Hepatitis Delta Virus

Hiroshi Handa, M.D., Ph.D.
Graduate School of Bioscience and Biotechnology
Tokyo Institute of Technology
Nagatsuta, Yokohama, Japan

Yuki Yamaguchi, Ph.D.
Graduate School of Bioscience and Biotechnology
Tokyo Institute of Technology
Nagatsuta, Yokohama, Japan
HEPATITIS DELTA VIRUS

Medical Intelligence Unit
Landes Bioscience / Eurekah.com
Springer Science+Business Media, Inc.

Printed on acid-free paper.

Copyright ©2006 Landes Bioscience and Springer Science+Business Media, Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher, except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden.

The use in the publication of trade names, trademarks, service marks and similar terms even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights.

While the authors, editors and publisher believe that drug selection and dosage and the specifications and usage of equipment and devices, as set forth in this book, are in accord with current recommendations and practice at the time of publication, they make no warranty, expressed or implied, with respect to material described in this book. In view of the ongoing research, equipment development, changes in governmental regulations and the rapid accumulation of information relating to the biomedical sciences, the reader is urged to carefully review and evaluate the information provided herein.

http://www.springer.com

Please address all inquiries to the Publishers:
Landes Bioscience / Eurekah.com, 810 South Church Street, Georgetown, Texas 78626, U.S.A.
Phone: 512/ 863 7762; FAX: 512/ 863 0081
http://www.eurekah.com
http://www.landesbioscience.com

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

Library of Congress Cataloging-in-Publication Data
Hepatitis delta virus / [edited by] Hiroshi Handa, Yuki Yamaguchi.
p. ; cm. -- (Medical intelligence unit)
Includes bibliographical references and index.
QR201.H46H453 2006
616.3'623019.1--dc22
2006005520
CONTENTS

Preface .. vii

1. Genotype of Hepatitis Delta Virus ... 1
 Nobuyuki Enomoto, Hideki Watanabe, Kazuyoshi Nagayama, Tsuyoshi Yamashiro and Mamoru Watanabe
 Classification of HDV Genotype .. 1
 Geographical Distribution of HDV Genotype ... 1
 Clinical Significance of HDV Genotype ... 1
 Virological Significance of HDV Genotype ... 4

2. Hepatitis Delta Virus: HDV-HBV Interactions .. 10
 Camille Sureau
 The Structure of the HDV Particle ... 11
 Are HBV Helper Functions Limited to Supplying Envelope Proteins to HDV? 12
 Why Is HBV Best Suited for Assisting HDV? ... 12
 How Do S-HBsAg and the RNP Interact with Each Other for HDV Assembly? 15
 The Infectivity of the HDV Virions ... 18
 What Are the Effects of HDV Infection on the HBV Life Cycle? 18

3. Structure and Replication of Hepatitis Delta Virus RNA 20
 John M. Taylor
 The RNAs .. 20
 RNA Structure .. 22
 Experimental Systems for the Initiation of HDV Replication 23
 RNA-Directed Transcription .. 24
 Template-Switching and Recombination ... 26
 Post-Transcriptional Processing ... 27
 RNA Assembly ... 31
 Models of Genome Replication .. 31

4. Hepatitis Delta Antigen: Biochemical Properties and Functional Roles in HDV Replication ... 38
 Michael M. C. Lai
 Structural and Functional Domains of HDag .. 38
 RNA-Binding Domains .. 38
 Nuclear Localization Signal (NLS) ... 39
 Coiled-Coil Sequence .. 40
 The C-Terminal 19-Amino Acid Extension of L-HDag 40
 Phosphorylation .. 40
 Subcellular Localization of HDag ... 42
 Functions of HDag in HDV Replication .. 42
 RNA Chaperone and Enhancement of Ribozyme Activity 45
 Other Activities ... 45
 Regulation of the Synthesis of S- and L-HDag ... 45
The Roles of HDAg in HDV RNA Synthesis 46
The Cytotoxic Effects of HDAg .. 47
Perspectives ... 47

5. Hepatitis Delta Virus RNA Editing 52
 John L. Casey
 What Is RNA Editing? .. 52
 Mechanism of HDV RNA Editing 53
 Regulation of HDV RNA Editing 56
 Assays for Editing ... 62
 Future Directions ... 63

6. Hepatitis Delta Antigen and RNA Polymerase II 66
 Yuki Yamaguchi and Hiroshi Handa
 Variation on a Theme: Initiation, Elongation, and Termination
 of HDV RNA Transcription ... 67
 HDAg as a Viral Transcription Elongation Factor 70
 Molecular Analysis of Elongation Control by HDAg 73
 Targeting Transcription Elongation:
 A General Strategy for Viruses? 73

7. Clinical Features of Hepatitis Delta Virus 76
 Dimitrios Vassilopoulos and Stephanos J. Hadziyannis
 Acute Hepatitis Delta .. 77

8. Diagnosis of Hepatitis D Virus Infection 81
 Jau-Ching Wu
 Serological Diagnosis Based on Antibodies to HDAg (Anti-HDV) 82
 Molecular Diagnosis Based on HDAg and HDV RNA 84
 Immuno-Pathologic Diagnosis Based on Hepatic HDAg 87
 Genotypic Diagnosis .. 89
 Replication Markers of HBV .. 89

Index .. 93
EDITORS

Hiroshi Handa
Graduate School of Bioscience and Biotechnology
Tokyo Institute of Technology
Nagatsuta, Yokohama, Japan
Chapter 6

Yuki Yamaguchi
Graduate School of Bioscience and Biotechnology
Tokyo Institute of Technology
Nagatsuta, Yokohama, Japan
Chapter 6

CONTRIBUTORS

John L. Casey
Department of Microbiology and Immunology
Georgetown University Medical Center
Washington, District of Columbia, U.S.A.
Email: caseyj@georgetown.edu
Chapter 5

Nobuyuki Enomoto
First Department of Internal Medicine
University of Yamanashi
Yamanashi, Japan
Chapter 1

Stephanos J. Hadziyannis
Department of Medicine and Hepatology
Henry Dunant Hospital
Athens, Greece
Email: hadziyannis@ath.forthnet.gr
Chapter 7

Michael M.C. Lai
Department of Molecular Microbiology and Immunology
University of Southern California
Keck School of Medicine
Los Angeles, California, U.S.A.
and
Institute of Molecular Biology
Academia Sinica
Taipei, Taiwan
Email: michlai@usc.edu
Chapter 4

Kazuyoshi Nagayama
Department of Gastroenterology and Hepatology
Tokyo Medical and Dental University
Tokyo, Japan
Chapter 1

Camille Sureau
CNRS
Laboratoire de Virologie Moléculaire
INSERM U76
Institut National de la Transfusion Sanguine
Paris, France
Email: c sureau@ints.fr
Chapter 2
John M. Taylor
Fox Chase Cancer Center
Philadelphia, Pennsylvania, U.S.A.
Email: jm_taylor@fccc.edu
Chapter 3

Dimitrios Vassilopoulos
Athens University School of Medicine
Hippokration General Hospital
Academic Department of Medicine
Athens, Greece
Email: dvassilop@med.uoa.gr
Chapter 7

Hideki Watanabe
Department of Gastroenterology
and Hepatology
Tokyo Medical and Dental University
Tokyo, Japan
Chapter 1

Mamoru Watanabe
Department of Gastroenterology
and Hepatology
Tokyo Medical and Dental University
Tokyo, Japan
Chapter 1

Jaw-Ching Wu
Division of Gastroenterology
Taipei Veterans General Hospital
Institute of Clinical Medicine
National Yang-Ming University
Taipei, Taiwan
Email: jewu@vghtpe.gov.tw
Chapter 8

Tsuyoshi Yamashiro
First Department of Internal Medicine
University of Ryukyus
Okinawa, Japan
Chapter 1
PREFACE

Since its discovery in 1979, HDV has occupied a unique position in virus taxonomy. It does not belong to any of the established viral family but constitutes its own genus, deltavirus, whereas it does have significant similarity to viroids, subviral agents of higher plants. HDV RNA genome is smaller than any known animal virus genome, so small that it encodes only a single protein. Therefore, its propagation is largely dependent on factors supplied by host and another virus, hepatitis B virus (HBV). For example, HDV makes use of HBV’s surface antigens for envelope proteins. HDV replicates through RNA-dependent RNA synthesis by cellular DNA-dependent RNA polymerase(s). RNA editing by cellular enzyme(s) and RNA cleavage by viral ribozymes are also involved in the viral life cycle. From a medical point of view, patients infected with both HBV and HDV tend to develop more severe clinical symptoms than those infected with HBV alone. All these features make HDV unique and attractive, and its research over the last two decades has resulted in a number of findings that have wide implications beyond the immediate subject.

This book concisely describes various aspects of HDV, from basics to cutting-edge research, from medicine to molecular virology and biology. Chapters were written by internationally renowned scientists. We want to take this opportunity to thank all the authors who generously contributed. We hope their conscientious efforts will have made this book useful to broad readers for many years to come. We would also like to acknowledge the expert assistance of Cynthia Conomos and Sara Lord at Landes Bioscience.

Hiroshi Handa, M.D., Ph.D.
Yuki Yamaguchi, Ph.D.
CHAPTER 1

Genotype of Hepatitis Delta Virus

Nobuyuki Enomoto,* Hideki Watanabe, Kazuyoshi Nagayama, Tsuyoshi Yamashiro and Mamoru Watanabe

Classification of HDV Genotype

Hepatitis delta virus (HDV) is a defective virus that requires hepatitis B virus (HBV) surface antigen for virion assembly and infection,1 and contains a negative single stranded circular RNA genome of 1.7 kilobases.2,3 HDV is classified into three genotypes (genotype I, II and III) based on genetic sequence analysis (Fig. 1).4 Genotype II shows approximately 75% homology to genotype I, and genotype III shares about 60 to 65% homology with genotype I and II. There are many variants within each genotype. Especially, HDV genotype II is further divided into two types (i.e., IIA and IIB), with 77% nucleotide homology between the complete sequences of genotype IIA and IIB.5 The nucleotide homology between genotype IIB and IIB-M, the newly identified IIB variant, is 88-90%.6 Similarly, IIA variant was recently found in Siberia (Iia-Yakutia), which in comparison with IIA shows a similar degree of genetic differences.7 These genotypes show different geographical distributions and clinical pictures, which is thought to be caused by functional differences of genotype-specific sequences of HDV-RNA as well as HDAG protein.

Geographical Distribution of HDV Genotype

Genotype I has been identified in most areas of the world and represented by many different isolates (Fig. 1).8 Genotype II is confined to East Asia (mainly Siberia, Japan, and Taiwan),9 in contrast to the ubiquitous global distribution of genotype I. Genotype IIB was first identified in Taiwan,10 and was subsequently reported among patients from the Miyako Islands,11 one of the nearest Japanese islands to Taiwan. Recently, a new genetic variant of HDV genotype IIB (IIB-M) was identified.6 Genotype III is isolated to the northern part of South America, and is closely associated with fulminant hepatitis.4

Clinical Significance of HDV Genotype

HDV genotypes are known to affect the pathogenesis and diverse clinical pictures of HDV infection.4,7,9 Genotype I causes hepatic diseases ranging from mild to severe, often with the aggressive hepatitis and frequently associated with liver cirrhosis (LC) and hepatocellular carcinoma (HCC). On the other hand, genotype II is generally associated with a more favorable outcome than genotype I.9 A IIA variant recently reported in Yakutia, Siberia, Russia also causes

*Corresponding Author: Nobuyuki Enomoto—First Department of Internal Medicine, University of Yamanashi, Shimokato, Tamaho, Yamanashi 409-3898, Japan. Email: enomoto@yamanashi.ac.jp

a severe hepatitis comparable to genotype I in this cohort. Genotype III is associated with fulminant hepatitis. These findings strongly suggest that the genetic structure of HDV can profoundly influence the pathogenesis of liver injury in HDV infection.

In Japan, chronic HDV infection is endemic in the Miyako Islands where genotype IIb and IIb-M are found, and their clinical pictures differed despite relatively uniform clinical backgrounds including virological factors of HBV. Most of the patients with chronic HDV genotype IIb infection were asymptomatic carrier (ASC) or chronic hepatitis (CH) and none were at the liver cirrhosis (LC) or hepatocellular carcinoma (HCC) stage. In contrast, about half of patients with genotype IIb-M were in the CH and LC stages, respectively, and none of them were ASC. These findings indicate that patients with genotype IIb-M are more likely to progress to LC and HCC than those with genotype IIb, and that differences in HDV genotype could cause the different clinical pictures observed in this population.

In general, the genetic structure responsible for clinical features could not be readily determined because the genetic differences between the different genotypes are too diverse as seen in Figure 2. In contrast, despite the different clinical pictures between IIb and IIb-M, the genetic differences are small enough to enable the definition of the genetic features of HDV pathogenesis.

Figure 1. Phylogenetic tree analysis of HDV isolates. Sources of isolates are as follows: TW562 (AF018077), Taiwan-3 (U19598), Taiwan-1 (M92448), Yakut-26 (AJ309879), Yakut-62 (AJ309880), Japan-1 (X60193), Lebanon (M84917), Somalia (U81988), China (X77627), USA (M28267), France (D01075), Italy-1 (X04451), Canada (AF098261), Central African Republic (AJ000558), Peru-1 (L22063), Venezuela (AB037948), JA-M1 (AF309420), JA-M31 (AB118841), JA-T (AB118847) were sequenced in this study. (GenBank accession number).
and replication in vivo. Thus, a detailed comparative analysis of HDV genomes between genotype IIb and IIb-M provided a unique opportunity to define the critical genetic features of HDV which determine liver injury. As described later, HDV genotype IIb-M has specific genetic structures in the RNA editing site and the packaging signal sequence of HDAg which could potentially influence the efficiency of HDV replication. The observed correlation between HDV genetic structure and clinical characteristics suggests a critical role of variations in the RNA editing site and packaging signal of the HDAg gene in determining the diversity of clinical outcomes, even among patients infected with the same genotype of HDV.

Virological Significance of HDV Genotype

Among different HDV genotypes, the difference is highest in the hypervariable region (nt 1598-657) and moderately high in HDAg (nt 957-1597), whereas the autocatalytic regions coding ribozyme activity are well conserved (Fig. 2, Table 1). The hypervariable region is markedly variable even within the same genotype, supporting the notion that this region does not have any relevant biological function aside from the formation of the rod structure of HDV RNA required for RNA synthesis by RNA polymerase II. On the other hand, the requirement for strict secondary or tertiary structure of the autocatalytic domain seems to be so crucial for full activity of ribozyme needed for rolling-circle mechanism of HDV replication.