photosensitive Thick Film Paste Processing	
Figure 13-11(a). Photo-Patterned 50 um Via in Thick Film Dielectric	.231
Figure 13-11(b). Photo-Patterned Thick Film Au Conductor Traces;	
Left: 28 um lines, 22 um spaces; Right: 50 um lines, 4.5 um thick	.232
Figure 14-1. Patent on Cofired Ceramic Manufacture Issued to Harold	222
W. Stetson, RCA	
Figure 14-2(a). IBM Thermal Conduction Module (TCM)	
Figure 14-2(b). Cross-Section of TCM Ceramic Substrate Interconnect	
Figure 14-3(a). Next Generation TCM	.235
Figure 14-3(b). A Cofired Ceramic Package with Thin Film Signal Layers and	226
Top Layer Metallization	
Figure 14-4. Unfired ("Green") Ceramic Tape	
Figure 14-5. Cofired Ceramic Optional Instruction Features (LTCC)	
Figure 14-6. The Cofired Ceramic Tape Process	
Figure 14-7(a). HTCC Hermetic Single and Multichip Packages	.239
Figure 14-7(b). HTCC Multilayer Interconnect Board with Select Areas for	220
Hermetic Sealing	
Figure 14-8. LTCC Multichip Packages	
Figure 14-9. LTCC-M, A Constrained Cofired Ceramic Tape Process	.242
Figure 14-10. Large Area Panel (7"x 11") Using Heralock [™] Self-Constrained	242
LTCC Tape	.243
Figure 15-1(a). Multilayer PWB with Plated-Through Holes	246
Figure 15 1(u). Plated Through-Hole Via	
Figure 15-1(b): Flater Inforgin Flore Via	
Figure 15-3(a). Schematic Plastic BGA	
Figure 15-3(b). PBGAs in Strip Format and After Epoxy Molding/Singulation	
Figure 15-4(a). Unpopulated MCM-L Substrate	
Figure 15-4(b). MCM-L—Multichip Module with Laminate Substrate	
Figure 15-5. Through-Hole, Blind, and Buried Vias	
Figure 15-6. Effect of Via Type on Board Size	
Figure 15-7. Methods of Via Generation	
Figure 15-8(a). Schematic IBM's Surface Laminar Circuit-SLC BGA	
Figure 15-8(b). Cross-section SLC Flip Chip Package	
Figure 15-9. Single Chip SLC/BUT PBGA	
Figure 15-10. Key Feature Dimensions for the HDI PWB	
Figure 15-11. The HDBU and Super HDBU	
Figure 15-12. Cross-section Super-HDBU 2–3–2 PWB	
Figure 15-13. Multilayer and Microvia PWB Projections	
Figure 15-14. Cell Phone Key Features and Component Count	
Figure 15-15. Embedded Discrete Capacitor	
Figure 15-16. Discrete vs. Embedded Planar Decoupling Capacitor	

List of Tables

Table 1-1. Overall IC Characteristics (ITRS Technology Roadmap	1
(ITRS 2005))	
Table 1-2. Single Chip Fill Count (TTKS 2003)	1
Table 2-1. Cleanroom Classifications [US FED STD 209E Cleanroom	
Standards]1	8
Table 2-2. Comparison of Positive and Negative Resists 2	5
Table 5-1. Comparing DIP, SMT, MCP at System Level (Courtesy Hughes Aircraft)	2
Table 5-2. Advantages of System on Package vs. System On Chip7	
Table 3-2. Advantages of System on Lackage vs. System on Chip	0
Table 7-1. Encapsulants for COB 9	7
Table 7-2. COB vs. FCOB/WLP	
Table 8-1. Eutectic vs. Adhesive Bonding10	
Table 8-2. Material Properties of Al, Cu, and Au Wire10	
Table 8-3(a). Advantages/Disadvantages of Thermocompression Bonding 10	
Table 8-3(b). Advantages/Disadvantages of Ultrasonic Bonding	
Table 8-3(c). Advantages/Disadvantages of Thermosonic Bonding	
Table 8-4. Sources of Contamination that Lead to Poor Quality Bonds	
Table 8-5. Metallurgical Compatibility of Wire bonding Materials. 11 Table 9. (c) Au Wire Destructive Bull Tast Criteria. 11	
Table 8-6(a). Au Wire Destructive Pull Test Criteria 11 Table 8-6(b). Al Wire Destructive Pull Test Criteria 11	
Table 8-6(b). At whe Destructive Pull Test Chiefia	9
Table 9-1. Key Elements of a TAB Assembly	0
Table 9-2. Comparing Tape Options	
Table 9-3. Comparison TAB Inner Lead Bonding Techniques 13	
Table 10-1. Reflow Temperatures for Common Solder Bump Materials14	
Table 10-2. Typical Bump Materials and Favored UBM14	
Table 10-3. Comparing Wafer Bumping Processes 16	1
	~
Table 11-1. Materials Properties of Some Organic Substrates	6
Table 11-2. Lead and Lead-Free Solders Performance on HTS and HTOL Paliability Servering	2
Reliability Screening	
Table 11-5, Rendonity Screening resis for Soluci Dumped FC/ wEr	+
Table 12-1. Thin Film Process Capability 19	4
Table 12-1. Typical Properties of Spin on Liquid Resist 19 19 19	
Table 12-3. Dry Film Phototresist Properties. 19	

Table 12-4. Electrodeposited Photoresist Properties	199
Table 12-5. Mask Aligner vs. 1X Stepper	
Table 12-6. Conductor Metals	
Table 12-7. Metals and Their Function (Courtesy Advanced Technical	
Ceramics)	204
Table 12-8. Material Properties for Polyimide and BCB	
Table 12-9. Thermal Properties of Select Inorganic Materials	
Table 12-10. Patterning Requirements for Various Package/Substrate	
Interconnects	219
Table 13-1. Most Common Thick Film Formulations	223
Table 14-1. Cofired Ceramic Materials and Properties	240
Table 14-2. Advantages/Disadvantages Film, HTCC, LTCC	
Table 15-1. Typical Electrical Properties of Some Laminate Materials	247
Table 15-2. Typical Thermal Properties of Some Laminate Materials	

Preface

The integrated circuit with each new generation has been characterized by increasing functionality. In the 1980's Very Large Scale Integrated Circuits (VLSIC) began to emerge with transistor counts approaching one million plus per chip! The IC package quickly became more than a "chip carrier". Now the packaging had to address the electrical, mechanical and thermal requirements of the IC, and had to do so cost-effectively. A package costing more than the chip was not an option. In addition, the demands of the marketplace for product that was "smaller, better and cheaper" came into play.

As a result the late '80s saw paradigm shifts in IC packages and packaging options. Area array packages, in particular, the Ball Grid Array (BGA) began to emerge that more effectively addressed increasing chip I/O count. Ceramic packaging for high performance circuits (microprocessors digital signal processors) gave way to organic based packages, the plastic BGA (PBGA), offering a more favorable solution to package cost. And the hybrid circuit suddenly became a multichip module!

Over the past 15 years the author has developed and presented professional development courses at various technical symposia as well as on-site at semiconductor, component and equipment manufacturers and materials suppliers facilities. The courses have covered topics that make up the electronic manufacturing arena focusing on packaging and assembly of the integrated circuit.

This book evolved from these courses and discusses the many changes that have taken place not only with the physical package itself but also the currently available packaging options and assembly technologies. It is intended to serve as an *introduction* to IC packaging and assembly providing sufficient coverage to afford a working knowledge of the basic concepts and technologies. The book is intended for personnel new to the industry and, those indirectly involved in electronics manufacturing such as upper management, quality assurance, procurement, marketing and sales, and equipment manufacturers and material suppliers. For those directly involved the book can serve as a useful *overview* of new and emerging technologies.

The First Chapter is discussion of electronic manufacturing that basically describes the packaging and assembly of the integrated circuit. It identifies the various levels of microelectronic assembly, i.e., Level 1.0 interconnects – chip to package and Level 2.0 – chip or package to a substrate board and the packaging options, – single chip, multichip and chip on board.

The Second Chapter briefly reviews the integrated circuit manufacturing process and the *applicability* of much of the procedures and practices to IC packaging and assembly. It highlights the significance of a cleanroom operating environment and the photolithographic process in particular, as a model for implementing a proven high yield cost effective manufacturing technology.

Subsequent Chapters 3 and 4, discuss the trends in the IC package, the Chip Scale Package, and Wafer Level Packaging. Chapter 5 covers Multichip Packaging and the various sub-classifications – the hybrid circuit, the multichip module, System

in Package, System on Packaging and the rapidly developing 3-D Packaging that includes stacking of both multiple die and packages.

Working with bare die as opposed to package devices is discussed in Chapter 6 and covers the subject of Known Good Die or KGD. It presents the concerns associated with bare die and multichip applications and the problem related to the lack of sufficient electrical testing of unpackaged die to insure the device meeting full electrical specifications. Various approaches to resolving this problem and providing for Known Good Die are discussed.

The assembly of a bare die onto an organic board, Chip on Board (COB) is covered in Chapter 7. Implementation and incorporation into Surface Mount Assembly lines and concerns are included. A "packageless packaging" approach makes it a viable packaging option offering both increased component density and an enhanced reliability at the Level 2.0 printed circuit board (PCB) assembly.

The Level 1.0 interconnect technologies are covered in subsequent chapters, C&W Assembly in Chapter 8, TAB in Chapter 9, and Flip Chip Bumping and Assembly, Chapter 10 and 11 respectively.

The last four chapters, 12 through 15, cover the manufacturing technologies, namely Thin Film, Thick Film, Cofired Ceramic and the Organic Laminate Technology, for packages – SCP and MCP, and High Density Interconnect (HDI) substrates. The Thin Film process technology is highlighted as the leading technology in meeting the challenges that arise with the packaging and assembly of current and future integrated circuits. It basically emulates the IC manufacturing and therefore has the inherent capability for achieving very fine line conductor circuitry and the high wiring density required for high density interconnects supporting Levels 1.0 and 2.0. The application of the Thin Film Technology to Thick Film, Cofired and Laminate, to further enhance the overall advantages of each is also discussed. Chapter 15 presents a discussion of a combined Thin Film and Laminate process (Build Up Technology, BUT) as a key enabler for Level 2.0 interconnect substrates that adequately accommodates all current and future IC packaging and assembly technologies.

Acknowledgements

I was fortunate in having spent my early years in the electronics industry at RCA working on materials and process development supporting the early manufacture of both the transistor and the integrated circuit that followed. I am indebted to my mentor during those early years, the late Arnold Rose, who guided me and provided me the opportunity to become deeply involved in the many process technologies that are still part of IC manufacturing.

Over the years that followed there were many individuals who help expand my areas of expertise and made it possible for me to write this book. There were and are many and to attempt to recognize everyone would be nearly impossible and would add many pages to this book. And I am certain I would be missing many as well. They come from all areas of industry and include: component manufacturers, equipment manufacturers and material suppliers, manufacturer reps and of course, my colleagues in consulting.

There are several however that I must acknowledge since they were particularly helpful in bring this book to fruition. In particular I am extremely thankful to Richard Brown, an industry consultant, author, instructor of professional development courses who provided invaluable insight. I am most grateful for the many discussions, his suggestions and critiques he provided that were so helpful.

I must also recognize and thank the following all of whom contributed in many and varied ways: Russ Atkinson, Avid Associates; Lee Levine, K&S; Tom Terlizzi, Aeroflex Plainview Inc.; Ray Fillion, GE Global Research; and Bruce Romenesko, Johns Hopkins University, Applied Research Laboratory.

I would be remiss if I didn't also thank the many companies that granted permission to use the copyrighted photographs, figures and tables used in the book. Finally, I want to thank the editorial staff at Springer without whose help there simply would not be any book.

In all probability I omitted several individuals who also made valuable contributions and for this I am truly sorry. I thank them "in absentia".

About the Author

A graduate of Fordham University with a BS in Physics Bill has had extensive experience in Microelectronics covering semiconductor processing and assembly, hybrid circuits, and PWB fabrication and assembly. He began his career with RCA Semiconductor Division and subsequently worked for General Electric and Lockheed Electronics. While at RCA he was awarded six U.S. patents covering wafer processing and semiconductor assembly. At General Electric he was a staff engineer and consultant for hybrid circuits and PWB manufacturing.

As Manager of Advanced Development at Lockheed, he was directly responsible for the design, construction, and operation of a state of the art Microelectronic Packaging facility supporting research, development, and manufacture of advanced hybrid circuits and multichip modules.

He became an independent consultant in 1988. His clients have included material suppliers, assembly equipment manufacturers, and component manufacturers.

His consulting activities has included work at NASA Headquarters in Washington D.C. where he provided technical expertise and assistance in developing an Advanced Integrated Circuit Packaging and Assembly Program.

Bill specializes in packaging and assembly, focusing on high density substrate manufacturing, and chip assembly including flip chip and chip scale packaging.

His company offers assistance in technology assessment and implementation, and specializes in technical audits of manufacturing operations directed towards yield improvement and reliability enhancement.

He has developed several educational and training courses which are offered at various national and international symposia and on-site presentations.

He is an active member of IMAPS where he is a Fellow of the Society and Past President of the Garden State Chapter.

Electronic Manufacturing and the Integrated Circuit

1 — MICROELECTRONICS AND THE TRANSISTOR [1]

The "Microelectronics Age" essentially began in 1947 with the invention of the transistor at Bell Laboratories. This historic solid state device was capable of both amplifying and switching (on/off) electrical signals. Its introduction spawned many new electronic products featuring major changes affecting end product characteristics, performance, and reliability.

The first transistor was based on the semiconductor Germanium (Ge), and became commercially available in the early 1950s. Transistors based on the superior properties and manufacturability of silicon (Si) followed later in the decade replacing Ge in almost all applications.

The overall impact of the transistor in the marketplace was immediate with rapid growth in high volume production. Compared to the then active electronic component, the vacuum tube, the transistor was significantly smaller and lighter, and required a considerably lower level of power for operation. Transistors made possible a quantum jump in electronic product *miniaturization*. Early applications were in the consumer market and included portable radios and hand-held calculators.

Use of the transistor as a switching device lead to early applications in the computer industry This quickly accelerated further development of the transistors highlighted by higher operating frequencies and faster switching speeds.

1.1 — The Integrated Circuit and Moore's Law (2-5)

A little over a decade after the transistor went into production, a major development in solid state device technology occurred with the invention of the Integrated Circuit (IC). Co-invented by Jack Kilby of Texas Instruments and Bob Noyce of Fairchild Semiconductor in 1958, the IC consisted of multiple transistors interconnected on a single silicon die.

The IC went into production in the 1960s. Like the transistor, IC manufacturing experienced an equally rapid growth characterized by the introduction of ICs with increasing transistor count and functionality.

The number of transistors on the IC obviously determined the IC's ultimate level of functionality. It therefore represented another quantum jump in miniaturization while at the same time provided a major increase in electrical functionality and performance. In 1965, Gordon Moore, at Fairchild at the time, published a paper in which he noted that the IC's "complexity" was roughly doubling every year of manufacture and predicted that it would continue to do so in the future. This subsequently became known as Moore's Law. Over the years Moore's Law has undergone some modification, namely in the timeframe for doubling and the definition of "complexity" (Figure 1-1).

In 1971 another significant but related event occurred with the invention of the microprocessor [6] at Intel Corporation. Basically, a "computer on a chip", its introduction had a far reaching impact on the entire electronics industry. The demand for microprocessors with increased performance was immediate and a driving force in a continuing and intensive development effort of all aspects of the technology covering IC design, manufacturing, and applications engineering.

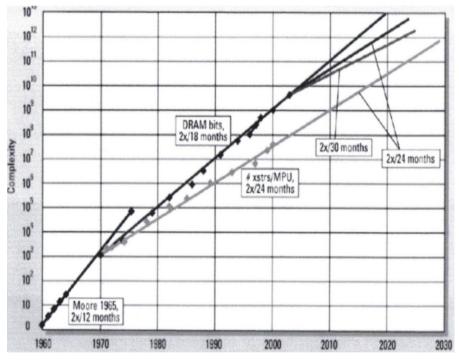


Figure 1-1. Moore's Law [3]

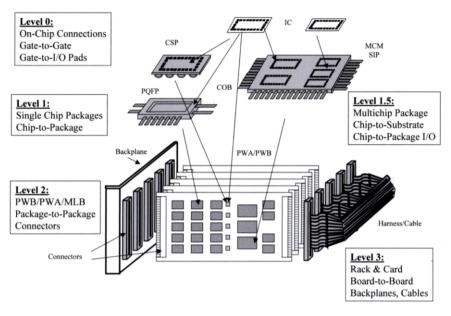
With the introduction of the microprocessor and the Dynamic Random Access Memory (DRAM) during the 1970s, some parameter modifications to Moore's Law were needed. In particular, the timeframe for doubling is a best fit at 24 months for the microprocessor and 18 months for the DRAM. In addition, for the microprocessor "complexity" indicates the number of transistors per device while for the DRAM it is the number of bits per device. Further modifications with Moore's Law are expected in the future particularly with the DRAM extending the doubling to 24 months and possibly 30 months.

The single transistor device of the early '50s is now, slightly over 50 years later, an IC containing literally millions of transistors and expected to reach a billion transistors by the end of the decade.

1.2 — Electronics Manufacturing and the Technology Drivers

Perhaps not surprising, the IC as well as the marketplace (i.e. end product) are the drivers that influence the packaging and assembly technologies that are the heart of the manufacturing process. It is a marketplace for example, that during the last decade has experienced a tremendous increase in the number, variety and the availability of electronic products. All have taken advantage of the ever-increasing performance potential of the integrated circuit. The marketplace can be segmented into two types of product. One is driven primarily by the requirement for high performance, and the other by size and cost. The latter is represented by the high volume but low cost products, all requiring portability, such as cell phones, camcorders, laptops, digital cameras, personal digital assistant (PDAs) and the like. The high-performance, high-reliability products are typically those used for avionics, space, and military applications.

The life cycle of many of the products, particularly in the high volume consumer categories, is on the order of one year or less. To be marketable and remain competitive, however, next generation models must be "smaller, better, and cheaper". This requirement has in fact become the mantra of the electronics industry and strongly influences product manufacture impacting both the packaging and assembly of ICs.


1.2.1 — The Manufacturing Process [7,8]

The Electronics Manufacturing Process is graphically represented in Figure 1-2. The process starts with the IC and takes it through a series of steps, referred to as "Packaging Levels" or "Levels of Interconnection" involving assembly of both bare die and packaged components.

Successful manufacturing ideally means realizing chip level performance in the end product. It therefore requires attention to the following:

- Identifying and accommodating the electrical, mechanical and thermal requirements inherent in the IC, and
- Selecting those manufacturing technologies that incorporate attributes that will contribute to an end product that is "smaller, better, and cheaper".

Meeting this challenge is a continuing and on going effort. It has resulted in the IC's physical package, as well as the assembly of both the die and the package, undergoing paradigm shifts in both materials and process technologies.

(Courtesy General Electric Global Research)

Figure 1-2. The Electronic Manufacturing Process

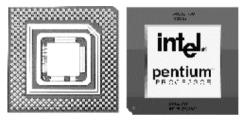
1.2.2 — Packaging Options

The graphical representation of the process shows three packaging options or paths: Single Chip Packaging (SCP), Multichip Packaging (MCP), and Chip on Board (COB). SCP (Figure 1-3(a)) has been the industry's standard from the beginning, while MCP (Figure 1-3(b)) is a variant involving assembling multiple die in a single package. COB (Figure 1-3(c)) is an option that basically eliminates the packages with bare die assembled directly to the second level interconnect substrate, the printed wiring board (PWB).

The three packaging scenarios each offer specific advantages and disadvantages. Selection of a particular option is dependent on several factors based on both the IC and the end product requirements. These are discussed in Chapters 3, 5, and 7, respectively.

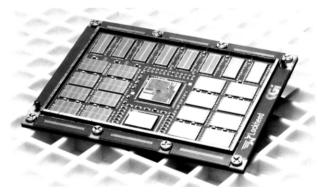
1.2.3 — Levels of Interconnect/Packaging

The manufacturing process for mostly all electronic products follows the three "Packaging Levels" indicated. They are described as:

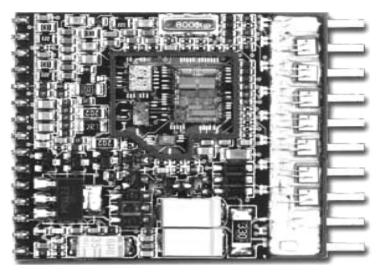

✓ Level 1.0—covering the connection (assembly) of the die to a package (SCP) or substrate (MCP).

The interconnect technologies, Figure 1-4, include:

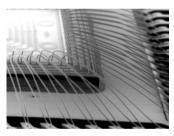
- (a) Chip and Wire—C&W
- (b) Tape Automated Bonding
- (c) Flip Chip (FC) Bonding

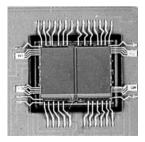

Each of these is discussed in detail in Chapters 8, 9, 10 and 11.

When multiple die are connected to a package/substrate, (Level 1.5 in Figure 1-2), the substrate must provide the necessary interconnections between die. This is accomplished by an embedded conductor interconnect network within the package. These package/substrates are manufactured using thick film/cofired ceramic, thin film or laminate printed wiring board (PWB) processes that are discussed in chapters 12, 13, 14 and 15, respectively.

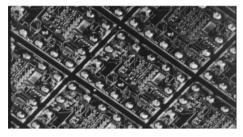


(Copyright 200x, Intel corporation. Reproduced by Permission)


Figure 1-3(a). Single Chip Packaging


(Courtesy Lockheed Martin) Figure 1-3(b). Multichip Packaging

(Courtesy Stellar Microelectronics) **Figure 1-3(c).** Chip On Board



(Courtesy Kulicke & Soffa) **Figure 1-4(a).** Chip & Wire

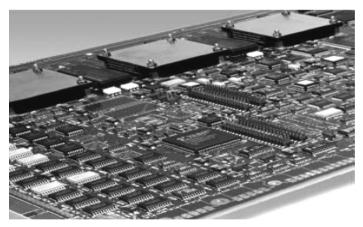

(Courtesy International Micro Industries)

Figure 1-4(b). TAB

(Courtesy IBM Corp.) **Figure 1-4(c).** Flip Chip

- ✓ Level 2.0—refers to the interconnection of multiple bare die and/or packages through a substrate interconnect. This is typically a printed wiring board (PWB), an organic based substrate but can also be ceramic. The board, with components attached, is referred to as a printed circuit board (PCB) or a printed wire assembly (PWA). (Figure 1-5).
- ✓ Level 3.0—refers to assembly to a PWB (motherboard) of multiple Level 2.0 board assemblies. Again, the motherboard provides the interconnections between assemblies.

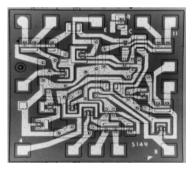
(Courtesy IBM Corp.)

Figure 1-5. Printed Circuit Board (PCB) or Printed Wiring Board Assembly (PWBA)

1.3 — A Technology Driver—The Integrated Circuit

Obviously packaging must address the needs of the IC, accommodating the performance and/or reliability. In doing so, not only the packaging, but also the device assembly is impacted.

The IC has changed significantly over the years and will continue to do so. As a consequence changes in the packaging and associated assembly processes were necessary and have occurred. Knowing future device needs should therefore be equally important.


1.3.1 — About the Integrated Circuit

Silicon (Si), Gallium Arsenide (GaAs) and Silicon Germanium (SiGe) are the semiconductor materials currently available and used in IC manufacturing. However, the overwhelming majority of ICs are still silicon based.

Fabrication of the IC involves sophisticated materials, processes, and highly specialized and dedicated equipment that have been developed over a period of 40 years. Because the IC contains features as small as tenths of micrometers (microns, μ m) and nanometers (nm), an ultraclean manufacturing environment is necessary to minimize the presence of the many "contaminants" that can adversely affect the manufacture. Yield is a critical process metric that dictates the eventual cost of these functionally dense and sophisticated devices.

1.3.2 — The Integrated Circuit—Physical Characteristics

Figure 1-6 is a photograph of an IC manufactured in the late '60s with minimum feature size in the 10-micrometer range. Individual transistors are readily discernible under low magnification interconnected by a single level of aluminum (Al) metal. The minimum line width for the Al interconnect is 20 micrometers. Aluminum metallization interconnects the many transistors that make up an IC.

(Courtesy RCA)

Figure 1-6. IC circa 1970, Single Level Al Metallization ≈ 20 Micrometers Minimum Line Width