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Preface

Missing data are prevalent in many studies, especially when the studies in-
volve human beings. Not accounting for missing data properly when analyzing
data can lead to severe biases. For example, most software packages, by de-
fault, delete records for which any data are missing and conduct the so-called
“complete-case analysis”. In many instances, such an analysis will lead to an
incorrect inference. Since the 1980s there has been a serious attempt to un-
derstand the underlying issues involved with missing data. In this book, we
study the different mechanisms for missing data and some of the different
analytic strategies that have been suggested in the literature for dealing with
such problems. A special case of missing data includes censored data, which
occur frequently in the area of survival analysis. Some discussion of how the
missing-data methods that are developed will apply to problems with censored
data is also included.

Underlying any missing-data problem is the statistical model for the data
if none of the data were missing (i.e., the so-called full-data model). In this
book, we take a very general approach to statistical modeling. That is, we
consider statistical models where interest focuses on making inference on a
finite set of parameters when the statistical model consists of the parame-
ters of interest as well as other nuisance parameters. Unlike most traditional
statistical models, where the nuisance parameters are finite-dimensional, we
consider the more general problem of infinite-dimensional nuisance parame-
ters. This allows us to develop theory for important statistical methods such
as regression models that model the conditional mean of a response variable
as a function of covariates without making any additional distributional as-
sumptions on the variables and the proportional hazards regression model for
survival data. Models where the parameters of interest are finite-dimensional
and the nuisance parameters are infinite-dimensional are called semiparamet-
ric models.

The first five chapters of the book consider semiparametric models when
there are no missing data. In these chapters, semiparametric models are de-
fined and some of the theoretical developments for estimators of the parame-
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ters in these models are reviewed. The semiparametric theory and the proper-
ties of the estimators for parameters in semiparametric models are developed
from a geometrical perspective. Consequently, in Chapter 2, a quick review of
the geometry of Hilbert spaces is given. The geometric ideas are first devel-
oped for finite-dimensional parametric models in Chapter 3 and then extended
to infinite-dimensional models in Chapters 4 and 5.

A rigorous treatment of semiparametric theory is given in the book Ef-
ficient and Adaptive Estimation for Semiparametric Models by Bickel et al.
(1993). (Johns Hopkins University Press: Baltimore, MD). My experience has
been that this book is too advanced for many students in statistics and bio-
statistics even at the Ph.D. level. The attempt here is to be more expository
and heuristic, trying to give an intuition for the basic ideas without going into
all the technical details. Although the treatment of this subject is not rigorous,
it is not trivial either. Readers should not be frustrated if they don’t grasp
all the concepts at first reading. This first part of the book that deals only
with semiparametric models (absent missing data) and the geometric theory
of semiparametrics will be important in its own right. It is a beautiful theory,
where the geometric perspective gives a new insight and deeper understanding
of statistical models and the properties of estimators for parameters in such
models.

The remainder of the book focuses on missing-data methods, building on
the semiparametric techniques developed in the earlier chapters. In Chapter
6, a discussion and overview of missing-data mechanisms is given. This in-
cludes the definition and motivation for the three most common categories of
missingness, namely

• missing completely at random (MCAR)
• missing at random (MAR)
• nonmissing at random (NMAR)

These ideas are extended to the broader class of coarsened data. We show how
statistical models for full data can be integrated with missingness or coarsen-
ing mechanisms that allow us to derive likelihoods and models for the observed
data in the presence of missingness. The geometric ideas for semiparametric
full-data models are extended to missing-data models. This treatment will
give the reader a deep understanding of the underlying theory for missing and
coarsened data. Methods for estimating parameters with missing or coars-
ened data in as efficient a manner as possible are emphasized. This theory
leads naturally to inverse probability weighted complete-case (IPWCC) and
augmented inverse probability weighted complete-case (AIPWCC) estimators,
which are discussed in great detail in Chapters 7 through 11. As we will see,
some of the proposed methods can become computationally challenging if not
infeasible. Therefore, in Chapter 12, we give some approximate methods for
obtaining more efficient estimators with missing data that are easier to im-
plement. Much of the theory developed in this book is taken from a series of
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ground-breaking papers by Robins and Rotnitzky (together with colleagues),
who developed this elegant semiparametric theory for missing-data problems.

A short discussion on how missing-data semiparametric methods can be
applied to estimate causal treatment effects in a point exposure study is given
in Chapter 13 to illustrate the broad applicability of these methods. In Chap-
ter 14, the final chapter, we deviate slightly from semiparametric models to
discuss some of the theoretical properties of multiple-imputation estimators
for finite-dimensional parametric models. However, even here, the theory de-
veloped throughout the book will be useful in understanding the properties
of such estimators.

Anastasios (Butch) Tsiatis
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1

Introduction to Semiparametric Models

Statistical problems are described using probability models. That is, data
are envisioned as realizations of a vector of random variables Z1, . . . , Zn,
where Zi itself is a vector of random variables corresponding to the data
collected on the i-th individual in a sample of n individuals chosen from some
population of interest. We will assume throughout the book that Z1, . . . , Zn

are identically and independently distributed (iid) with density belonging to
some probability (or statistical model), where a model consists of a class of
densities that we believe might have generated the data. The densities in
a model are often identified through a set of parameters; i.e., a real-valued
vector used to describe the densities in a statistical model. The problem is
usually set up in such a way that the value of the parameters or, at the least,
the value of some subset of the parameters that describes the density that
generates the data, is of importance to the investigator. Much of statistical
inference considers how we can learn about this “true” parameter value from
a sample of observed data. Models that are described through a vector of a
finite number of real values are referred to as finite-dimensional parametric
models. For finite-dimensional parametric models, the class of densities can
be described as

P = {p(z, θ), θ ∈ Ω ⊂ R
p},

where the dimension p is some finite positive integer.
For many problems, we are interested in making inference only on a sub-

set of the parameters. Nonetheless, the entire set of parameters is necessary
to properly describe the class of possible distributions that may have gen-
erated the data. Suppose, for example, we are interested in estimating the
mean response of a variable, which we believe follows a normal distribution.
Typically, we conduct an experiment where we sample from that distribution
and describe the data that result from that experiment as a realization of the
random vector

Z1, . . . , Zn assumed iid N(µ, σ2); µ ∈ R, σ2 > 0; θ = (µ, σ2) ∈ R × R
+ ⊂ R

2.
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Here we are interested in estimating µ, the mean of the distribution, but σ2,
the variance of the distribution, is necessary to properly describe the possible
probability distributions that might have generated the data. It is useful to
write the parameter θ as (βT , ηT )T , where βq×1 (a q-dimensional vector) is
the parameter of interest and ηr×1 (an r-dimensional vector) is the nuisance
parameter. In the previous example, β = µ and η = σ2. The entire parameter
space Ω has dimension p = q + r.

In some cases, we may want to consider models where the class of densi-
ties is so large that the parameter θ is infinite-dimensional. Examples of this
will be given shortly. For such models, we will consider the problem where
we are interested in estimating β, which we still take to be finite-dimensional,
say q-dimensional. For some problems, it will be natural to partition the pa-
rameter θ as (β, η), where β is the q-dimensional parameter of interest and η
is the nuisance parameter, which is infinite-dimensional. In other cases, it is
more natural to consider the parameter β as the function β(θ). These models
are referred to as semiparametric models in the literature because, generally,
there is both a parametric component β and a nonparametric component η
that describe the model. By allowing the space of parameters to be infinite-
dimensional, we are putting less restrictions on the probabilistic constraints
that our data might have (compared with finite-dimensional parametric mod-
els). Therefore, solutions, if they exist and are reasonable, will have greater
applicability and robustness.

Because the notion of an infinite-dimensional parameter space is so im-
portant in the subsequent development of this book, we start with a short
discussion of infinite-dimensional spaces.

1.1 What Is an Infinite-Dimensional Space?

The parameter spaces that we will consider in this book will always be subsets
of linear vector spaces. That is, we will consider a parameter space Ω ⊂ S,
where S is a linear space. A space S is a linear space if, for θ1 and θ2 elements
of S, aθ1 + bθ2 will also be an element of S for any scalar constants a and
b. Such a linear space is finite-dimensional if it can be spanned by a finite
number of elements in the space. That is, S is a finite-dimensional linear
space if elements θ1, . . . , θm exist, where m is some finite positive integer such
that any element θ ∈ S is equal to some linear combination of θ1, . . . , θm; i.e.,
θ = a1θ1 + . . . + amθm for some scalar constants a1, . . . , am. The dimension
of a finite-dimensional linear space is defined by the minimum number of
elements in the space that span the entire space or, equivalently, the number
of linearly independent elements that span the entire space, where a set of
elements are linearly independent if no element in the set can be written as a
linear combination of the other elements. Parameter spaces that are defined in
p-dimensional Euclidean spaces are clearly finite-dimensional spaces. A linear
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space S that cannot be spanned by any finite set of elements is called an
infinite-dimensional parameter space.

An example of an infinite-dimensional linear space is the space of contin-
uous functions defined on the real line. Consider the space S = {f(x), x ∈ R}
for all continuous functions f(·). Clearly S is a linear space. In order to show
that this space is infinite-dimensional, we must demonstrate that it cannot be
spanned by any finite set of elements in S. This can be accomplished by noting
that the space S contains the linear subspaces made up of the class of polyno-
mials of order m; that is, the space Sm = {f(x) =

∑m
j=0 ajx

j} for all constants
a0, . . . , am. Clearly, the space Sm is finite-dimensional (i.e., spanned by the
elements x0, x1, . . . , xm). In fact, this space is exactly an m + 1-dimensional
linear space since the elements x0, . . . , xm are linearly independent.

Linear independence follows because xj cannot be written as a linear com-
bination of x0, . . . , xj−1 for any j = 1, 2, . . .. If it could, then

xj =
j−1∑
�=0

a�x
� for all x ∈ R

for some constants a0, . . . , aj−1. If this were the case, then the derivatives of
xj of all orders would have to be equal to the corresponding derivatives of∑j−1

�=0 a�x
�. But the j-th derivative of xj is equal to j! �= 0, whereas the j-th

derivative of
∑j−1

�=0 a�x
� is zero, leading to a contradiction and implying that

x0, . . . , xm are linearly independent.
Consequently, the space S cannot be spanned by any finite number, say

m elements of S, because, if this were possible, then the space of polynomials
of order greater than m could also be spanned by the m elements. But this is
impossible since such spaces of polynomials have dimension greater than m.
Hence, S is infinite-dimensional.

From the arguments above, we can easily show that the space of arbitrary
densities pZ(z) for a continuous random variable Z defined on the closed
finite interval [0, 1] (i.e., the so-called nonparametric model for such a random
variable) spans a space that is infinite-dimensional. This follows by noticing
that the functions pZj(z) = (j + 1)−1zj , 0 ≤ z ≤ 1, j = 1, . . . are densities
that are linearly independent.

1.2 Examples of Semiparametric Models

Example 1: Restricted Moment Models

A common statistical problem is to model the relationship of a response
variable Y (possibly vector-valued) as a function of a vector of covariates
X. Throughout, we will use the convention that a vector of random vari-
ables Z that is not indexed will correspond to a single observation, whereas
Zi, i = 1, . . . , n will denote a sample of n iid random vectors. Consider a
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family of probability distributions for Z = (Y, X) that satisfy the regression
relationship

E(Y |X) = µ(X, β),

where µ(X, β) is a known function of X and the unknown q-dimensional pa-
rameter β.

The function µ(X, β) may be linear or nonlinear in β, and it is assumed
that β is finite-dimensional. For example, we might consider a linear model
where µ(X, β) = βT X or a nonlinear model, such as a log-linear model, where
µ(X, β) = exp(βT X). No other assumptions will be made on the class of prob-
ability distributions other than the constraint given by the conditional expec-
tation of Y given X stated above. As we will demonstrate shortly, such models
are semiparametric, as they will be defined through an infinite-dimensional
parameter space. We will refer to such semiparametric models as “restricted
moment models.” These models were studied by Chamberlain (1987) and
Newey (1988) in the econometrics literature. They were also popularized in
the statistics literature by Liang and Zeger (1986).

For illustration, we will take Y to be a one-dimensional random variable
that is continuous on the real line. This model can also be written as

Y = µ(X, β) + ε,

where E(ε|X) = 0. The data are realizations of (Y1, X1), . . . , (Yn, Xn) that
are iid with density for a single observation given by

pY,X{y, x; β, η(·)},

where η(·) denotes the infinite-dimensional nuisance parameter function char-
acterizing the joint distribution of ε and X, to be defined shortly. Knowledge
of β and the joint distribution of (ε, X) will induce the joint distribution of
(Y, X). Since

ε = Y − µ(X, β),
pY,X(y, x) = pε,X{y − µ(x, β), x}.

The restricted moment model only makes the assumption that

E(ε|X) = 0.

That is, we will allow any joint density pε,X(ε, x) = pε|X(ε|x)pX(x) such that

pε|X(ε|x) � 0 for all ε, x,∫
pε|X(ε|x)dε = 1 for all x,∫
εpε|X(ε|x)dε = 0 for all x,

pX(x) ≥ 0 for all x,∫
pX(x)dνX(x) = 1.
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Remark 1. When we refer to the density, joint density, or conditional density
of one or more random variables, to avoid confusion, we will often index the
variables being used as part of the notation. For example, pY,X(y, x) is the
joint density of the random variables Y and X evaluated at the values (y, x).
This notation will be suppressed when the variables are obvious. ��
Remark 2. We will use the convention that random variables are denoted by
capital letters such as Y and X, whereas realizations of those random variables
will be denoted by lowercase letters such as y and x. One exception to this
is that the random variable corresponding to the error term Y − µ(X, β) is
denoted by the Greek lowercase ε. This is in keeping with the usual notation
for such error terms used in statistics. The realization of this error term will
also be denoted by the Greek lowercase ε. The distinction between the random
variable and the realization of the error term will have to be made in the
context it is used and should be obvious in most cases. For example, when we
refer to pε,X(ε, x), the subscript ε is a random variable and the argument ε
inside the parentheses is the realization. ��
Remark 3. νX(x) is a dominating measure for which densities for the ran-
dom vector X are defined. For the most part, we will consider ν(·) to be the
Lebesgue measure for continuous random variables and the counting measure
for discrete random variables. The random variable Y and hence ε will be
taken to be continuous random variables dominated by Lebesgue measure dy
or dε, respectively. ��

Without going into the measure-theoretical technical details, the class of
conditional densities for ε given X, such that E(ε|X) = 0, can be constructed
through the following steps.

(a) Choose any arbitrary positive function of ε and x (subject to regularity
conditions):

h(0)(ε, x) > 0.

(b) Normalize this function to be a conditional density:

h(1)(ε, x) =
h(0)(ε, x)∫
h(0)(ε, x)dε

;

i.e., ∫
h(1)(ε, x)dε = 1 for all x.

(c) Center it:
A random variable ε∗ whose conditional density, given X = x is
h(1)(ε′, x) = p(ε∗ = ε′|X = x), has mean
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µ(x) =
∫

ε′h(1)(ε′, x)dε′.

In order to construct a random variable ε whose conditional density, given
X = x, has mean zero, we consider ε = ε∗ − µ(X) or ε∗ = ε + µ(X). It is
clear that E(ε|X = x) = E(ε∗|X = x) − µ(x) = 0. Since the transforma-
tion from ε to ε∗, given X = x, has Jacobian equal to 1, the conditional
density of ε given X, defined by η1(ε, x), is given by

η1(ε, x) = h(1)
{

ε +
∫

εh(1)(ε, x)dε, x

}
,

which, by construction, satisfies
∫

εη1(ε, x)dε = 0 for all x.

Thus, any function η1(ε, x) constructed as above will satisfy η1(ε, x) > 0,∫
η1(ε, x)dε = 1 for all x,∫

εη1(ε, x)dε = 0 for all x.

Since the class of all such conditional densities η1(ε, x) was derived from arbi-
trary positive functions h(0)(ε, x) (subject to regularity conditions), and since
the space of positive functions is infinite-dimensional, then the set of such
resulting conditional densities is also infinite-dimensional.

Similarly, we can construct densities for X where pX(x) = η2(x) such that

η2(x) > 0,∫
η2(x)dνX(x) = 1.

The set of all such functions η2(x) will also be infinite-dimensional as long as
the support of X is infinite.

Therefore, the restricted moment model is characterized by

{β, η1(ε, x), η2(x)},

where β ∈ R
q is finite-dimensional and η1(ε, x) = pε|X(ε|x), η2(x) = pX(x)

are infinite-dimensional. Consequently, the joint density of (Y, X) is given by

pY,X{y, x; β, η1(·), η2(·)} = pY |X{y|x; β, η1(·)}pX{x; η2(·)}
= η1{y − µ(x, β), x}η2(x).

This is an example of a semiparametric model because the parametrization
is through a finite-dimensional parameter of interest β ∈ R

q and infinite-
dimensional nuisance parameters {η1(·), η2(·)}.

Contrast this semiparametric model with the more traditional parametric
model where
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Yi = µ(Xi, β) + εi, i = 1, . . . , n,

where εi are iid N(0, σ2). That is,

pY |X(y|x; β, σ2) =
1

(2πσ2)
1
2

exp
[
−1

2
{y − µ(x, β)}2

σ2

]
.

This model is much more restrictive than the semiparametric model defined
earlier.

Example 2: Proportional Hazards Model

In many biomedical applications, we are often interested in modeling the sur-
vival time of individuals as functions of covariates. Let the response variable
be the survival time of an individual, denoted by T , whose distribution de-
pends on explanatory variables X. A popular model in survival analysis is
Cox’s proportional hazards model, which was first introduced in the seminal
paper by Cox (1972). This model assumes that the conditional hazard rate,
as a function of X, is given by

λ(t|X) = lim
h→0

{
P (t ≤ T < t + h|T � t, X)

h

}
= λ(t) exp(βT X).

The proportional hazards model is especially convenient when survival times
may be right censored, as we will discuss in greater detail in Chapter 5.

Interest often focuses on the finite-dimensional parameter β, as this de-
scribes the magnitude of the effect that the covariates have on the survival
time. The underlying hazard function λ(t) is left unspecified and is considered
a nuisance parameter. Since this function can be any positive function in t,
subject to some regularity conditions, it, too, is infinite-dimensional. Using
the fact that the density of a positive random variable is related to the hazard
function through

pT (t) = λ(t) exp

⎧⎨
⎩−

t∫
0

λ(u)du

⎫⎬
⎭ ,

then the density of a single observation Z = (T, X) is given by

pT,X{t, x; β, λ(·), η2(·)} = pT |X{t|x; β, λ(·)}η2(x),

where

pT |X{t|x; β, λ(·)} = λ(t) exp(βT x) exp

⎧⎨
⎩− exp(βT x)

t∫
0

λ(u)du

⎫⎬
⎭ ,

and exactly as in Example 1, η2(x) is defined as a function of x such that
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η2(x) � 0,∫
η2(x)dνX(x) = 1,

for all x. The proportional hazards model has gained a great deal of popularity
because it is more flexible than a finite-dimensional parametric model, that
assumes that the hazard function for T has a specific functional form in terms
of a few parameters; e.g.,

λ(t, η) =η (constant hazard over time – exponential model),

or

λ(t, η) =η1t
η2 (Weibull model).

Example 3: Nonparametric Model

In the two previous examples, the probability models were written in terms
of an infinite-dimensional parameter θ, which was partitioned as {βT , η(·)},
where β was the finite-dimensional parameter of interest and η(·) was the
infinite-dimensional nuisance parameter. We now consider the problem of es-
timating the moments of a single random variable Z where we put no re-
striction on the distribution of Z except that the moments of interest exist.
That is, we denote the density of Z by θ(z), where θ(z) can be any posi-
tive function of z such that

∫
θ(z)dνZ(z) = 1 and any additional restrictions

necessary for the moments of interest to exist. Clearly, the class of all θ(·) is
infinite-dimensional as long as the support of Z is infinite. Suppose we were
interested in estimating some functional of θ(·), say β(θ) (for example, the
first or second moment E(Z) or E(Z2), where β(θ) is equal to

∫
zθ(z)dνZ(z)

or
∫

z2θ(z)dνZ(z), respectively). For such a problem, it is not convenient to
try to partition the parameter space in terms of the parameter β of interest
and a nuisance parameter but rather to work directly with the functional β(θ).

1.3 Semiparametric Estimators

In a semiparametric model, a semiparametric estimator for β, say β̂n, is one
that, loosely speaking, has the property that it is consistent and asymptoti-
cally normal in the sense that

(β̂n − β)
P{β,η(·)}−−−−−−→ 0,

n1/2(β̂n − β)
D{β,η(·)}−−−−−−→ N(0, Σq×q{β, η(·)}),
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for all densities “p{z, β, η(·)}” within some semiparametric family, where
P{β,η(·)}−−−−−−→ denotes convergence in probability and

D{β,η(·)}−−−−−−→ denotes conver-
gence in distribution when the density of the random variable Z is p{z, β, η(·)}.

We know, for example, that the solution to the linear estimating equations

n∑
i=1

Aq×1(Xi, β̂n)
{

Yi − µ(Xi, β̂n)
}

= 0q×1,

under suitable regularity conditions, leads to an estimator for β that is con-
sistent and asymptotically normal for the semiparametric restricted moment
model of Example 1. In fact, this is the basis for “generalized estimating
equations” (GEE) proposed by Liang and Zeger (1986).

The maximum partial likelihood estimator proposed by Cox (1972, 1975)
is an example of a semiparametric estimator for β in the proportional hazards
model given in Example 2. Also, in Example 3, a semiparametric estimator for
the first and second moments is given by n−1 ∑

Zi and n−1 ∑
Z2

i , respectively.
Some issues that arise when studying semiparametric models are:

(i) How do we find semiparametric estimators, or do they even exist?
(ii) How do we find the best estimator among the class of semiparametric

estimators?

Both of these problems are difficult. Understanding the geometry of estima-
tors, more specifically the geometry of the influence function of estimators,
will help us in this regard.

Much of this book will rely heavily on geometric constructions. We will de-
fine the influence function of an asymptotically linear estimator and describe
the geometry of all possible influence functions for a statistical model. We
will start by looking at finite-dimensional parametric models and then gener-
alize the results to the more complicated infinite-dimensional semiparametric
models.

Since the geometry that is considered is the geometry of Hilbert spaces,
we begin with a quick review of Hilbert spaces, the notion of orthogonality,
minimum distance, and how this relates to efficient estimators (i.e., estimators
with the smallest asymptotic variance).



2

Hilbert Space for Random Vectors

In this section, we will introduce a Hilbert space without going into much of
the technical details. We will focus primarily on the Hilbert space whose ele-
ments are random vectors with mean zero and finite variance that will be used
throughout the book. For more details about Hilbert spaces, we recommend
that the reader study Chapter 3 of Luenberger (1969).

2.1 The Space of Mean-Zero q-dimensional
Random Functions

As stated earlier, data are envisioned as realizations of the random vectors
Z1, Z2, . . ., Zn, assumed iid. Let Z denote the random vector for a single
observation. As always, there is an underlying probability space (Z , A, P ),
where Z denotes the sample space, A the corresponding σ-algebra, and P
the probability measure. For the time being, we will not consider a statistical
model consisting of a family of probability measures, but rather we will assume
that P is the true probability measure that generates the realizations of Z.

Consider the space consisting of q-dimensional mean-zero random func-
tions of Z,

h : Z → R
q,

where h(Z) is measurable and also satisfies

(i) E{h(Z)} = 0,

(ii) E{hT (Z)h(Z)} < ∞.

Since the elements of this space are random functions, when we refer to an
element as h, we implicitly mean h(Z). Clearly, the space of all such h that
satisfy (i) and (ii) is a linear space. By linear, we mean that if h1, h2 are
elements of the space, then for any real constants a and b, ah1 + bh2 also
belongs to the space.
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In the same way that we consider points in Euclidean space as vectors from
the origin, here we will consider the q-dimensional random functions as points
in a space. The intuition we have developed in understanding the geometry of
two- and three-dimensional Euclidean space will aid us in understanding the
geometry of more complex spaces through analogy. The random function

h(Z) = 0q×1

will denote the origin of this space.

The Dimension of the Space of Mean-Zero Random Functions

An element of the linear space defined above is a q-dimensional function of
Z. This should not be confused with the dimensionality of the space itself.
To illustrate this point more clearly, let us first consider the space of one-
dimensional random functions of Z (random variables), where Z is a discrete
variable with finite support. Specifically, let Z be allowed to take on one
of a finite number of values z1, . . . , zk with positive probabilities π1, . . . , πk,
where

∑k
i=1 πi = 1. For such a case, any one-dimensional random function

of Z can be defined as h(Z) = a1I(Z = z1) + . . . + akI(Z = zk) for any
real valued constants a1, . . . , ak, where I(·) denotes the indicator function.
The space of all such random functions is a linear space spanned by the k
linearly independent functions I(Z = zi), i = 1, . . . , k. Hence this space is a
k-dimensional linear space. If we put the further constraint that the mean
must be zero (i.e., E{h(Z)} = 0), then this implies that

∑k
i=1 aiπi = 0,

or equivalently that ak = −(
∑k−1

i=1 aiπi)/πk. Some simple algebra leads us
to conclude that the space of one-dimensional mean-zero random functions
of Z is a linear space spanned by the k − 1 linearly independent functions
{I(Z = zi) − πi

πk
I(Z = zk)}, i = 1, . . . , k − 1. Hence this space is a k − 1-

dimensional linear space.
Similarly, the space of q-dimensional mean-zero random functions of Z,

where Z has finite support at the k values z1, . . . , zk, can be shown to be a
linear space with dimension q × (k − 1). Clearly, as the number of support
points k for the distribution of Z increases, so does the dimension of the linear
space of q-dimensional mean-zero random functions of Z.

If the support of the random vector Z is infinite, as would be the case
if any element of the random vector Z was a continuous random variable,
then the space of measurable functions that make up the Hilbert space will be
infinite-dimensional. As we indicated in Section 1.1, the set of one-dimensional
continuous functions of Z is infinite-dimensional. Consequently, the set of q-
dimensional continuous functions will also be infinite-dimensional. Clearly, the
set of q-dimensional measurable functions is a larger class and hence must also
be infinite-dimensional.
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2.2 Hilbert Space

A Hilbert space, denoted by H, is a complete normed linear vector space
equipped with an inner product. As well as being a linear space, a Hilbert
space also allows us to consider distance between elements and angles and
orthogonality between vectors in the space. This is accomplished by defining
an inner product.

Definition 1. Corresponding to each pair of elements h1, h2 belonging to a
linear vector space H, an inner product, defined by 〈h1, h2〉, is a function that
maps to the real line. That is, 〈h1, h2〉 is a scalar that satisfies

1. 〈h1, h2〉 = 〈h2, h1〉,
2. 〈h1 + h2, h3〉 = 〈h1, h3〉 + 〈h2, h3〉, where h1, h2, h3 belong to H,
3. 〈λh1, h2〉 = λ〈h1, h2〉 for any scalar constant λ,
4. 〈h1, h1〉 ≥ 0 with equality if and only if h1 = 0.

Note 1. In some cases, the function 〈·, ·〉 may satisfy conditions 1–3 above and
the first part of condition 4, but 〈h1, h1〉 = 0 may not imply that h1 = 0. In
that case, we can still define a Hilbert space by identifying equivalence classes
where individual elements in our space correspond to different equivalence
classes.

Definition 2. For the linear vector space of q-dimensional measurable ran-
dom functions with mean zero and finite second moments, we can define the
inner product

〈h1, h2〉 by E(hT
1 h2).

We shall refer to this inner product as the “covariance inner product.”

This definition of inner product clearly satisfies the first three conditions of
the definition given above. As for condition 4, we can define an equivalence
class where h1 is equivalent to h2,

h1 ≡ h2,

if h1 = h2 a.e. or P (h1 �= h2) = 0. In this book, we will generally not concern
ourselves with such measure-theoretical subtleties.

Once an inner product is defined, we then define the norm or “length” of
any vector (i.e., element of H ) (distance from any point h ∈ H to the origin)
as

‖h‖ = 〈h, h〉1/2.

Hilbert spaces also allow us to define orthogonality; that is, h1, h2 ∈ H are
orthogonal if 〈h1, h2〉 = 0.
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Remark 1. Technically speaking, the definitions above are those for a pre-
Hilbert space. In order to be a Hilbert space, we also need the space to be
complete (i.e., every Cauchy sequence has a limit point that belongs to the
space). That the space of q-dimensional random functions with mean zero
and bounded second moments is complete follows from the L2-completeness
theorem (see Loève 1963, p. 161) and hence is a Hilbert space. ��

2.3 Linear Subspace of a Hilbert Space and
the Projection Theorem

A space U ⊂ H is a linear subspace if u1, u2 ∈ U implies that au1 + bu2 ∈ U
for all scalar constants a, b. A linear subspace must contain the origin. This
is clear by letting the scalars be a = b = 0.

A simple example of a linear subspace is obtained by taking h1, . . . , hk to
be arbitrary elements of a Hilbert space. Then the space a1h1 + · · ·+akhk for
all scalars (a1, . . . , ak) ∈ R

k is a linear subspace spanned by {h1, . . . , hk}.
One of the key results for Hilbert spaces, which we will use repeatedly

throughout this book, is given by the projection theorem.

Projection Theorem for Hilbert Spaces

Theorem 2.1. Let H be a Hilbert space and U a linear subspace that is closed
(i.e., contains all its limit points). Corresponding to any h ∈ H, there exists a
unique u0 ∈ U that is closest to h; that is,

‖h − u0‖ ≤ ‖h − u‖ for all u ∈ U .

Furthermore, h − u0 is orthogonal to U ; that is,

〈h − u0, u〉 = 0 for all u ∈ U .

We refer to u0 as the projection of h onto the space U , and this is denoted as
Π(h|U). Moreover, u0 is the only element u ∈ U such that h − u is orthogonal
to U (see Figure 2.1).

The proof of the projection theorem for arbitrary Hilbert spaces is not
much different or more difficult than for a finite-dimensional Euclidean space.
The condition that a Hilbert space be complete is necessary to guarantee the
existence of the projection. A formal proof can be found in Luenberger (1969,
Theorem 2, p. 51). The intuition of orthogonality and distance carries over
very nicely from simple Euclidean spaces to more complex Hilbert spaces.

A simple consequence of orthogonality is the Pythagorean theorem, which
we state for completeness.
Theorem 2.2. Pythagorean Theorem
If h1 and h2 are orthogonal elements of the Hilbert space H (i.e., 〈h1, h2〉 = 0),
then

‖h1 + h2‖2 = ‖h1‖2 + ‖h2‖2.
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Fig. 2.1. Projection onto a linear subspace

2.4 Some Simple Examples of the Application of
the Projection Theorem

Example 1: One-Dimensional Random Functions

Consider the Hilbert space H of one-dimensional random functions, h(Z),
with mean zero and finite variance equipped with the inner product

〈h1, h2〉 = E(h1h2)

for h1(Z), h2(Z) ∈ H. Let u1(Z), . . . , uk(Z) be arbitrary elements of this space
and U be the linear subspace spanned by {u1, · · · , uk}. That is,

U = {aT u; for a ∈ R
k},

where

uk×1 =

⎛
⎜⎝u1

...
uk

⎞
⎟⎠ .

The space U is an example of a finite-dimensional linear subspace since it
is spanned by the finite number of elements u1(Z), . . . , uk(Z). This subspace
is contained in the infinite-dimensional Hilbert space H. Moreover, if the ele-
ments u1(Z), . . . , uk(Z) are linearly independent, then the dimension of U is
identically equal to k.

Let h be an arbitrary element of H. Then the projection of h onto the
linear subspace U is given by the unique element aT

0 u that satisfies

〈h − aT
0 u, aT u〉 = 0 for all a = (a1, . . . , ak)T ∈ R

k,
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or

k∑
j=1

aj〈h − aT
0 u, uj〉 = 0 for all aj , j = 1, . . . , k.

Equivalently, 〈h − aT
0 u, uj〉 = 0 for all j = 1, . . . , k,

or

E{(h − aT
0 u)uT } = 0(1×k),

or

E(huT ) − aT
0 E(uuT ) = 0(1×k).

Any solution of a0 such that

aT
0 E(uuT ) = E(huT )

would lead to the unique projection aT
0 u.

If E(uuT ) is positive definite, and therefore has a unique inverse, then

aT
0 = E(huT ){E(uuT )}−1,

in which case the unique projection will be

u0 = aT
0 u = E(huT ){E(uuT )}−1u.

The norm-squared of this projection is equal to

E(huT ){E(uuT )}−1E(uh).

By the Pythagorean theorem,

‖h − aT
0 u‖2 = E(h − aT

0 u)2

= E(h2) − E(huT ){E(uuT )}−1E(uh).

Example 2: q-dimensional Random Functions

Let H be the Hilbert space of mean-zero q-dimensional measurable random
functions with finite second moments equipped with the inner product

〈h1, h2〉 = E(hT
1 h2).
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Fig. 2.2. Geometric illustration of the Pythagorean theorem

Let “v(Z)” be an r-dimensional random function with mean zero and E(vT v)
< ∞. Consider the linear subspace U spanned by v(Z); that is,

U = {Bq×rv, where B is any arbitrary q × r matrix of real numbers}.

The linear subspace U defined above is a finite-dimensional linear sub-
space contained in the infinite-dimensional Hilbert space H. If the elements
v1(Z), . . . , vr(Z) are linearly independent, then the dimension of U is q × r.
This can easily be seen by noting that U is spanned by the q × r linearly
independent elements uij(Z), i = 1, . . . , q, j = 1, . . . , r, of H, where, for any
i = 1, . . . , q, we take the element uq×1

ij (Z) ∈ H to be the q-dimensional func-
tion of Z, where all except the i-th element are equal to 0 and the i-th element
is equal to vj(Z) for j = 1, . . . , r.

We now consider the problem of finding the projection of an arbitrary
element h ∈ H onto U . By the projection theorem, such a projection B0v is
unique and must satisfy

E{(h − B0v)T Bv} = 0 for allB ∈ R
q×r. (2.1)

The statement above being true for all B is equivalent to

E{(h − B0v)vT } = 0q×r (matrix of all zeros). (2.2)

To establish (2.2), we write

E{(h − B0v)T Bv} =
∑

i

∑
j

BijE{(h − B0v)ivj}, (2.3)

where (h − B0v)i denotes the i-th element of the q-dimensional vector (h −
B0v), vj denotes the j-th element of the r-dimensional vector v, and Bij

denotes the (i, j)-th element of the matrix B.
If we take Bij = 1 for i = i′ and j = j′, and 0 otherwise, it becomes clear

from (2.3) that


