CURRENT TOPICS
IN COMPLEMENT
Recent Volumes in this Series

Volume 576
N-ACETYLASPARTATE: A UNIQUE NEURONAL MOLECULE IN THE CENTRAL NERVOUS SYSTEM
Edited by John R. Moffett, Suzannah B. Tieman, Daniel R. Weinberger, Joseph T. Coyle and Aryan M.A. Namboodiri
Volume 577
EARLY LIFE ORIGINS OF HEALTH AND DISEASE
Edited by E. Marelyn Wintour and Julie A. Owens
Volume 578
OXYGEN TRANSPORT TO TISSUE XXVII
Edited by Giuseppe Cicco, Duane Bruley, Marco Ferrari, and David K. Harrison
Volume 579
IMMUNE MECHANISMS IN INFLAMMATORY BOWEL DISEASE
Edited by Richard S. Blumberg
Volume 580
THE ARTERIAL CHEMORECEPTORS
Edited by Yoshiaki Hayashida, Constancio Gonzalez, and Hisatake Condo
Volume 581
THE NIDOVIRUSES: THE CONTROL OF SARS AND OTHER NIDOVIRUS DISEASES
Edited by Stanley Perlman and Kathryn Holmes
Volume 582
HOT TOPICS IN INFECTION AND IMMUNITY IN CHILDREN III
Edited by Andrew J. Pollard and Adam Finn
Volume 583
TAURINE 6: UPDATE 2005
Edited by Simo S. Oja and Pirjo Saransaari
Volume 584
LYMPHOCYTE SIGNAL TRANSDUCTION
Edited by Constantine Tsoukas
Volume 585
TISSUE ENGINEERING
Edited by John P. Fisher
Volume 586
CURRENT TOPICS IN COMPLEMENT
Edited by John D. Lambris

A Continuation Order Plan is available for this series. A continuation order will bring delivery of each new volume immediately upon publication. Volumes are billed only upon actual shipment. For further information please contact the publisher.
CURRENT TOPICS
IN COMPLEMENT

Edited by

John D. Lambris

Springer
Preface

Complement has long been regarded as a pivotal effector arm of the innate immune response, eliciting important immunoregulatory functions in the context of inflammation and also serving as a vital link between the innate and adaptive immune response. In the post-genomic era, our knowledge of the innate immune system is enriched by findings that point to novel functions that do not strictly correlate with immunological defense and surveillance, immune modulation or inflammation. Several studies indicate that complement proteins exert functions that are either more complex than previously thought, or go well beyond the innate immune character of the system.

The advent of high-throughput platforms for genome and proteome-wide profiling, together with the enormous amount of raw genetic information that has accumulated in the databases, have stirred new expectations in biomedical research. They have led complementologists to revisit established biological systems, such as the complement system, from a global and integrative perspective. Complement research is now faced with the challenge of trying to integrate isolated biochemical pathways into complex gene and protein regulatory circuits. In this respect, scientists from around the world convened at the Third Aegean Conferences Workshop on Complement Associated Diseases, Animal Models, and Therapeutics (June 5–10, 2005), to discuss recent advances in this fast evolving field. This volume represents a collection of topics on the "novel" functions of complement, pathophysiology, protein structures, design of complement inhibitors, and complement assays discussed during the conference.

I am grateful to the contributing authors for the time and effort they have devoted to writing, what I consider exceptionally informative chapters in a book that will have a significant impact on the complement field. I am grateful to Rodanthis Lambris for her assistance in formatting the text. I also gratefully acknowledge the generous help provided by Dimitrios Lambris in managing the organization of this meeting. Finally, I also thank Andrea Macaluso of Springer Publishers for her supervision in this book's production.

John D. Lambris, PhD
Contents

List of Contributors .. xvii

 Dimitrios Mastellos and John D. Lambris
 1. Introduction .. 1
 2. Biophysical Approaches in Elucidating Complement Structure and Binding Energetics ... 2
 3. Thermodynamics of Complement Protein Binding .. 3
 4. Probing Conformational Changes of Complement Proteins with Hydrogen/Deuterium Exchange and Mass Spectrometry 4
 5. Combinatorial and in Silico Protein Design: In Search for More Potent C3 Inhibitors .. 4
 6. Defining the Structural Determinants of Viral Immune Evasion: The C3b/SPICE/VCP Interaction .. 6
 7. A “Systems Biology” Perspective of Innate Immunity: Newly Identified “Crosstalks” between Complement and Divergent Biological Networks .. 7
 7.1. Complement Intercepts Cytokine-Driven Regenerative Networks in the Liver ... 9
 7.2. A Complement–Chemokine “Crosstalk” Regulates Hematopoietic Stem Cell Engraftment ... 10
 7.3. Complement Modulates Coagulation Processes ... 10
 8. Future Perspectives ... 11
 9. Acknowledgments .. 12
 10. References ... 12

2. Liver Regeneration: A Link to Inflammation through Complement
 Robert A. DeAngelis, Maciej M. Markiewski, and John D. Lambris
 1. Introduction ... 17
 2. Liver Regeneration and Inflammatory Mediators ... 18
 2.1. Cytokines and Transcription Factors .. 19
 2.2. Growth Factors, Metalloproteases, Adhesion Molecules, and Acute Phase Proteins .. 20
 2.3. Natural Killer T (NKT) Cells ... 22
 3. The Role of Complement in Liver Regeneration ... 23
 4. Conclusion ... 23
 5. Acknowledgments .. 26
 6. References ... 26
3. The Role of Third Complement Component (C3) in Homing of Hematopoietic Stem/Progenitor Cells into Bone Marrow
Ryan Reca, Marcin Wysoczynski, Jun Yan, John D. Lambris, and Mariusz Z. Ratajczak

1. Introduction.. 35
2. The Function of CXCR4 Receptor Depends on Lipid Raft Formation....... 36
3. Complement Is Activated in BM during Myeloablative Conditioning for Hematopoietic Transplantation.. 37
4. The Role of Complement in Regulating the Biology of HSPC............... 39
5. Hematopoiesis in C3-Deficient Mice under Normal Steady-State and Stress Situations... 41
6. Molecular Explanation of the Defect in Homing/Engraftment of HSPC in C3-Deficient Mice.. 42
7. Conclusions.. 46
8. References... 46

4. Complement System and the Eye
Purushottam Jha, Puran S. Bora, Jeong-Hyeon Sohn, Henry J. Kaplan, and Nalini S. Bora

1. Introduction.. 53
2. Complement and Ocular Protection.. 54
3. Complement and Ocular Diseases... 54
 3.1. Complement and Corneal Diseases.. 54
 3.2. Complement and Autoimmune Uveitis... 55
 3.3. Complement and Age-Related Macular Degeneration..................... 55
4. Complement and Ocular Tolerance... 56
5. Conclusions.. 57
6. References... 58

5. To Regeneration ... With Complement
Panagiotis A. Tsonis, John D. Lambris, and Katia Del Rio-Tsonis

1. Regenerative Abilities in Vertebrates... 63
2. Limb Regeneration... 64
3. Lens Regeneration... 65
4. The Complement System... 66
5. References... 68

6. Self, Non-Self and Danger: A Complementary View
Jörg Köhl

1. Introduction.. 71
2. Complement as a "Master Alarm System" of Innate Immunity 72
3. Complement-Derived Danger-Transmitters Shape Innate and Adaptive Immune Responses following Physiological and Pathological Threats... 74
 3.1. Danger Transmission through C1q Receptors.................................. 75
 3.2. Danger Transmission through C3 Cleavage Fragments................... 75
4. Danger Transmission Mediated through the Anaphylatoxic Peptides C3a and C5a .. 78
 4.1. Anaphylatoxin Receptor-Dependent and -Independent Effects 79
5. Anaphylatoxin-Mediated Danger Transmission in Non-Myeloid Cells 81
6. C5a Receptor Signaling in Pulmonary Dendritic Cells Regulates Inhalation Tolerance ... 82
7. C5a Receptor Signaling on APCs Impacts Danger Transmission through TLRs ... 84
8. Summary .. 85
9. Acknowledgments .. 86
10. References .. 86

7. gC1qR/p33 Serves as a Molecular Bridge between the Complement and Contact Activation Systems and Is an Important Catalyst in Inflammation
Berhane Ghebrehiwet, Claudia Cebada-Mora, Lee Tantral, Jolyon Jesty, and Ellinor I. B. Peerschke
1. Abstract ... 95
2. Introduction ... 96
3. Materials and Methods ... 97
 3.1. Chemicals and Reagents .. 97
 3.2. Proteins and Antibodies ... 97
 3.3. Biotinylation of Proteins ... 97
 3.4. Expression of Recombinant gC1qR ... 98
 3.5. Collection of Normal Human Serum .. 98
 3.6. Hemolytic Assay ... 98
 3.7. Microplate Assay for Complement Activation ... 99
4. Results ... 99
 4.1. Inhibition of Hemolytic Activity by gC1qR ... 99
 4.2. Soluble gC1qR but not Δ74–96 gC1qR Can Activate the Classical Pathway .. 100
5. Discussion .. 101
6. Acknowledgments ... 103
7. References .. 104

8. Possible Immunoprotective and Angiogenesis-Promoting Roles for Malignant Cell-Derived Prostasomes: A New Paradigm for Prostatic Cancer?
Kristina Nilsson Ekdahl, Gunnar Ronquist, Bo Nilsson, and Adil A. Babiker
1. Introduction .. 107
2. Hypothesis: Malignant Cell-Derived Prostasomes Provide Cancer Cells with a Zone of Innate Immune Privilege 109
3. Complement Activation and Expression of Complement Regulatory Proteins by Malignant Cells ... 110
4. CD59 Transfer by Prostasomes Results in Protection against Complement-Mediated Lysis ... 111
5. Extracellular Phosphorylation of Plasma Proteins ... 113
12. The Role of the Complement System in the Pathogenesis of Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis

Nóra Terényi, József Prechl, and Anna Erdei

1. Introduction ... 177
2. Local Production as a Complement Source in the CNS 180
3. The Role of Complement Deposition in Myelin Damage 180
 3.1. Decomplementation by CVF ... 180
 3.2. C1 ... 182
 3.3. C3 ... 182
 3.4. C4 ... 182
 3.5. C5 ... 183
 3.6. C6-C9, MAC ... 183
4. Anaphylatoxin Effects in Demyelinization ... 183
5. Complement Regulation in the CNS .. 185
6. Complement and Therapy of EAE ... 185
7. Acknowledgments ... 186
8. References ... 186

13. The Complement System: A Potential Target for Stroke Therapy

J. Mocco, Michael E. Sughrue, Andrew F. Ducruet, Ricardo Komotar, Sergei A. Sosunov, and E. Sander Connolly Jr.

1. Introduction ... 189
2. Rationale for Blocking Complement Activation to Treat Stroke 190
 2.1. Inflammation Is Deleterious in Stroke, and Complement Is Activated in Stroke ... 190
 2.2. Complement Activation Exacerbates Ischemic Injury in Other Organs .. 191
 2.3. Complement Activation Causes Injury in Other Nervous System Diseases ... 191
 2.4. Neurons Seem to Be Unusually Susceptible to Complement Activation ... 191
 2.5. In Vivo Evidence Suggests that Complement Is Involved in Cerebral I/R Pathogenesis ... 192
3. Potential Negatives of Complement Blockade following Stroke 193
 3.1. Complement May Be Needed to Opsonize Cellular Debris after Stroke .. 194
 3.2. Complement Aids Tissue Recovery/Repair in Other Organs 194
 3.3. Complement Activation Products May Be Neuroprotective 195
4. Conclusion .. 195
5. References ... 195

14. Observations on Complement Activity in the Two-Stage Inflammatory/Hemostatic Response in the Baboon and Human Models of *E. Coli* Sepsis and Endotoxemia

Fletcher B. Taylor Jr., Eric Hack, and Florea Lupu

1. Introduction ... 203
2. Description of the Baboon and Human Models of *E. Coli* Sepsis and Endotoxemia.. 204
 2.1. Baboon *E. Coli* Sepsis Model.. 204
 2.2. Human Endotoxin Model... 204
3. Results.. 206
 3.1. Activation Parameters of the Complement System in Baboons after Lethal and Sublethal *E. Coli* Challenge ... 206
 3.2. Activation Parameters of Cytokine Complement and Hemostatic Systems in Humans after Endotoxin Challenge: Evidence Establishing Two Distinct Sequential Pathophysiologic Events ... 208
 3.3. Evidence Suggesting that There Is a Unique Counterpart to the Second Stage of the Compensated Response to *E. Coli* that Is Distinct from the Lethal Counterpart to the First Stage... 210
4. Conclusions... 210
5. References.. 215

15. Complement Activation during Sepsis in Humans
 Heike Schreiber, Daniel Rittirsch, Michael Flierl, Uwe Brueckner, Marion Schneider, Manfred Weiss, Florian Gebhard, and Markus Huber-Lang
1. Introduction... 217
2. Material and Methods... 218
 2.1. Reagents .. 218
 2.2. Patient Selection ... 218
 2.3. Measurement of Serum Concentrations of C3a, C5a, and MAC...................... 219
 2.4. Hemolytic Complement Assay .. 219
 2.5. Neutrophil Isolation .. 219
 2.6. Analysis of C5aR Content on Neutrophils... 219
 2.7. Statistical Analysis... 220
3. Results... 220
 3.1. Epidemiological Assessments... 220
 3.2. Sepsis-Induced Complement Activation during Septic Shock in Humans...................... 220
 3.3. Sepsis-Induced Impairment of Complement Function during Septic Shock in Humans... 221
 3.4. Loss of C5aR on Neutrophils Is Associated with a Lethal Outcome during Sepsis in Humans.. 221
4. Discussion.. 222
5. Acknowledgments... 224
6. References... 225
16. Three Distinct Profiles of Serum Complement C4 Proteins in Pediatric Systemic Lupus Erythematosus (SLE) Patients: Tight Associations of Complement C4 and C3 Protein Levels in SLE but not in Healthy Subjects

Yee-Ling Wu, Gloria C. Higgins, Robert M. Rennebohm, Erwin K. Chung, Yan Yang, Bi Zhou, Haikady N. Nagaraja, Dan J. Birmingham, Brad H. Rovin, Lee A. Hebert, and C. Yung Yu

1. Abstract ... 227
2. Introduction ... 228
3. Materials and Methods ... 229
 3.1. Study Populations .. 229
 3.2. Preparation of EDTA-Plasma and Genomic DNAs 229
 3.3. C4 Phenotyping and Genotyping 229
 3.4. Mutations of Complement C4 and C2 Genes 230
 3.5. Clinical Information .. 230
 3.6. Statistics .. 230
4. Results ... 230
 4.1. Demographics and Clinical Features of the Pediatric SLE Study Population ... 231
 4.2. Three Types of C3–C4 Protein Profiles in SLE Patients 233
 4.3. Tight Correlation between Serum C3 and C4 Concentrations in SLE Patients but not in Healthy Subjects 233
 4.4. Serum C3 and C4 Levels Both Correlated BMI but BMI Alone Could not Account for the Tight Association between Serum C3 and C4 Levels 238
 4.5. C4 Genotypic and Phenotypic Variations in Pediatric SLE ... 239
 4.6. C4 Gene Dosage Is a Determinant of the Maximum Serum C4 Concentrations in Pediatric SLE 241
5. Discussion ... 242
6. Acknowledgments ... 244
7. References ... 244

17. A Minimum CR2 Binding Domain of C3d Enhances Immunity following Vaccination

Joseph F. Bower and Ted M. Ross

1. Abstract ... 249
2. Introduction ... 250
3. Materials and Methods ... 251
 3.1. Plasmid DNA .. 251
 3.2. Purification of Recombinant Protein Antigens 251
 3.3. Protein Expression .. 252
 3.4. Animals and Immunizations 252
 3.5. ELISA ... 253
 3.6. ELISPOT .. 253
 3.7. Statistical Analysis .. 254
4. Results ... 254
 4.1. Expression of Vaccine Plasmids 254
18. Structure and Function of Ficolins
Yuichi Endo, Yu Liu, and Teizo Fujita
1. Introduction .. 265
2. Structure of Ficolin .. 266
3. Tissue and Cell Type Expressing Ficolin ... 268
4. Phylogeny of the Ficolin Family .. 269
5. Function of Ficolin .. 271
 5.1. Carbohydrate Binding of Ficolin .. 271
 5.2. Binding of Ficolin to Bacteria ... 271
 5.3. Ficolin as a Recognition Molecule in the Lectin Pathway 274
6. Polymorphisms of the Ficolin Gene ... 275
7. Conclusions .. 275
8. Acknowledgments .. 276
9. References .. 276

19. Role of Mannose-Binding Lectin (MBL2) Genotyping in Predicting the Risk of Recurrent Otitis Media (rOM)
Lieve Nuytinck, Els De Meester, Martine Van Thielen, and Paul Govaerts
1. Introduction .. 281
2. MBL2 Gene and Polymorphisms .. 283
3. Materials and Methods ... 284
 3.1. Patients and Controls .. 284
 3.2. MBL2 Genotyping .. 285
4. Results .. 285
5. Discussion .. 286
6. References .. 286

20. Conformational Complexity of Complement Component C3
Bert J.C. Janssen and Piet Gros
1. Introduction .. 291
2. Structural Organization of C3 .. 292
3. Convertase Formation .. 296
4. Decay Acceleration .. 299
5. Cofactor Activity .. 301
6. Signaling Roles of C3B Fragments .. 302
7. Concluding Remarks .. 303
8. Acknowledgments .. 304
9. References .. 304
21. Disease-Associated Sequence Variations in Factor H: A Structural Biology Approach
Andrew P. Herbert, Dinesh C. Soares, Michael K. Pangburn, and Paul N. Barlow
1. Introduction .. 313
2. Regulation of the Complement System .. 314
3. Factor H ... 315
4. Functional Sites of Factor H ... 317
5. Atypical Hemolytic Uremic Syndrome .. 318
6. Age-Related Macular Degeneration ... 318
7. Modeled Modules of Factor H ... 319
8. Predicted Structural Consequences of Amino-Acid Substitutions................ 321
9. References .. 323

22. Transdermal Pharmacology of Small Molecule Cyclic C5a Antagonists
Lavinia M. Proctor, Trent M. Woodruff, Prakirti Sharma, Ian A. Shiels, and Stephen M. Taylor
1. Abstract .. 329
2. Introduction .. 330
3. Material and Methods ... 332
3.1. Materials... 332
3.2. Isolation of Polymorphonuclear Leukocytes....................................... 332
3.3. Receptor Binding Assay ... 333
3.4. Myeloperoxidase Release from PMNs.. 333
3.5. In Vivo Studies ... 333
3.6. Statistical Analysis.. 334
4. Results .. 335
4.1. In Vitro Activity of PMX Compounds.. 335
4.2. Transdermal Pharmacokinetics of Cyclic C5a Receptor Antagonists 335
4.3. Effect of Administration of C5a Antagonists on LPS-Induced Neutropenia and Hypotension 337
5. Discussion .. 341
6. References .. 342

23. Inactivation of Complement by Recombinant Human C3 Derivatives
Edzard Spillner, Johanna Kölln, and Reinhard Bredehorst
1. Introduction .. 347
2. Generation of CVF Chimeras and C3 Derivatives 349
3. Functional Characteristics of the C3 Derivatives ... 351
4. The C345C Domain in Complement ... 353
5. Therapeutical Implications ... 355
6. Conclusions .. 356
7. References .. 356
24. Complement Analysis in Clinic and Research

Tom E. Mollnes and Michael Kirschfink

1. **Introduction** ... 361
2. **Clinical Indications for Complement Analysis** 363
 1. Recurrent Infections ... 364
 2. Autoimmune Diseases .. 365
 3. Membranoproliferative Glomerulonephritis (MPGN) and Hemolytic Uremic Syndrome (HUS) 365
 4. Hereditary Angioedema ... 366
 5. Paroxysmal Nocturnal Hemoglobinuria (PNH) 366
3. **Complement Tests** .. 366
 1. Functional Assays .. 366
 2. Protein Quantification of Individual Components 370
 3. Genetic Analysis ... 370
 4. Cell Surface Expression of Complement Proteins 370
 5. Analysis of Complement Activation Products 370
4. **Complement Analysis in Experimental Settings** 372
 1. In Vitro Experiments with Human Serum and Blood 372
 2. Animal Experiments ... 373
5. **Outlook** .. 375
6. **References** .. 375

25. Cell-Bound Complement Activation Products (CB-CAPs) as a Source of Lupus Biomarkers

Sarah J. Calano, Pei-an B. Shih, Chau-Ching Liu, Amy H. Kao, Jeannine S. Navratil, Susan Manzi, and Joseph M. Ahearn

1. **Introduction** ... 381
2. Measurement of Complement in SLE 382
 1. Serum C3 and C4 and SLE Disease Activity 382
 2. Issues Associated with Measuring Soluble Complement Components ... 382
3. Cell-Bound Complement Activation Products and SLE Disease Activity ... 384
3. Cell-Bound Complement Activation Products 384
 1. Erythrocyte-Bound C4d as a Diagnostic Assay for SLE 385
 2. Reticulocyte-Bound C4d as an "Instant Messenger" of Disease Activity in SLE ... 387
4. **Summary** .. 387
5. **Acknowledgments** .. 388
6. **References** .. 388

Author Index .. 391

Subject Index ... 393
List of Contributors

Joseph M. Ahearn
Lupus Center of Excellence
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania, USA

Adil A. Babiker
Department of Oncology, Radiology, and Clinical Immunology
University Hospital
Uppsala, Sweden

Paul N. Barlow
Joseph Black Chemistry Building
University of Edinburgh
Edinburgh, UK

Dan J. Birmingham
Department of Internal Medicine
The Ohio State University
Columbus, Ohio, USA

Nalini S. Bora
Department of Ophthalmology
Jones Eye Institute
University of Arkansas for Medical Sciences
Little Rock, Arkansas, USA

Puran S. Bora
Department of Ophthalmology
Jones Eye Institute
University of Arkansas for Medical Sciences
Little Rock, Arkansas, USA

Joseph F. Bower
Department of Medicine
Division of Infectious Diseases
University of Pittsburgh
Pittsburgh, Pennsylvania, USA

Reinhard Bredehorst
Institut für Biochemie und Lebensmittelchemie
Universität Hamburg, Germany

Uwe Brueckner
Department of Traumatology, Hand-Plastic and Reconstructive Surgery
Ulm, Germany

Sarah J. Calano
Department of Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania, USA

Claudia Cebada-Mora
Department of Medicine
SUNY at Stony Brook
Stony Brook, New York, USA

Erwin K. Chung
Columbus Children's Research Institute
The Ohio State University
Columbus, Ohio, USA

E. Sander Connolly Jr.
Department of Neurological Surgery
Columbia University
College of Physicians & Surgeons
New York, New York, USA

Cornelia Cudrici
Department of Neurology
University of Maryland
School of Medicine
Baltimore, Maryland, USA

Robert A. DeAngelis
Department of Pathology and Laboratory Medicine
University of Pennsylvania
Philadelphia, Pennsylvania, USA
CONTRIBUTORS

Jolyon Jesty
Department of Medicine
SUNY at Stony Brook
Stony Brook, New York, USA

Purushottam Jha
Department of Ophthalmology
Jones Eye Institute
University of Arkansas for
Medical Sciences
Little Rock, Arkansas, USA

Amy H. Kao
Department of Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania, USA

Henry J. Kaplan
Department of Ophthalmology and
Visual Science
University of Louisville
Louisville, Kentucky, USA

Yoko Kato-Unoki
Department of Bioscience and
Biotechnology
Kyushu University
Hakozaki, Fukuoka, Japan

Michael Kirschfink
Institute of Immunology
University of Heidelberg
Heidelberg, Germany

Jörg Köhl
Division of Molecular Immunology
Cincinnati Children's Hospital
Research Foundation
Cincinnati, Ohio, USA

Johanna Kölln
Institut für Biochemie und
Lebensmittelchemie
Universität Hamburg, Germany

Ricardo J. Komotar
Department of Neurological
Surgery
Columbia University
New York, New York, USA

John D. Lambris
Department of Pathology and
Laboratory Medicine
University of Pennsylvania
Philadelphia, Pennsylvania, USA

Chau-Ching Liu
Department of Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania, USA

Yu Liu
Department of Immunology
Fukushima Medical University
School of Medicine
Fukushima, Japan

Florea Lupu
Oklahoma Medical Research
Foundation
Oklahoma City, Oklahoma, USA

Susan Manzi
Department of Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania, USA

Maciej M. Markiewski
Department of Pathology and
Laboratory Medicine
University of Pennsylvania
Philadelphia, Pennsylvania, USA

Dimitrios Mastellos
National Center for Scientific Research
"Demokritos"
Athens, Greece

J. Mocco
Department of Neurological Surgery
Columbia University
College of Physicians & Surgeons
New York, New York, USA

Tom E. Mollnes
Institute of Immunology
Rikshospitalet University Hospital
University of Oslo, Norway
<table>
<thead>
<tr>
<th>Name</th>
<th>Department/Institution</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Junichi Mutsuro</td>
<td>Department of Bioscience and Biotechnology</td>
<td>Kyushu University, Japan</td>
</tr>
<tr>
<td>Haikady N. Nagaraja</td>
<td>Department of Statistics</td>
<td>The Ohio State University, USA</td>
</tr>
<tr>
<td>Makiko Nakahara</td>
<td>Department of Bioscience and Biotechnology</td>
<td>Kyushu University, Japan</td>
</tr>
<tr>
<td>Miki Nakao</td>
<td>Department of Bioscience and Biotechnology</td>
<td>Kyushu University, Japan</td>
</tr>
<tr>
<td>Jeannine S. Navratil</td>
<td>Department of Medicine</td>
<td>University of Pittsburgh, USA</td>
</tr>
<tr>
<td>Florin Niculescu</td>
<td>Department of Medicine</td>
<td>University of Maryland, USA</td>
</tr>
<tr>
<td>Bo Nilsson</td>
<td>Department of Medical Sciences</td>
<td>Uppsala University Hospital, Sweden</td>
</tr>
<tr>
<td>Kristina Nilsson-Ekdahl</td>
<td>Department of Chemistry and Biomedical Sciences</td>
<td>University of Kalmar, Sweden</td>
</tr>
<tr>
<td>Lieve Nuytinck</td>
<td>Innogenetics NV</td>
<td>Ghent, Belgium</td>
</tr>
<tr>
<td>Michael K. Pangburn</td>
<td>Department of Biochemistry</td>
<td>University of Texas Health Science Center, USA</td>
</tr>
<tr>
<td>Ellinor I. B. Peerschke</td>
<td>Department of Pathology</td>
<td>Weill Medical College of Cornell University, USA</td>
</tr>
<tr>
<td>József Prechl</td>
<td>Department of Immunology</td>
<td>Eötvös Loránd University, Hungary</td>
</tr>
<tr>
<td>Lavinia M. Proctor</td>
<td></td>
<td>Promics Ltd., Brisbane, Australia</td>
</tr>
<tr>
<td>Mariusz Z. Ratajczak</td>
<td>Stem Cell Biology Program</td>
<td>University of Louisville, USA</td>
</tr>
<tr>
<td>Ryan Reca</td>
<td>Stem Cell Biology Program</td>
<td>University of Louisville, USA</td>
</tr>
<tr>
<td>Robert M. Rennebohm</td>
<td></td>
<td>Columbus Children's Research Institute, USA</td>
</tr>
<tr>
<td>Daniel Rittirsch</td>
<td>Department of Traumatology, Hand-Plastic and Reconstructive Surgery</td>
<td>Ulm, Germany</td>
</tr>
<tr>
<td>Gunnar Ronquist</td>
<td>Department of Medical Sciences</td>
<td>Uppsala University Hospital, Sweden</td>
</tr>
</tbody>
</table>
CONTRIBUTORS

Ted M. Ross
Department of Medicine
University of Pittsburgh
Pittsburgh, Pennsylvania, USA

Brad H. Rovin
Department of Internal Medicine
The Ohio State University
Columbus, Ohio, USA

Horea Rus
Department of Neurology
University of Maryland
Baltimore, Maryland, USA

Marion Schneider
Department of Anesthesiology
University of Ulm Medical School
Ulm, Germany

Heike Schreiber
Department of Traumatology, Hand-
Plastic and Reconstructive Surgery
Ulm, Germany

Prakirti Sharma
School of Biomedical Sciences
University of Queensland, Australia

Ian A. Shiels
School of Biomedical Sciences
University of Queensland, Australia

Pei-an B. Shih
Department of Medicine
University of Pittsburgh School of Medicine
Pittsburgh, Pennsylvania, USA

Dinesh C. Soares
School of Chemistry/Institute of Structural and Molecular Biology
University of Edinburgh
Edinburgh, UK

Jeong-Hyeon Sohn
Department of Ophthalmology and Visual Science
University of Louisville
Louisville, Kentucky, USA

Tomonori Somamoto
Department of Bioscience and Biotechnology
Kyushu University
Fukuoka, Japan

Sergei A. Sosunov
Department of Neurological Surgery
Columbia University
College of Physicians & Surgeons
New York, New York, USA

Edzard Spillner
Institut für Biochemie und Lebensmittelchemie
Universität Hamburg, Germany

Michael E. Sughrue
Department of Neurological Surgery
Columbia University
College of Physicians & Surgeons
New York, New York, USA

Lee Tantral
Department of Medicine
SUNY at Stony Brook
Stony Brook, New York, USA

Fletcher B. Taylor Jr
Oklahoma Medical Research Foundation
Oklahoma City, Oklahoma, USA

Stephen M. Taylor
School of Biomedical Sciences
University of Queensland, Australia

Andrea J. Tenner
Departments of Molecular Biology and Biochemistry and Pathology
Center for Immunology
University of California
Irvine, California, USA

Nóra Terényi
Department of Immunology
Eötvös Loránd University
Budapest, Hungary
Panagiotis A. Tsonis
Department of Biology
University of Dayton
Dayton, Ohio, USA

Martine Van Thielen
Innogenetics NV
Ghent, Belgium

Manfred Weiss
Department of Anesthesiology
University of Ulm Medical School
Ulm, Germany

Trent M. Woodruff
Promics Ltd.
Brisbane, Queensland, Australia

Yee-Ling Wu
Columbus Children's Research Institute
Integrated Biomedical Science
Graduate Program
The Ohio State University
Columbus, Ohio, USA

Marcin Wysoczynski
Stem Cell Biology Program
University of Louisville
Louisville, Kentucky, USA

Jun Yan
Stem Cell Biology Program
University of Louisville
Louisville, Kentucky, USA

Yan Yang
Columbus Children's Research Institute
Columbus, Ohio, USA

C. Yung Yu
Columbus Children's Research Institute
Department of Pediatrics
The Ohio State University
Columbus, Ohio, USA

Bi Zhou
Columbus Children's Research Institute
Columbus, Ohio, USA
CROSS-DISCIPLINARY RESEARCH STIRS NEW CHALLENGES INTO THE STUDY OF THE STRUCTURE, FUNCTION AND SYSTEMS BIOLOGY OF COMPLEMENT

Dimitrios Mastellos and John D. Lambris

1. INTRODUCTION

Complement is a pivotal effector arm of the innate immune response that participates in various immunoregulatory circuits via a complex network of protein–protein interactions\(^1\). The complement cascade is a dynamic network of interactions involving a wide array of soluble glycoproteins, membrane-bound receptors, and fluid-phase or membrane-anchored regulatory proteins\(^2\). Upon complement activation, a well-orchestrated sequence of protein–protein interactions is initiated that results in proteolytic cleavage of precursor molecules, release of bioactive peptides, and downstream activation of receptors that relay the appropriate signals to the intracellular molecular circuit of complement-targeted cells.

In recent years complement pathobiology has been reiterated with the advent of proteomics and functional genomics, the use of high-throughput analytical approaches, transgenic mouse models, and the exponential growth of research data that implicate several components in processes that go beyond the classical immunologic milieu\(^3\). Complement components appear to modulate critical developmental processes by intercepting molecular circuits that control the cell cycle, cell migration and proliferation, and the homing of myeloid progenitors into tissues\(^4\).

Furthermore, the need to contain the detrimental proinflammatory effects of complement activation, without eliminating its beneficial properties in host im-

mune homeostasis, has led researchers to adopt multidisciplinary and high-throughput approaches in a systematic effort to develop rational drug-design platforms and more potent complement-based antiinflammatory therapeutics that might be amenable to clinical protocols. In this respect, emphasis has been placed on the elucidation of key structural elements that govern the dynamics and energetics of protein interactions within the complement system. The integrated use of fine biophysical and in silico approaches in monitoring distinct conformational changes of complement proteins has thus far yielded promising results. This crossdisciplinary approach to complement research highlights the importance of integrating the core structure and dynamics of a biochemical reaction in the context of its pathophysiologic consequences.

Overall, the “systems-wide” impact of complement is supported by evidence that complement-mediated pathways engage in functional “crosstalk” with other biological systems. Complement proteins appear to modulate key developmental and homeostatic processes, both in the course of inflammation and in noninflammatory settings. Here we outline this novel conceptual framework for the study of complement structure and function and integrate it into a wider pathophysiologic perspective with examples from health and disease. We present a comprehensive account of how an integrated “systems” approach has contributed to elucidation of the structural–functional aspects of C3–ligand interactions and the rational design of small-size complement inhibitors. We outline the enormous capabilities offered by the integrated study of thermodynamics in protein binding and the bioenergetics of complement protein–protein interactions and consider new conceptual “avenues” that can be explored in elucidating key structural elements of complement function. We also present critical aspects of our studies on viral molecular mimicry and immune evasion and highlight the main mechanistic attributes of the “crosstalk” between complement and various biologic processes.

It is our conviction that complement research will be spearheaded in the next decade by such combinatorial and crossdisciplinary approaches that will address basic biological networks modulated by complement in a global and integrated manner. Furthermore, the mining of biomolecular and textual databases will essentially complement these experimental strategies and enable scientists to form the integrative context for hypothesis-driven scientific discovery.

2. BIOPHYSICAL APPROACHES IN ELUCIDATING COMPLEMENT STRUCTURE AND BINDING ENERGETICS

Cell regulatory networks are the key components of a unified biological system and are defined at the molecular level by the numerous biomolecular interactions that tilt the binding equilibriums and decide the fate of a cellular response or the elicited phenotype upon specific stimulation. Defining the structural elements that underlie the various stages of a binding reaction between interacting
proteins is integral to understanding a cellular response and also for devising means of intercepting, silencing, or enhancing its effect to the benefit of the host. The resolution of the fine structure of proteins by means of x-ray crystallography has assisted scientists to a great extent in defining such structural modules that regulate binding reactions. However, crystallographic data only refer to a static “snapshot” of a given interaction or conformation and fail to consider the complex and dynamic behaviour of the interacting partners in a protein–protein association. In an effort to circumvent this inherent drawback and shed light onto the dynamic nature of complement-mediated interactions, novel biophysical approaches are being adopted that allow the monitoring of the binding dynamics between various complement proteins and receptors.

Such approaches also take into account a wide array of interactions that contribute to the formation of binding interfaces, including hydrophobic interactions among non-polar side chains, hydrogen bonding interactions, electrostatic interactions, and van der Waals interactions. Furthermore, these approaches also consider the electrostatic nature and shape constraints of the interacting partners within a complex, two parameters that dictate to a great extent the mechanism by which the optimum and more stable configuration is selected for recognition and binding.

In this respect, recent studies have yielded important information regarding the dynamics that govern complex interactions between various complement components, using a crossdisciplinary platform that integrates biochemical, physicochemical, and computational methods. Defining the binding interface and interacting structural elements of C3d and its receptor CR2 has been a major challenge in this direction. The application of electrostatic potential calculations has essentially complemented the available crystallographic and site-directed mutagenesis data and has indicated that the dynamics of the C3d–CR2 interaction is strongly dependent on the force of electrostatic fields applied between the two interacting molecules. Indeed, the analysis of the electrostatic potential of each protein in free form and in complex with each other has revealed that this interaction follows a two-step association model comprising distinct stages of recognition and binding. The design of theoretical site-specific mutations within the C3d moiety further supports this two-step association model. It is anticipated that such integrative approaches combining available crystallographic data, biochemical approaches, and biophysical calculations will shed more light on the complex C3d–CR2 association and provide a comprehensive platform for the development of effective complement therapeutics.

3. THERMODYNAMICS OF COMPLEMENT PROTEIN BINDING

Distinct thermodynamic changes occur during a binding reaction, and the monitoring of such changes allows for a dynamic study of protein–protein interactions. Isothermal Titration Calorimetry (ITC) is a method that allows the longi-
tudinal study of the thermodynamic changes that occur during protein complex formation. It is essentially used for calculating the heat that is released in a biochemical reaction as a function of time and yields information on the stoichiometry, enthalpy, association constant, and free energy of binding. A distinct feature of ITC is that it can discriminate between entropy and enthalpy changes, thereby providing information on distinct chemical and structural (conformational) changes that contribute to protein binding. ITC has recently been applied for the study of energetics of the interaction of C3 with its inhibitor, compstatin. Thermodynamic measurements have indicated that the binding of compstatin to C3 is 1:1 and occurs through hydrophobic interactions with possible conformational changes in C3 or compstatin. Some protonation changes, occurring at the binding interface, have also been observed by ITC analysis. Analysis will be extended to the energetics of various protein–protein interactions, with a goal to obtain the energetic parameters of complement activation and regulation pathways.

4. PROBING CONFORMATIONAL CHANGES OF COMPLEMENT PROTEINS WITH HYDROGEN/DEUTERIUM EXCHANGE AND MASS SPECTROMETRY

Hydrogen/deuterium exchange has traditionally been used to understand the formation of protein core or stable intermediate or transient states in pathways of protein folding, because it provides a noninvasive method for identifying protected (or de-protected) exchanging amides. The same principles can be applied to studies of protein–protein association, where the loss in solvent-accessible surface area upon association can be correlated with amide protection from exchange for the amides that lose their contact with solvent. Recent advances in the use of mass spectrometry allow for rapid collection of data of free and complexed proteins. Comparison of mass spectra of free and complexed proteins provides the sites of interaction without the need of previously available structural data. Hydrogen/deuterium exchange coupled to mass spectrometry has recently been used to probe the conformational changes of the C3 molecule in its transition from a native to a hydrolyzed state, and it is becoming clear that such a methodology could provide valuable insight into the structural determinants that govern the interaction of C3 with various ligands and receptors (e.g., C3d–CR2).

5. COMBINATORIAL AND IN SILICO PROTEIN DESIGN: IN SEARCH FOR MORE POTENT C3 INHIBITORS

Deregulated activation of complement on the surface of host cells and consumption of complement proteins in the fluid phase have been associated with detrimental proinflammatory effects leading to local tissue damage, perturbed ho-
meostasis and remote organ failure in several pathological states\(^{19}\). Over the years considerable effort has been devoted to the discovery of selective complement inhibitors that can intercept the complement cascade at distinct steps, thus neutralizing its deleterious effects in the progression of disease pathology\(^{19}\). Several complement inhibitors are currently under development, including small-size organic compounds, synthetic peptides, and also large monoclonal antibodies\(^{20}\). Compsstatin, a potent small-size complement inhibitor that acts at the level of C3 by blocking all three pathways of complement activation, was discovered by screening a phage-displayed random peptide library for C3-binding peptides\(^{21}\). This molecule stands out as a promising complement inhibitor that might be amenable to therapeutic applications in the clinic due to its small size, cost-effective and large-scale synthesis, and its ability to shut down all three pathways of complement activation by blocking the proteolytic cleavage of native C3 by the C3 convertases.

The complement inhibitory activity of compstatin has been ascertained in various in vitro, in vivo, ex vivo, and in vivo/ex vivo interface models\(^\text{22-30}\).

In a systematic effort to characterize the structural basis of the inhibitory activity of compstatin and design more potent analogs, a wide array of combinatorial, biophysical and in silico approaches have been used\(^{31,40}\).

Determination of the solution structure of compstatin by NMR-based strategies\(^{31}\) paved the way for the rational design of more potent analogs through successive rounds of sequence and structure optimization. Instrumental to the success of these optimization approaches has been the integrated use of biophysical methods and computational modeling\(^\text{33-40}\).

In conjunction with the high-throughput screening approaches, compstatin was also subjected to in silico combinatorial design, using a novel two-step computational optimization methodology. Interestingly, this round of theoretical design yielded a sixfold more active analog than the parent peptide with sequence Ac–I[CVYQDWGAHRC]T–NH\(_2\)\(^{41-44}\). In addition to these rounds of experimental and combinatorial peptide design, a recent rational design effort was undertaken to generate analogs of compstatin with higher inhibitory activities, incorporating in its structure non-natural and D-aminoacids\(^{45}\). This approach was largely based on the hypothesis that the aromatic rings of y and w may contribute to the function of compstatin. This approach has led to identification of a more potent compstatin analog that exhibits 99-fold greater inhibitory activity and contains a non-natural aminoacid in its sequence\(^ {45}\). The peptides derived from such computational and rational design approaches are now in the process of being tested experimentally, and a new generation of compstatin analogs (approx. 270-fold more active than the parent peptide with incorporation of non-natural aminoacids in the sequence) are being produced in heterologous expression systems (Katragadda et al, unpublished observations).

In conclusion, the integrated use of rational experimental and computational (in silico) peptide design approaches has provided a unique and cross-disciplinary platform for the discovery of more effective complement therapeu-
tics targeting the C3 activation step in the complement cascade. Such integrated approaches should be integral to any drug design effort that involves peptide screening, synthesis, and structure manipulation.

6. DEFINING THE STRUCTURAL DETERMINANTS OF VIRAL IMMUNE EVASION: THE C3B/SPICE/VCP INTERACTION

Considerable effort has been placed in the field of antiviral vaccine design toward elucidating the mechanism by which certain herpes and orthopox viruses escape the host immune response, through structural and functional mimicry of complement regulatory proteins\(^{46}\). SPICE and VCP are two secreted viral homologs of complement regulatory proteins that bear CCP modules and mediate immune evasion in the host by interacting with C3b and preventing complement-mediated neutralization of virus\(^{47,48}\). Strikingly, despite the fact that it is 1000-fold more potent than VCP in deactivating human C3b, SPICE differs from VCP in only 11 aminoacid residues\(^{48,49}\). The generation of VCP–SPICE chimeras consisting of VCP and SPICE CCP modules has recently led to identification of the critical aminoacids that render SPICE a more potent inhibitor of complement\(^{49}\).

Furthermore, electrostatic potential calculations using these chimeric proteins in interaction with human C3b have revealed an essential role of electrostatic forces in driving the VCP/C3b interaction. Electrostatic modeling has suggested a two-step association model for VCP/C3b that involves electrostatically driven recognition and enhanced binding. These studies revealed that a predominantly negative C3b and a predominantly positive VCP variant favor their electrostatically driven recognition and enhance their association. An increase in the positive charge of VCP variants occurs by mutations of acidic amino acids, which reduce the negative character of the electrostatic potential at the vicinity of SCR-2 and SCR-3 and enhance the positive character of the electrostatic potential at SCR-1\(^{49}\). Electrostatic modeling of the VCP/C3b interaction, in conjunction with site-directed mutagenesis studies testing the ability of different VCP/SPICE variants to inhibit complement activation, have provided an integrated framework for better understanding the structural basis and dynamics of the VCP/SPICE–C3b interaction and the molecular mechanism by which viral RCA homologs mediate immune evasion.

The important contribution of electrostatic forces to the formation of protein complexes is also highlighted in a recent study discussing the crystal structure of human C3\(^{66}\). The findings presented in this study suggest that C3 takes up in solution a tertiary conformation that presents a “dipole” surface. Such a conformation strongly supports the electrostatic nature of C3 interactions, providing invaluable insight into the biophysical parameters (such as electrostatics) that drive the interaction of C3 with its multiple physiological ligands and receptors.
It is our strong conviction that the reliable prediction and monitoring of the dynamic behavior of interacting proteins will essentially rely on an integrative platform combining both experimental and theoretical/biophysical approaches such as a survey of electrostatic forces.

7. A “SYSTEMS BIOLOGY” PERSPECTIVE OF INNATE IMMUNITY: NEWLY IDENTIFIED “CROSSTALKS” BETWEEN COMPLEMENT AND DIVERGENT BIOLOGICAL NETWORKS

Biomolecular (structural and sequence) databases have been populated with an enormous amount of data generated by means of high-throughput screening and genome-wide profiling techniques. These databases essentially contain the core information on how complex biological networks are regulated at the transcriptome and proteome levels. The challenge facing contemporary bioscience is finding the means of managing these databases in such a way as to extract gene/protein associations that can model or predict the molecular circuits by which individual cells and organisms elicit their responses to various stimuli. Systems biology is the field that integrates such approaches and helps create a comprehensive context for interpreting and predicting gene and pathway associations and also generates new knowledge in a systematic, hypothesis-driven way. Integral to the success of such a systems-wide approach is the use of new text-mining algorithms that are being developed in an effort to enable scientists to efficiently extract biological information from scientific literature databases. Text mining platforms enable researchers to manage complex ontologies and cluster biologic entities in a meaningful manner that can shed light on novel systems associations.

Accumulating evidence suggests that inflammatory circuits interact with divergent pathways in modulating basic biological responses that do not necessarily pertain to inflammation and the immune response per se. In this respect, complement components have been linked to regulatory networks that not only modulate innate immunity but also affect developmental, metabolic, and homeostatic responses.

An integrated survey of the scientific literature using a high-throughput bioinformatics approach called “systems literature analysis” has revealed novel associations of complement with a wide array of biological processes that extend well beyond the innate and adaptive immune response. Distinct associations of complement with such noninflammatory processes have also been verified experimentally. Indeed, recent studies using complement gene knockout models and highly selective complement receptor antagonists have demonstrated the involvement of complement in developmental processes, such as limb and liver regeneration, stem cell engraftment/mobilization, and trafficking of hematopoietic precursors to the bone marrow. The main attributes...
Figure 1. An illustration of a systems-wide overview of complement, as a complex network of protein–protein interactions that regulate the activation state of the cascade and also extend links to divergent biological processes; the systems associations of representative complement components have been retrieved through mining of the entire MEDLINE database.
and mechanistic aspects of these newly identified crosstalks are discussed below. These processes have been selected as examples illustrating the multifaceted nature of the system, and the crossdisciplinary approaches that should be adopted in trying to elucidate its functions in diverse pathophysiological settings.

Limb and lens regeneration in urodele amphibians represent the most challenging models for addressing key developmental questions that pertain to cell dedifferentiation, morphogenesis, and pattern formation. The role of complement components in this complex network of interactions that regulate cell fate decisions, tissue remodeling, and regeneration in lower vertebrates is discussed in greater detail in Chapter 5 by Tsonis et al.

7.1. Complement Intercepts Cytokine-Driven Regenerative Networks in the Liver

Acute toxic and viral injury or surgical liver resection triggers a robust proliferative response in the liver that culminates in full restoration of hepatic structure and function within days after the insult. Essential priming signals that drive the cell cycle re-entry of quiescent liver cells are provided by hormones, cytokines, and hepatic growth factor-mediated signaling pathways. Recent studies have underscored a previously elusive role of innate immunity in the regulation of the regenerative response of the liver. With the use of complement-deficient mouse strains it was demonstrated that complement components C3 and C5 and their downstream anaphylatoxin-mediated pathways provide essential signals that lead to activation of latent hepatic transcription factors and subsequent release of cytokines that mediate the early priming phase of liver regeneration. Similarly, in acute hepatotoxicity models it was shown that complement is required as a hepatic survival factor that contributes to the restoration of the liver parenchyma by promoting cell-cycle re-entry and proliferation of hepatocytes. These studies, collectively, provided evidence for crosstalk between complement receptor-mediated pathways and cytokine-driven signaling networks in modulating the early regenerative response in the liver. The global impact of inflammation on the regenerative response of the liver and the main mechanistic aspects of the involvement of complement in the early stages of hepatocyte regeneration are discussed in Chapter 2 by DeAngelis et al.

Further delineating the mechanisms by which complement proteins and receptors interact with other signaling networks in the regenerating liver will provide insight into the molecular pathways that drive the early growth response of the liver and “prime” quiescent hepatocytes to re-enter the cell cycle.