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Preface

Methods of dimensionality reduction are innovative and important tools in the
fields of data analysis, data mining, and machine learning. They provide a way
to understand and visualize the structure of complex data sets. Traditional
methods like principal component analysis and classical metric multidimen-
sional scaling suffer from being based on linear models. Until recently, very
few methods were able to reduce the data dimensionality in a nonlinear way.
However, since the late 1990s, many new methods have been developed and
nonlinear dimensionality reduction, also called manifold learning, has become
a hot topic. New advances that account for this rapid growth are, for ex-
ample, the use of graphs to represent the manifold topology, and the use of
new metrics like the geodesic distance. In addition, new optimization schemes,
based on kernel techniques and spectral decomposition, have led to spectral
embedding, which encompasses many of the recently developed methods.

This book describes existing and advanced methods to reduce the dimen-
sionality of numerical databases. For each method, the description starts from
intuitive ideas, develops the necessary mathematical details, and ends by out-
lining the algorithmic implementation. Methods are compared with each other
with the help of different illustrative examples.

The purpose of the book is to summarize clear facts and ideas about
well-known methods as well as recent developments in the topic of nonlinear
dimensionality reduction. With this goal in mind, methods are all described
from a unifying point of view, in order to highlight their respective strengths
and shortcomings.

The book is primarily intended for statisticians, computer scientists, and
data analysts. It is also accessible to other practitioners having a basic back-
ground in statistics and/or computational learning, such as psychologists (in
psychometry) and economists.

Louvain-la-Neuve, Belgium John A. Lee
October 2006 Michel Verleysen
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i The ith-order raw moment
Cxy The covariance matrix between the random vectors x and y
Ĉxy The estimate of the covariance matrix
f(x), f(x) Uni- or multivariate function of the random vector x
∂f(x)
∂xp

Partial derivative of f with respect to xp

∇xf(x) Gradient vector of f with respect to x
Hxf(x) Hessian matrix of f with respect to x
Jxf(x) Jacobian matrix of f with respect to x
〈y(i) · y(j)〉 Scalar product between the two vectors y(i) and y(j)
d(y(i),y(j)) Distance function between the two vectors y(i) and y(j)

(often a spatial distance, like the Euclidean one)
shortened as dy(i, j) or dy when the context is clear

δ(y(i),y(j)) Geodesic or graph distance between y(i) and y(j)
C, G Codebook (noted as a set) in the data and latent spaces
C, G Codebook (noted as a matrix) in the data and latent spaces
c(r), g(r) Coordinates of the rth prototypes in the codebook

(respectively, in the data and latent spaces)



Acronyms

DR Dimensionality reduction
LDR Linear dimensionality reduction
NLDR Nonlinear dimensionality reduction

ANN Artificial neural networks
EVD Eigenvalue decomposition
SVD Singular value decomposition
SVM Support vector machines
VQ Vector quantization

CCA Curvilinear component analysis NLDR method
CDA Curvilinear distance analysis NLDR method
EM Expectation-maximization optimization technique
GTM Generative topographic mapping NLDR method
HLLE Hessian LLE (see LLE) NLDR method
KPCA Kernel PCA (see PCA) NLDR method
LE Laplacian eigenmaps NLDR method
LLE Locally linear embedding NLDR method
MDS Multidimensional scaling LDR/NLDR method
MLP Multilayer perceptron ANN for function approx.
MVU Maximum variance unfolding (see SDE) NLDR method
NLM (Sammon’s) nonlinear mapping NLDR method
PCA Principal component analysis LDR method
RBFN Radial basis function network ANN for function approx.
SDE Semidefinite embedding NLDR method
SDP Semidefinite programming optimization technique
SNE Stochastic neighbor embedding NLDR method
SOM (Kohonen’s) self-organizing map NLDR method
TRN Topology-representing network ANN
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High-Dimensional Data

Overview. This chapter introduces the difficulties raised by the anal-
ysis of high-dimensional data and motivates the use of appropriate
methods. Both practical and theoretical motivations are given. The
former ones mainly translate the need to solve real-life problems,
which naturally involve high-dimensional feature vectors. Image pro-
cessing is a typical example. On the other hand, theoretical motiva-
tions relate to the study of high-dimensional spaces and distributions.
Their properties prove unexpected and completely differ from what
is usually observed in low-dimensional spaces. The empty space phe-
nomenon and other strange behaviors are typical examples of the so-
called curse of dimensionality. Similarily, the problem of data visual-
ization is shortly dealt with. Regarding dimensionality reduction, the
chapter gives two directions to explore: the relevance of variables and
the dependencies that bind them. This chapter also introduces the
theoretical concepts and definitions (topology, manifolds, etc.) that
are typically used in the field of nonlinear dimensionality reduction.
Next, a brief section presents two simple manifolds that will be used
to illustrate how the different methods work. Finally, the chapter ends
with an overview of the following chapters.

1.1 Practical motivations

By essence, the world is multidimensional. To persuade yourself, just look
at human beings, bees, ants, neurons, or, in the field of technology, computer
networks, sensor arrays, etc. In most cases, combining a large number of simple
and existing units allows us to perform a great variety of complex tasks. This
solution is cheaper than creating or designing a specific device and is also
more robust: the loss or malfunction of a few units does not impair the whole
system. This nice property can be explained by the fact that units are often
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partially redundant. Units that come to failure can be replaced with others
that achieve the same or a similar task.

Redundancy means that parameters or features that could characterize
the set of various units are not independent from each other. Consequently,
the efficient management or understanding of all units requires taking the
redundancy into account. The large set of parameters or features must be
summarized into a smaller set, with no or less redundancy. This is the goal
of dimensionality reduction (DR), which is one of the key tools for analyzing
high-dimensional data.

1.1.1 Fields of application

The following paragraphs present some fields of technology or science where
high-dimensional data are typically encountered.

Processing of sensor arrays

These terms encompass all applications using a set of several identical sen-
sors. Arrays of antennas (e.g., in radiotelescopes) are the best example. But
to this class also belong numerous biomedical applications, such as electrocar-
diagram or electroencephalograph acquisition, where several electrodes record
time signals at different places on the chest or the scalp. The same configura-
tion is found again in seismography and weather forecasting, for which several
stations or satellites deliver data. The problem of geographic positioning us-
ing satellites (as in the GPS or Galileo system) may be cast within the same
framework too.

Image processing

Let’s consider a picture as the output of a digital camera; then its processing
reduces to the processing of a sensor array, like the well-known photosensitive
CCD or CMOS captors used in digital photography. However, image process-
ing is often seen as a standalone domain, mainly because vision is a very
specific task that holds a priviliged place in information science.

Multivariate data analysis

In contrast with sensor arrays or pixel arrays, multivariate data analysis rather
focuses on the analysis of measures that are related to each other but come
from different types of sensors. An obvious example is a car, wherein the gear-
box connecting the engine to the wheels has to take into account information
from rotation sensors (wheels and engine shaft), force sensors (brake and gas
pedals), position sensors (gearbox stick, steering wheel), temperature sensors
(to prevent engine overheating or to detect glaze), and so forth. Such a sit-
uation can also occur in psychosociology: a poll often gathers questions for
which the answers are from different types (true/false, percentage, weight,
age, etc.).
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Data mining

At first sight, data mining seems to be very close to multivariate data analy-
sis. However, the former has a broader scope of applications than the latter,
which is a classical subdomain of statistics. Data mining can deal with more
exotic data structures than arrays of numbers. For example, data mining en-
compasses text mining. The analysis of large sets of text documents aims,
for instance, at detecting similarities between texts, like common vocabulary,
same topic, etc. If these texts are Internet pages, hyperlinks can be encoded
in graph structures and analyzed using tools like graph embedding. Cross
references in databases can be analyzed in the same way.

1.1.2 The goals to be reached

Understanding large amounts of multidimensional data requires extracting
information out of them. Otherwise, data are useless. For example, in elec-
troencephalography, neurologists are interested in finding among numerous
electrodes the signals coming from well-specified regions of the brain. When
automatically processing images, computers should be able to detect and es-
timate the movement of objects in the scene. In a car with an automatic
gearbox, the on-board computer must be able to select the most appropriate
gear ratio according to data from the car sensors.

In all these examples, computers have to help the user to discover and
extract information that lies hidden in the huge quantity of data. Information
discovery amounts to detecting which variables are relevant and how variables
interact with each other. Information extraction then consists of reformulating
data, using less variables. Doing so may considerably simplify any further
processing of data, whether it is manual, visual, or even automated. In other
words, information discovery and extraction help to

• Understand and classify the existing data (by using a “data set” or “learn-
ing set”), i.e., assign a class, a color, a rank, or a number to each data
sample.

• Infer and generalize to new data (by using a “test set” or “validation set”),
i.e., get a continuous representation of the data, so that the unknown class,
colour, rank, or number of new data items can be determined, too.

1.2 Theoretical motivations

From a theoretical point of view, all difficulties that occur when dealing with
high-dimensional data are often referred to as the “curse of dimensionality”.
When the data dimensionality grows, the good and well-known properties of
the usual 2D or 3D Euclidean spaces make way for strange and annoying
phenomena. The following two subsections highlight two of these phenomena.
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1.2.1 How can we visualize high-dimensional spaces?

Visualization is a task that regards mainly two classes of data: spatial and tem-
poral. In the latter case, the analysis may resort to the additional information
given by the location in time.

Spatial data

Quite obviously, a high dimensionality makes the visualization of objects
rather uneasy. Drawing one- or two-dimensional objects on a sheet of paper
seems very straightforward, even for children. Things becomes harder when
three-dimensional objects have to represented. The knowledge of perspective,
and its correct mastering, are still recent discoveries (paintings before the
Renaissance are not very different from Egyptian papyri!). Even with to-
day’s technology, a smooth, dynamic, and realistic representation of our three-
dimensional world on a computer screen requires highly specialized chips. On
the other hand, three-dimensional objects can also be sculptured or carved.
To replace the chisel and the hammer, computer representations of 3D ob-
jects can be materialized in a polymer bath: on the surface a laser beam is
solidifying the object, layer per layer.

But what happens when more than three dimensions must be taken into
account? In this case, the computer screen and the sheet of paper, with only
two dimensions, become very limited. Nevertheless, several techniques exist:
they use colors or multiple linear projections. Unfortunately, all these tech-
niques are not very intuitive and are often suited only for 4D objects. As an
example, Fig. 1.1 shows the projection of a 4D cube that has been projected
on a plane in a linear way; the color indicates the depth. Regardless of the
projection method is, it is important to remark that the human eye attempts
to understand high-dimensional objects in the same way as 3D objects: it
seeks distances from one point to another, tries to distinguish what is far and
what is close, and follows discontinuities like edges, corners, and so on. Ob-
viously, objects are understood by identifying the relationships between their
constituting parts.

Temporal data

When it is known that data are observed in the course of time, an additional
piece of information is available. As a consequence, the above-mentioned ge-
ometrical representation is no longer unique. Instead of visualizing all di-
mensions simultaneously in the same coordinate system, one can draw the
evolution of each variable as a function of time. For example, in Fig. 1.2, the
same data set is displayed “spatially” in the first plot, and “temporally” in
the second one: the time structure of data is revealed by the temporal rep-
resentation only. In constrast with the spatial representation, the temporal
representation easily generalizes to more than three dimensions. Nevertheless,
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Fig. 1.1. Two-dimensional representation of a four-dimensional cube. In addition
to perspective, the color indicates the depth in the fourth dimension.
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Fig. 1.2. Two plots of the same temporal data. In the first representation, data
are displayed in a single coordinate system (spatial representation). In the second
representation, each variable is plotted in its own coordinate system, with time as
the abscissa (time representation).
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when dimensionality increases, it becomes harder and harder to perceive the
similarities and dissimilarities between the different variables: the eye is con-
tinually jumping from one variable to another, and finally gets lost! In such a
case, a representation of data using a smaller set of variables is welcome, as
for spatial data. This makes the user’s perception easier, especially if each of
these variables concentrates on a particular aspect of data. A compact repre-
sentation that avoids redundancy while remaining trustworthy proves to be
the most appealing.

1.2.2 Curse of dimensionality and empty space phenomenon

The colorful term “curse of dimensionality” was apparently first coined by
Bellman [14] in connection with the difficulty of optimization by exhaustive
enumeration on product spaces. Bellman underlines the fact that considering
a Cartesian grid of spacing 1/10 on the unit cube in 10 dimensions, the num-
ber of points equals 1010; for a 20-dimensional cube, the number of points
further increases to 1020. Accordingly, Bellman’s interpretation is the follow-
ing: if the goal consists of optimizing a function over a continuous domain of
a few dozen variables by exhaustively searching a discrete search space de-
fined by a crude discretization, one could easily be faced with the problem
of making tens of trillions of evaluations of the function. In other words, the
curse of dimensionality also refers to the fact that in the absence of simplify-
ing assumptions, the number of data samples required to estimate a function
of several variables to a given accuracy (i.e., to get a reasonably low-variance
estimate) on a given domain grows exponentially with the number of dimen-
sions. This fact, responsible for the curse of dimensionality, is often called
the “empty space phenomenon” [170]. Because the amount of available data
is generally restricted to a few observations, high-dimensional spaces are in-
herently sparse. More concretely, the curse of dimensionality and the empty
space phenomenon give unexpected properties to high-dimensional spaces, as
illustrated by the following subsections, which are largely inspired by Chapter
1 of [169].

Hypervolume of cubes and spheres

In a D-dimensional space, a sphere and the corresponding circumscripted cube
(all edges equal the sphere diameter) lead to the following volume formulas:

Vsphere(r) =
πD/2rD

Γ (1 + D/2)
, (1.1)

Vcube(r) = (2r)D , (1.2)

where r is the radius of the sphere. Surprisingly, the ratio Vsphere/Vcube tends
to zero when D increases:
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lim
D→∞

Vsphere(r)
Vcube(r)

= 0 . (1.3)

Intuitively, this means that as dimensionality increases, a cube becomes more
and more spiky, like a sea urchin: the spherical body gets smaller and smaller
while the number of spikes increases, the latter occupying almost all the avail-
able volume. Now, assigning the value 1/2 to r, Vcube equals 1, leading to

lim
D→∞

Vsphere(r) = 0 . (1.4)

This indicates that the volume of a sphere vanishes when dimensionality in-
creases!

Hypervolume of a thin spherical shell

By virtue of Eq. (1.1), the relative hypervolume of a thin spherical shell is

Vsphere(r) − Vsphere(r(1 − ε))
Vsphere(r)

=
1D − (1 − ε)D

1D
, (1.5)

where ε is the thickness of the shell (ε � 1). When D increases, the ratio
tends to 1, meaning that the shell contains almost all the volume [194].

Tail probability of isotropic Gaussian distributions

For any dimension D, the probability density function (pdf) of an isotropic
Gaussian distribution (see Appendix B) is written as

fy(y) =
1

√
(2πσ2)D

exp(−1
2
‖y− μy‖2

σ2
) , (1.6)

where y is a D-dimensional vector, μy its D-dimensional mean, and σ2 the
isotropic (scalar) variance. Assuming the random vector y has zero mean and
unit variance, the formula simplifies into

fy(y) = K(r) =
1

√
(2π)D

exp(−r2

2
) , (1.7)

where r = ‖y‖ can be interpreted as a radius. Indeed, because the distribution
is isotropic, the equiprobable contours are spherical. With the previous exam-
ples in mind, it can thus be expected that the distribution behaves strangely
in high dimensions.

This is confirmed by computing r0.95 defined as the radius of a hypersphere
that contains 95% of the distribution [45]. The value of r0.95 is such that

∫ r0.95

0 Ssphere(r)K(r)dr
∫∞
0 Ssphere(r)K(r)dr

= 0.95 , (1.8)
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where Ssphere(r) is the surface of a D-dimensional hypersphere of radius r:

Ssphere(r) =
2πD/2rD−1

Γ (D/2)
. (1.9)

The radius r0.95 grows as the dimensionality D increases, as illustrated in the
following table:

D 1 2 3 4 5 6
r0.95 1.96σ 2.45σ 2.80σ 3.08σ 3.33σ 3.54σ

This shows the weird behavior of a Gaussian distribution in high-dimensional
spaces.

Concentration of norms and distances

Another problem encountered in high-dimensional spaces regards the weak
discrimination power of a metric. As dimensionality grows, the contrast pro-
vided by usual metrics decreases, i.e., the distribution of norms in a given
distribution of points tends to concentrate. This is known as the concentra-
tion phenomenon [20, 64].

For example, the Eulidean norm of vectors consisting of several variables
that are i.i.d. (independent and identically distributed) behaves in a totally
unexpected way. The explanation can be found in the following theorem (taken
from [45], where the demonstration can be found as well):

Theorem 1.1. Let y be a D-dimensional vector [y1, . . . , yd, . . . , yD]T ; all
components yd of the vector are independent and identically distributed, with
a finite eighth order moment. Then the mean μ‖y‖ and the variance σ2

‖y‖ of
the Euclidean norm (see Subsection 4.2.1) are

μ‖y‖ =
√

aD − b +O(D−1) (1.10)

σ2
‖y‖ = b +O(D−1/2) , (1.11)

where a and b are parameters depending only on the central moments of order
1, 2, 3, and 4 of the xi:

a = μ2 + μ2 (1.12)

b =
4μ2μ2 − μ2

2 + 4μμ3 + μ4

4(μ2 + μ2)
, (1.13)

where μ = E{xd} is the common mean of all components xd and μk their
common central k-th order moment (μk = E{(xd − μ)k}).

In other words, the norm of random vectors grows proportionally to
√

D,
as naturally expected, but the variance remains more or less constant for a
sufficiently large D. This also means that the vector y seems to be normalized
in high dimensions. More precisely, thanks to Chebychev’s inequality, one has
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P
(∣∣‖y‖ − μ‖y‖

∣
∣ ≥ ε

) ≤
σ2
‖y‖
ε2

, (1.14)

i.e., the probability that the norm of y falls outside an interval of fixed width
centered on μ‖y‖ becomes approximately constant when D grows. As μ‖y‖
also grows, the relative error made by taking μ‖y‖ instead of ‖y‖ becomes
negligible. Therefore, high-dimensional random i.i.d. vectors seem to be dis-
tributed close to the surface of a hypersphere of radius μ‖y‖. This means not
only that successive drawings of such random vectors yield almost the same
norm, but also that the Euclidean distance between any two vectors is approx-
imately constant. The Euclidean distance is indeed the Euclidean norm of the
difference of two random vectors (see Subsection 4.2.1), and this difference is
also a random vector.

In practice, the concentration phenomenon makes the nearest-neighbor
search problem difficult to solve in high-dimensional spaces [20, 26]. Other
results about the surprising behavior of norms and distances measured in high-
dimensional spaces are given, for instance, in [1, 64] and references therein.

Diagonal of a hypercube

Considering the hypercube [−1, +1]D, any segment from its center to one of
its 2D corners, i.e., a half-diagonal, can be written as v = [±1, . . . ,±1]T . The
angle between a half-diagonal v and the dth coordinate axis

ed = [0, . . . , 0, 1, 0, . . . , 0]T

is computed as

cos θD =
vT ed

‖v‖ ‖ed‖ =
±1√
D

. (1.15)

When the dimensionality D grows, the cosine tends to zero, meaning that
half-diagonals are nearly orthogonal to all coordinates axes [169]. Hence, the
visualization of high-dimensional data by plotting a subset of two coordinates
on a plane can be misleading. Indeed, a cluster of points lying near a diagonal
line of the space will be surprisingly plotted near the origin, whereas a cluster
lying near a coordinate axis is plotted as intuitively expected.

1.3 Some directions to be explored

In the presence of high-dimensional data, two possibilities exist to avoid or
at least attenuate the effects of the above-mentioned phenomena. The first
one focuses on the separation between relevant and irrelevant variables. The
second one concentrates on the dependencies between the (relevant) variables.
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1.3.1 Relevance of the variables

When analyzing multivariate data, not necessarily all variables are related to
the underlying information the user wishes to catch. Irrelevant variables may
be eliminated from the data set.

Most often, techniques to distinguish relevant variables from irrelevant
ones are supervised: the “interest” of a variable is given by an “oracle” or
“professor”. For example, in a system with many inputs and outputs, the
relevance of an input can be measured by computing the correlations between
known pairs of input/output. Input variables that are not correlated with the
outputs may then be eliminated.

Techniques to determine whether variables are (ir)relevant are not further
studied in this book, which focuses mainly on non-supervised methods. For
the interested reader, some introductory references include [2, 96, 139].

1.3.2 Dependencies between the variables

Even when assuming that all variables are relevant, the dimensionality of the
observed data may still be larger than necessary. For example, two variables
may be highly correlated: knowing one of them brings information about the
other. In that case, instead of arbitrarily removing one variable in the pair,
another way to reduce the number of variables would be to find a new set
of transformed variables. This is motivated by the facts that dependencies
between variables may be very complex and that keeping one of them might
not suffice to catch all the information content they both convey.

The new set should obviously contain a smaller number of variables but
should also preserve the interesting characteristics of the initial set. In other
words, one seeks a transformation of the variables with some well-defined
properties. These properties must ensure that the transformation does not
alter the information content conveyed by the initial data set, but only rep-
resents it in a different form. In the remainder of this book, linear as well
as nonlinear transformations of observed variables will often be called projec-
tions, mainly because many transformations are designed for the preservation
of characteristics that are geometrical or interpreted as such.

The type of projection must be chosen according to the model that un-
derlies the data set. For example, if the given variables are assumed to be
mixtures of a few unobserved ones, then a projection that inverts the mixing
process is very useful. In other words, this projection tracks and eliminates
dependencies between the observed variables. These dependencies often result
from a lack of knowledge or other imperfections in the observation process: the
interesting variables are not directly accessible and are thus measured in sev-
eral different but largely redundant ways. The determination of a projection
may also follow two different goals.

The first and simplest one aims to just detect and eliminate the depen-
dencies. For this purpose, the projection is determined in order to reduce the
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number of variables. This task is traditionally known as dimensionality re-
duction and attempts to eliminate any redundancy in the initial variables.
Principal component analysis (PCA) is most probably the best-known tech-
nique for dimensionality reduction.

The second and more complex goal of a projection is not only to reduce
the dimensionality, but also to retrieve the so-called latent variables, i.e., those
that are at the origin of the observed ones but cannot be measured directly.
This task, in its most generic acceptation, is often called latent variable sep-
aration. Blind source separation (BSS), in signal processing, or Independent
component analysis (ICA), in multivariate data analysis, are particular cases
of latent variable separation.

As can be deduced, dimensionality reduction only focuses on the number
of latent variables and attempts to give a low-dimensional representation of
data according to this number. For this reason, dimensionality reduction does
not care for the latent variables themselves: any equivalent representation will
do. By comparison, latent variable separation is more difficult since it aims,
beyond dimensionality reduction, at recovering the unknown latent variables
as well as possible.

1.4 About topology, spaces, and manifolds

From a geometrical point of view, when two or more variables depend on
each other, their joint distribution — or, more accurately, the support of their
joint distribution — does not span the whole space. Actually, the dependence
induces some structure in the distribution, in the form of a geometrical locus
that can be seen as a kind of object in the space. The hypercube illustrated in
Fig. 1.1 is an example of such a structure or object. And as mentioned above,
dimensionality reduction aims at giving a new representation of these objects
while preserving their structure.

In mathematics, topology studies the properties of objects that are pre-
served through deformations, twistings, and stretchings. Tearing is the only
prohibited operation, thereby guaranteeing that the intrinsic “structure” or
connectivity of objects is not altered. For example, a circle is topologically
equivalent to an ellipse, and a sphere is equivalent to an ellipsoid.1 However,
subsequent chapters of this book will show that tearing still remains a very
interesting operation when used carefully.

One of the central ideas of topology is that spatial objects like circles and
spheres can be treated as objects in their own right: the knowledge of objects
does not depend on how they are represented, or embedded, in space. For ex-
ample, the statement, “If you remove a point from a circle, you get a (curved)
line segment” holds just as well for a circle as for an ellipse, and even for
1 Of course, this does not mean that soccer is equivalent to rugby!
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tangled or knotted circles. In other words, topology is used to abstract the in-
trinsic connectivity of objects while ignoring their detailed form. If two objects
have the same topological properties, they are said to be homeomorphic.

The “objects” of topology are formally defined as topological spaces. A
topological space is a set for which a topology is specified [140]. For a set Y, a
topology T is defined as a collection of subsets of Y that obey the following
properties:

• Trivially, ∅ ∈ T and Y ∈ T .
• Whenever two sets are in T , then so is their intersection.
• Whenever two or more sets are in T , then so is their union.

This definition of a topology holds as well for a Cartesian space (RD) as for
graphs. For example, the natural topology associated with R, the set of real
numbers, is the union of all open intervals.

From a more geometrical point of view, a topological space can also be
defined using neighborhoods and Haussdorf’s axioms. The neighborhood of a
point y ∈ R

D, also called a ε-neighborhood or infinitesimal open set, is often
defined as the open ε-ball Bε(y), i.e. the set of points inside a D-dimensional
hollow sphere of radius ε > 0 and centered on y. A set containing an open
neighborhood is also called a neighborhood. Then, a topological space is such
that

• To each point y there corresponds at least one neighborhood U(y), and
U(y) contains y.

• If U(y) and V(y) are neighborhoods of the same point y, then a neighbor-
hood W(y) exists such that W(y) ⊂ U(y) ∪ V(y).

• If z ∈ U(y), then a neighborhood V(z) of z exists such that V(z) ⊂ U(y).
• For two distinct points, two disjoint neighborhoods of these points exist.

Within this framework, a (topological) manifold M is a topological space
that is locally Euclidean, meaning that around every point of M is a neigh-
borhood that is topologically the same as the open unit ball in R

D. In general,
any object that is nearly “flat” on small scales is a manifold. For example, the
Earth is spherical but looks flat on the human scale.

As a topological space, a manifold can be compact or noncompact, con-
nected or disconnected. Commonly, the unqualified term “manifold” means
“manifold without boundary”. Open manifolds are noncompact manifolds
without boundary, whereas closed manifolds are compact manifolds without
boundary. If a manifold contains its own boundary, it is called, not surpris-
ingly, a “manifold with boundary”. The closed unit ball B̄1(0) in R

D is a
manifold with boundary, and its boundary is the unit hollow sphere. By defi-
nition, every point on a manifold has a neighborhood together with a home-
omorphism of that neighborhood with an open ball in R

D.
An embedding is a representation of a topological object (a manifold, a

graph, etc.) in a certain space, usually R
D for some D, in such a way that its
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topological properties are preserved. For example, the embedding of a man-
ifold preserves open sets. More generally, a space X is embedded in another
space Y when the properties of Y restricted to X are the same as the properties
of X .

A smooth manifold, also called an (infinitely) differentiable manifold, is
a manifold together with its “functional structure” (e.g., parametric equa-
tions). Hence, a smooth manifold differs from a simple topological manifold,
as defined above, because the notion of differentiability exists on it. Every
smooth manifold is a topological manifold, but the reverse statement is not
always true. Moreover, the availability of parametric equations allows us to
relate the manifold to its latent variables, namely its parameters or degrees
of freedom.

A smooth manifold M without boundary is said to be a submanifold of
another smooth manifold N ifM⊂ N and the identity map ofM into N is
an embedding. However, it is noteworthy that, while a submanifoldM is just
a subset of another manifold N ,M can have a dimension from a geometrical
point of view, and the dimension ofM may be lower than the dimension of N .
With this idea in mind, and according to [175], a P -manifold or P -dimensional
manifoldM is defined as a submanifold of N ⊂ R

D if the following condition
holds for all points y ∈ M: there exist two open sets U ,V ⊂M, with y ∈ U ,
and a diffeomorphism h : U → V ,y �→ x = h(y) such that

h(U ∩M) = V ∩ (RP × {0}) = {x ∈ V : xP+1 = · · · = xD = 0} .

As can be seen, x can trivially be reduced to P -dimensional coordinates. If
N = R

D in the previous definition, then

• A point y ∈ R
D is a manifold.

• A P -dimensional vector subspace (a P -dimensional hyperplane) is a P -
manifold.

• The hollow D-dimensional hypersphere is a (D − 1)-manifold.
• Any open subset is a D-manifold.

Whitney [202] showed in the 1930s that any P -manifold can be embedded
in R

2P+1, meaning that 2P + 1 dimensions at most are necessary to embed a
P -manifold. For example, an open line segment is an (open) 1-manifold that
can already be embedded in R

1. On the other hand, a circle is a (compact) 1-
manifold that can be embedded in R

2 but not in R
1. And a knotted circle, like

a trefoil knot, reaches the bound of Whitney’s theorem: it can be embedded
only in R

D, with D ≥ 2P + 1 = 3.
In the remainder of this book, the word manifold used alone typically des-

ignates a P -manifold embedded in R
D. In the light of topology, dimension-

ality reduction amounts to re-embedding a manifold from a high-dimensional
space to a lower-dimensional one. In practice, however, a manifold is noth-
ing more than the underlying support of a data distribution, which is known
only through a finite sample. This raises two problems. First, dimensionality
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reduction techniques must work with partial and limited data. Second, as-
suming the existence of an underlying manifold allows us to take into account
the support of the data distribution but not its other properties, such as its
density. This may be problematic for latent variable separation, for which a
model of the data density is of prime importance.

Finally, the manifold model does not account for the noise that may cor-
rupt data. In that case, data points no longer lie on the manifold: instead fly
nearby. Hence, regarding terminology, it is correct to write that dimension-
ality reduction re-embeds a manifold, but, on the other hand, it can also be
said that noisy data points are (nonlinearly) projected on the re-embedded
manifold.

1.5 Two benchmark manifolds

In order to illustrate the advantages and drawbacks of the various methods
of dimensionality reduction to be studied in Chapters 4 and 5, the manifolds
shown in Fig. 1.3 will be used repeatedly as running examples. The first
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Fig. 1.3. Two benchmark manifold: the ‘Swiss roll’ and the ‘open box’.

manifold, on the left in Fig. 1.3, is called the Swiss roll, according to the
name of a Swiss-made cake: it is composed of a layer of airy pastry, which
is spread with jam and then rolled up. The manifold shown in the figure
represents the thin layer of jam in a slice of Swiss roll. The challenge of the
Swiss roll consists of finding a two-dimensional embedding that “unrolls” it,
in order to avoid superpositions of the successive turns of the spiral and to
obtain a bijective mapping between the initial and final embeddings of the
manifold. The Swiss roll is a noncompact, smooth, and connected manifold.
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The second two-manifold of Fig. 1.3 is naturally called the “open box”.
As for the Swiss roll, the goal is to reduce the embedding dimensionality from
three to two. As can be seen, the open box is connected but neither compact
(in contrast with a cube or closed box) nor smooth (there are sharp edges and
corners). Intuitively, it is not so obvious to guess what an embedding of the
open box should look like. Would the lateral faces be stretched? Or torn? Or
would the bottom face be shrunk? Actually, the open box helps to show the
way each particular method behaves.

In practice, all DR methods work with a discrete representation of the
manifold to be embedded. In other words, the methods are fed with a finite
subset of points drawn from the manifold. In the case of the Swiss roll and
open box manifolds, 350 and 316 points are selected, respectively, as shown in
Fig. 1.4. The 350 and 316 available points are regularly spaced, in order to be
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Fig. 1.4. A subset of points drawn from the “Swiss roll” and “open box” manifolds
displayed in Fig. 1.3. These points are used as data sets for DR methods in order
to assess their particular behavior. Corners and points on the edges of the box are
shown with squares, whereas points inside the faces are shown as smaller circles. The
color indicates the height of the points in the box or the radius in the Swiss roll. A
lattice connects the points in order to highlight their neighborhood relationships.

as representative of the manifold as possible. Moreover, points are connected
and displayed with different colors (indicating the height in the box or the
radius in the Swiss roll). In the case of the box, points also have different
shapes (small circles inside the faces, larger squares on the edges). All these
features are intended to improve the readability once the manifold is mapped
onto a plane, although the three-dimensional representation of Fig. 1.4 looks
a bit overloaded.
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1.6 Overview of the next chapters

This chapter has quickly reviewed some of the practical and theoretical reasons
that raise interest toward methods of analyzing high-dimensional data. Next,
Chapter 2 details the most common characteristics of such a method:

• Which functionalities are expected by the user?
• How is the underlying data model defined?
• Which criterion is to be optimized?

In order to illustrate the answers to these questions, Chapter 2 contains a
description of principal component analysis (PCA), which is probably the
most-known and used method of analyzing high-dimensional data. The chap-
ter ends by listing several properties that allows us to categorize methods of
nonlinear dimensionality reduction.

Because numerous DR methods do not integrate an estimator of the intrin-
sic dimensionality of the data, Chapter 3 describes some usual estimators of
the intrinsic dimensionality. A good estimation of the intrinsic dimensionality
spares a lot of time when the method takes it as an external hyperparameter.
This chapter is necessary for completeness, but the reader familiar with the
subject may easily skip it.

The next two chapters are dedicated to the study of two main families of
DR techniques. Those techniques can be viewed as replacements, evolutions,
or specializations of PCA. On one side, Chapter 4 details methods based on
distance preservation. On the other side, Chapter 5 concentrates on the more
elegant but more difficult principle of topology preservation. Each of these
browses a wide range of classical and more recent methods, and describes
them extensively. Next, Chapter 6 gives some examples and compares the
results of the various methods.

Finally, Chapter 7 draws the conclusions. It summarizes the main points of
the book and outlines a unifying view of the data flow for a typical method of
analyzing high-dimensional data. Chapter 7 is followed by several appendices
that deal with mathematical or technical details.


