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TO MY PARENTS 



PREFACE TO VOLUME I 
OF THE FIRST EDITION 

The present work is the first volume of a substantially enlarged 
version of the mimeographed notes of a course of lectures first given 
by me in the Indian Statistical Institute, Calcutta, India, during 
1964-65. When it was suggested that these lectures be developed into 
a book, I readily agreed and took the opportunity to extend the scope 
of the material covered. 

No background in physics is in principle necessary for understand­
ing the essential ideas in this work. However, a high degree of 
mathematical maturity is certainly indispensable. It is safe to say 
that I aim at an audience composed of professional mathematicians, 
advanced graduate students, and, hopefully, the rapidly increasing 
group of mathematical physicists who are attracted to fundamental 
mathematical questions. 

Over the years, the mathematics of quantum theory has become 
more abstract and, consequently, simpler. Hilbert spaces have been 
used from the very beginning and, after Weyl and Wigner, group 
representations have come in conclusively. Recent discoveries seem to 
indicate that the role of group representations is destined for further 
expansion, not to speak of the impact of the theory of several complex 
variables and function-space analysis. But all of this pertains to the 
world of interacting subatomic particles; the more modest view of the 
microscopic world presented in this book requires somewhat less. The 
reader with a knowledge of abstract integration, Hilbert space theory, 
and topological groups will find the going easy. 

Part of the work which went into the writing of this book was 
supported by the National Science Foundation Grant No. GP-5224. I 
have profited greatly from conversations with many friends and 
colleagues at various institutions. To all of them, especially to R. 
Arens, R. J. Blattner, R. Ranga Rao, K. R. Parthasarathy, and S. R. S. 
Varadhan, my sincere thanks. I want to record my deep thanks to 
my colleague Don Babbitt who read through the manuscript carefully, 
discovered many mistakes, and was responsible for significant im­
provement of the manuscript. My apologies are due to all those whose 
work has been ignored or, possibly, incorrectly (and/or insufficiently) 
discussed. Finally, I want to acknowledge that this book might never 
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viii PREFACE TO VOLUME I OF THE 1ST EDITION 

have made its way into print but for my wife. She typed the entire 
manuscript, encouraged me when my enthusiasm went down, and 
made me understand some of the meaning of our ancient words, 

To her my deep gratitude. 

Spring, 1968 V. S. VARADARAJAN 

* Bhagavadgita, 2:U7a. 



PREFACE TO THE SECOND EDITION 

I t was about four years ago tha t Springer-Verlag suggested tha t a revised 
edition in a single volume of my two-volume work may be worthwhile. 
I agreed enthusiastically but the project was delayed for many reasons, one 
of the most important of which was tha t I did not have a t t ha t time any 
clear idea as to how the revision was to be carried out. Eventually I decided 
to leave intact most of the original material, but make the current edition a 
little more up-to-date by adding, in the form of notes to the individual 
chapters, some recent references and occasional brief discussions of topics 
not treated in the original text . The only substantive change from the earlier 
work is in the t reatment of projective geometry; Chapters I I through V of 
the original Volume I have been condensed and streamlined into a single 
Chapter I I . I wish to express my deep grati tude to Donald Babbit t for 
his generous advice tha t helped me in organizing this revision, and to 
Springer-Verlag for their patience and understanding tha t went beyond 
what one has a right to expect from a publisher. 

I suppose an author 's feelings are always mixed when one of his books tha t 
is comparatively old is brought out once again. The progress of Science in our 
t ime is so explosive tha t a discovery is hardly made before it becomes 
obsolete; and yet, precisely because of this, it is essential to keep in sight the 
origins of things tha t are taken for granted, if only to lend some perspective 
to what we are trying to achieve. All I can say is tha t there are times when 
one should look back as well as forward, and tha t the ancient lines, par t of 
which are quoted above still capture the spirit of my thoughts. 

Pacific Palisades, V. S. VARADARAJAN 
Dec. 22,1984 

* Bhagavadgita, 2:47a. 
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INTRODUCTION 

As laid down by Dirac in his great classic [1], the principle of 
superposition of states is the fundamental concept on which the quan­
tum theory of atomic systems is to be erected. Dirac's development 
of quantum mechanics on an axiomatic basis is undoubtedly in keep­
ing with the greatest traditions of the physical sciences. The scope 
and power of this principle can be recognized at once if one recalls 
that it survived virtually unmodified throughout the subsequent transi­
tion to a relativistic view of the atomic world. It must be pointed out, 
however, that the precise mathematical nature of the superposition 
principle was only implicit in the discussions of Dirac; we are in­
debted to John von Neumann for explicit formulation. In his charac­
teristic way, he discovered that the set of experimental statements of 
a quantum mechanical system formed a projective geometry—the 
projective geometry of subspaces of a complex, separable, infinite 
dimensional Hilbert space. With this as a point of departure, he 
carried out a mathematical analysis of the axiomatic foundations of 
quantum mechanics which must certainly rank among his greatest 
achievements [1] [3] [4] [5] [6]. 

Once the geometric point of view is accepted, impressive conse­
quences follow. The automorphisms of the geometry describe the 
dynamical and kinematical structure of quantum mechanical systems, 
thus leading to the linear character of quantum mechanics. The 
covariance of the physical laws under appropriate space-time groups 
consequently expresses itself in the form of projective unitary repre­
sentations of these groups. The economy of thought as well as the 
unification of method that this point of view brings forth is truly 
immense; the Schrodinger equation, for example, is obtained from a 
representation of the time-translation group, the Dirac equation from 
a representation of the inhomogeneous Lorentz group. This develop­
ment is the work of many mathematicians and physicists. However, 
insofar as the mathematical theory is concerned, no contribution is 
more outstanding than that of Eugene P. Wigner. Beginning with 
his famous article on time inversion and throughout his great papers 
on relativistic invariance [1] [3] [4] [5] [6], we find a beautiful and 
coherent approach to the mathematical description of the quantum 
mechanical world which achieves nothing less than the fusion of 
group theory and quantum mechanics, and moreover does this without 
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XVI INTRODUCTION 

compromising in any manner the axiomatic principles formulated by 
Dirac and von Neumann. 

My own interest in the mathematical foundations of quantum me­
chanics received a great stimulus from the inspiring lectures given by 
Professor George W. Mackey at the University of Washington in 
Seattle during the summer of 1961. The present volumes are in great 
part the result of my interest in a detailed elaboration of the main 
features of the theory sketched by Mackey in those lectures. In sum, 
my indebtedness to Professor Mackey's lectures and to the books and 
papers of von Neumann and Wigner is immense and carries through 
this entire work. 

There exist today many expositions of the basic principles of 
quantum mechanics. At the most sophisticated mathematical level, 
there are the books of von Neumann [1], Hermann Weyl [1] and 
Mackey [1]. But, insofar as I am aware, there is no account of the 
technical features of the geometry and group theory of quantum me­
chanical systems that is both reasonably self-contained and comprehen­
sive enough to be able to include Lorentz invariance. Moreover, recent 
re-examinations of the fundamental ideas by numerous mathematicians 
have produced insights that have substantially added to our under­
standing of quantum foundations. From among these I want to single 
out for special mention Gleason's proof that quantum mechanical states 
are represented by the so-called density matrices, Mackey's extensive 
work on systems of imprimitivity and group representations, and Barg-
mann's work on the cohomology of Lie groups, particularly of the 
physically interesting groups and their extensions. All of this has made 
possible a conceptually unified and technically cogent development of 
the theory of quantum mechanical systems from a completely geometric 
point of view. The present work is an attempt to present such an 
approach. 

Our approach may be described by means of a brief outline of the 
contents of the three parts that make up this work. The first part begins by 
introducing the viewpoint of von Neumann according to which every 
physical system has in its background a certain orthocomplemented lattice 
whose elements may be identified with the experimentally verifiable prop­
ositions about the system. For classical systems this lattice (called the 
logic of the system) is a Boolean a-algebra while for quantum systems it is 
highly nondistributive. This points to the relevance of the theory of 
complemented lattices to the axiomatic foundations of quantum mechanics. 
In the presence of modularity and finiteness of rank, these lattices decom­
pose into a direct sum of irreducible ones, called geometries. A typical 
example of a geometry is the lattice of subspaces of a finite dimensional 
vector space over a division ring. The theory of these vector geometries is 
taken up in Chapter II. The isomorphisms of such a geometry are induced in 
a natural fashion by semilinear transformations. Orthocomplementations 
are induced by definite semi-bilinear forms which are symmetric with 
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respect to suitable involutive anti-automorphisms of the basic division ring. 
If the division ring is the reals, complexes or quaternions, this leads to the 
Hilbert space structures. In this chapter, we also examine the relation 
between axiomatic geometry and analytic geometry along classical lines 
with suitable modifications in order to handle the infinite dimensional case 
also. The main result of this chapter is the theorem which asserts that an 
abstractly given generalized geometry (i.e., one whose dimension need 
not be finite) of rank >4 is isomorphic to the lattice of all finite 
dimensional subspaces of a vector space over a division ring. The 
division ring is an invariant of the lattice. 

The second part analyzes the structure of the logics of quantum mechani­
cal systems. In Chapter III , we introduce the notion of an abstract logic 
(= orthocomplemented weakly modular a-lattice) and the observables and 
states associated with it. It is possible that certain observables need not be 
simultaneously observable. I t is proved that for a given family of observ­
ables to be simultaneously measurable, it is necessary and sufficient that the 
observables of the family be classically related, i.e., that there exists a 
Boolean sub a-algebra of the logic in question to which all the mem­
bers of the given family are associated. Given an observable and a 
state, it is shown how to compute the probability distribution of the 
observable in that state. In Chapter IV, we take up the problem of singling 
out the logic of all subspaces of a Hilbert space by a set of neat axioms. 
Using the results of Chapter II, it is proved that the standard logics are 
precisely the projective ones. The analysis of the notions of an observable 
and a state carried out in Chapter III now leads to the correspondence 
between observables and self-adjoint operators, and between the pure states 
and the rays of the underlying Hilbert space. The automorphisms of the 
standard logics are shown to be induced by the unitary and antiunitary 
operators. With this the von Neumann program of a deductive description 
of the principles of quantum mechanics is completed. The remarkable fact 
that there is a Hilbert space whose self-adjoint operators represent the 
observables and whose rays describe the (pure) states is thus finally 
established to be a consequence of the projective nature of the underlying 
logic. 

The third and final part of the work deals with specialized questions. The 
main problem is that of a covariant description of a quantum mechanical 
system, the covariance being with respect to suitable symmetry groups of 
the system. The theory of such systems leads to sophisticated problems of 
harmonic analysis on locally compact groups. Chapters V, VI, and VII are 
devoted to these purely mathematical questions. The results obtained are 
then applied to yield the basic physical results in Chapters VIII and IX. 
In Chapter VIII, the Schrodinger equation is obtained and the relations 
between the Heisenberg and Schrodinger formulations of quantum 
mechanics are analyzed. The usual expressions for the position, momentum, 
and energy observables of a quantum mechanical particle are shown to be 
inevitable consequences of the basic axioms and the requirement of 
covariance. In addition, a classification of single particle systems is obtained 
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in terms of the spin of the particle. The spin of a particle, which is so charac­
teristic of quantum mechanics, is a manifestation of the geometry of the 
configuration space of the particle. 

The final chapter discusses the description of free particles from the 
relativistic viewpoint. The results of Chapters V, VI and VII are used to 
obtain a classification of these particles in terms of their mass and spin. 
With each particle it is possible to associate a vector bundle whose square 
integrable sections constitute the Hilbert space of the particle. These 
abstract results lead to the standard transformation formulae for the (one 
particle) states under the elements of the relativity group. By taking 
Fourier transforms, it is possible to associate with each particle a definite 
wave equation. In particular, the Dirac equation of the free electron is 
obtained in this manner. The same methods lead to the localization in space, 
for a given time instant, of the particles of nonzero rest mass. The chapter 
ends with an analysis of Galilean relativity. I t is shown that the free 
particles which are governed by Galilei's principle of relativity are none 
other than the Schrodinger particles of positive mass and arbitrary spin. 

With this the program of obtaining a geometric view of the quan­
tum mechanical world is completed. It is my belief that no other ap­
proach leads so clearly and smoothly to the fundamental results. It 
may be hoped that such methods may also lead to a successful de­
scription of the world of interacting particles and their fields. The 
realization of such hopes seems to be a matter for the future. 

V. S. VARADARAJAN 



CHAPTER I 

BOOLEAN ALGEBRAS ON A CLASSICAL 
PHASE SPACE 

1. THE CLASSICAL PHASE SPACE 

We begin with a brief account of the usual description of a classical 
mechanical system with a finite number of degrees of freedom. Associated 
with such a system there is an integer n, and an open set M of the n-
dimensional space Rn of n-tuples (xu x2, • • •, %n) of real numbers, n is 
called the number of degrees of freedom of the system. The points of M 
represent the possible configurations of the system. A state of the system 
at any instant of time is specified completely by giving a 2n-tuple 
(#i> #2> * • • > xn> Pi> * *' > Pn) s u c n that (xl9 • • •, xn) represents the configura­
tion and (ply • •, pn) the momentum vector, of the system at that instant 
of time. The possible states of the system are thus represented by the 
points of the open set M x Rn of R2n. The law of evolution of the system is 
specified by a smooth function H on M x Rn, called the Hamiltonian of 
the system. If (x^t), • • •, xn(t), Pi(t), - - -, pn(t)) represents the state of the 
system at time t, then the functions xt(-)t Pii-), i = l, 2, • • •, n, satisfy 
the well known differential equations: 

dxt dH 
dt dpi 

(1) 
dp, = _dB_ 
dt dx{ 

i — 1, 2, • • •, n, 

i = 1, 2, • • •, n. 

For most of the systems which arise in practice these equations have 
unique solutions for all t in the sense that given any real number t0, 
and a point (x^, x2°, • • •, xn°, p±°, • • •, pn°) of M x J?71, there exists a 
unique differentiate map t -> {x^t), • • •, xn(t), px{t), • • •, pn(t)) of R1 into 
Mx Rn such that x{( •) and p{( •) satisfy the equations (1) with the initial 
conditions 

(2) xt(tQ) = a?,0, pt(*0) = ft0, » = 1, 2, • • •, n. 

If we denote by 5 an arbitrary point of M x Rn, it then follows in the 
standard fashion that for any t there exists a mapping D(t)(s -> D(£)s) 
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2 GEOMETRY OF QUANTUM THEORY 

of M x Rn into itself with the property that if s is the state of the system 
at time t09 D(t)s is the state of the system at time t+t0. The transfor­
mations D(t) are one-one, map M x Rn onto itself and satisfy the equations: 

D(0) = J (the identity mapping), 

(3) D{-t) = D(t)~\ 

D(tx+t2) = D(tx)D{t2). 

If, in addition, H is an indefinitely differentiate function, then the D(t) 
are also indefinitely differentiate and the correspondence t —> D(t) 
defines a one-parameter differentiate transformation group of M x Rn so 
that the map t, s -> D(t)s of R1xMxRn into Mx Rn is indefinitely 
differentiate. The set MxRn of all the possible states of the system is 
called the phase space of the system. 

In the formulation described above, the physical quantities or the 
observables of the system are described by real valued functions on M x Rn. 
For example, if the system is that of a single particle of mass m which 
moves under some potential field, then n = 3, M = R3, and the Hamiltonian 
H is given by 

(4) H(xl9x29x39pl9p29p3) = ^ (Pi2 +P22 +P32) + V(xl9x2ix3). 

The function s -> (p±
2 +p2

2 +^3
2)/2m is the kinetic energy of the particle 

and the function s —> V(xl9x2,x3) is the potential energy of the particle. 
The function s -+ pt (i = 1, 2, 3) represents the ^-component of the 
momentum of the particle. In the general case, if/ is a function on M x Rn 

which describes an observable, then/(s) gives the value of that observable 
when the system is in the state s. 

This formulation of the basic ideas relating to the mechanics of a 
classical system can be generalized significantly (Mackey [1], Sternberg 
[1]). Briefly, this generalization consists in replacing the assumption that 
M is an open subset of Rn by the more general one that M is an abstract 
C00 manifold of dimension n. The set of all possible configurations of the 
system is now M9 and for any x e M, the momenta of the system at this 
configuration are the elements of the vector space Mx*9 which is the dual 
of the tangent vector space Mx of If at a;. The phase space of the system 
is then the set of all possible pairs (x,p)9 where x e M and p G MX*. This 
set, say S9 comes equipped with a natural differentiate structure under 
which it is a C00 manifold of dimension 2n9 the so-called cotangent bundle 
of M. The manifold 8 admits further a canonical 2-form which is every­
where nonsingular and this gives rise to a natural isomorphism J of the 
module of all O00 vector fields on S onto the module of all 1-forms (both 
being considered as modules over the ring of (700 functions on S). The 
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dynamical development of the system is then specified by a C00 function 
H on S, the Hamiltonian of the system. If t -> s(t) is a curve representing 
a possible evolution of the system, then we have the differential equations: 

(5) *$. = [J-i(dH)](e{t)). 

Here ds{t)jdt is the tangent vector to 8 at the point s(t) along the curve 
t -> s{t) and J~1(dH) is the vector field on 8 corresponding to the 1-form 
dH; the right side of the equation (5) being the value of this vector field 
at the point s(t) of 8. In the special case when M is an open set in Rn and 
#i> #2> * * *> xn a r e ^ n e global affine coordinates on M, 8 is canonically 
identified with M x Rn and, under this identification, J goes over into the 
map which transforms the vector field 

2At(dldxi)+2Bl(dldPl) 

into the 1-form 
n n 

i=l i=l 

The equation (5) then goes over to (1) (cf. Chevalley [1], Helgason [1] for 
a discussion of the general theory of differentiable manifolds). 

In this general setup, the dynamical development of the system is given 
by the integral curves of the vector field J~1(dH). It is necessary to 
assume that the integral curves are defined for all values of the time 
parameter t. One can then use the standard theory of vector fields to 
deduce the existence of a diffeomorphism D(t) of 8 for each t such that 
the correspondence t -> D(t) satisfies the conditions (3), and the map 
t, s —> D(t)s of R1 x 8 into 8 is C°°. If the system is at the state s at time 
f0, then its state at time t+t0 is D(t)s. The physical observables of the 
system are then represented by real valued functions on S. A special class 
of Hamiltonian functions, analogous to (4), may be defined in this general 
framework. Let # - > < . , .>x be a C00 Riemannian metric on M, <. , .yx 

being a positive definite inner product on Mx x Mx. For each x e M, we 
then have a natural isomorphism p -> p* of Mx* onto Mx such that 
p(u) = (u,p*}x for all p e Mx* and for all u e Mx. The analogue of (4) is 
then the Hamiltonian H given by 

(6) H(z,p) = <p*,p*>x + V(x), 

where V is a C°° function on if. The function x,p-> (p*,p*}x then 
represents the kinetic energy of the system in question. 

It may be pointed out that one can introduce the concept of the 
momenta of the system in this setup. Let 

(7) V-t-+yt 
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be a one-parameter group of symmetries of the configuration space M, 
i.e., y(t -> yt) is a one-parameter group of C00 diffeomorphisms of i f onto 
itself such tha t the map t, x -> yt(#) oi RxxM into i f is O00. The infinitesi­
mal generator of y is a (700 vector field, say Xy , on M; for any # e i f and 
any real valued C00 function / defined around x, 

WKX) = {a/(^*))}t.o-
X y defines, in a natural fashion, a 000 function ytxy on 8. In fact, if a; e M 
and # e Mx*, 

fiy(xtp) = 2>(Xy(z)) 

(here Xy(x) denotes the tangent vector to M a t x which is the value of 
XY a t x). The observable corresponding to the function /zy is called .the 
momentum of the system corresponding to the one-parameter group of 
symmetries y. If M = Rn, if xlf • • •, xn are the global affine coordinates on 
if , and if 

yt
e(xl9 • • •, xn) = &!-&>!, • • •, xn-tcn, 

then the observable corresponding to /xyc is called the component of the 
linear momentum along (clt • • •, cn). In the same case, if 

y! ' ' (s i»-"»*n) = (2/i>"->2/n)> 
where 

i/r = z r , r ^ i, j , 

^ = xt cos £ + a;y sin t, y5 = —x{ sin t +# y cos £, 

then the observable corresponding to juy.* is called the angular momentum 
with respect to a rotation in the i-j plane. A straightforward calculation 
shows tha t in the case when M = Rn, S = Bnx Rn, and x1,---,xn>p1,'--ipn 

are global coordinates on 8 ((xl9 • • • , #„ , pl9 • • •, pn) depicts 2?= iPi(dXi)x)9 

fiYc(x,p) = 0^ +- - -+cnpn, 
and 

Suppose now tha t M is a general C00 manifold and 8 its cotangent bundle. 
I f / and g are two 0°° functions on $, then we can form J~ 1(df)9 which is a 
O00 vector field on 8, and apply it to g to get another (700 function on #, 
denoted by [f9g]: 

(8) [/,</] = (J-Hdf))g. 

[f9g] is called the Poisson Bracket of / with g. If we use local coordinates 
xl9 • • •, xn on i f and the induced coordinates #!, • • •, xn, pl9 • • •, pn on 8 
(so tha t (xl9 - • •, xn9pl9 • - ',pn) represents ^iP^dXi)), then J goes over 
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into the map which (locally) sends ^iA^djdx^+^B^djdp^ into 
— 2t B% dxt +2 i A{ dpi, and [f,g] becomes 

The map/ , gr —> [f,g] is bilinear, skew symmetric, and satisfies the identity 

as is easily verified from (9). If X is any O00 vector field on M and /xx is 
the <7°° function on 8 denned by 

PxfaP) = P(x(x))> 

then one can verify, using (9), that 

Pax + bY = fl/zx+6/xy (a, b constants), 

where [-X,F] is the Lie bracket of the vector fields X and Y. If / is any 
C00 function on M a n d / 0 is the lifted function on 8, i.e., 

f°(x,p) =/(*), 

then we may use (9) once again to check that 

for any C°° vector field X on M. 
In many problems, there is a Lie group 6r which acts on M and provides 

the natural symmetries of the problem. For g e G we write a; -» g-x for 
the symmetry associated with g and assume that g,x->g-x is C00 from 
GxM into .AT. In such problems, one restricts oneself to the momenta 
specified by the one-parameter groups of M. If g is the Lie algebra of G 
(cf. Chevalley [1]) and if we associate for l e g , the vector field on M 
denoted by X also and defined by 

(X/)(x) = ( | / ( exp tX .* ) ) t _ o , 

then we obtain the relations 

MEX.Y] — [MXJ/^YL 
(10) 

[/xX)/°] = (X/)° 

between the configuration observables / ° and the momentum observables 
fjux. These relations are usually referred to as commutation rules. 
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2. T H E LOGIC OF A CLASSICAL SYSTEM 

We shall now examine the algebraic aspects of a general classical system. 
In view of the discussion carried out just now, it is clear tha t for any 
classical system (B there is associated a space 8 called the phase space of 
©. The states of the system are in one-one correspondence with the points 
of 8. The notion of a state is so formulated tha t if one knows the state 
of the system at an instant of time t0, and also the dynamical law of 
evolution of the system, then one can determine the state of the system 
at t ime t + t0. The observables or physical quantities which are of interest 
to the observer are then represented by real valued functions on S. If / is 
the function corresponding to a particular observable, its value f(s) a t the 
point s of S is interpreted as the value of the physical quanti ty when the 
system is in the state s. If s is the state of the system at time t0, we can 
write D(t)s for the state of the system at time t + t0. We thus have a trans­
formation D(t) of 8 into itself. For each t, D(t) is invertible and maps 8 
onto itself. The correspondence t -> D(t) satisfies the equations (3). 
t -> D(t) is then a one-parameter group of transformations of 8. I t is called 
the dynamical group of the system <3. 

These concepts make sense in every classical system. In the case of any 
such system the most general statement which can be made about it is 
one which asserts tha t the value of a certain observable lies in a real 
number set E. If the observable is represented by the function / on 8, 
then such a statement is equivalent to the statement tha t the state of the 
system lies in the setf~1(E) of the space 8. In other words, the physically 
meaningful statements tha t can be made about the system are in corre­
spondence with certain subsets of 8. The inclusion relations for subsets 
naturally correspond to implications of statements. In mathematical 
terms, this means tha t at the background of the classical system there is a 
Boolean algebra of subsets of the space S, the elements of which represent 
the statements about the physical system. I t is natural to call this Boolean 
algebra the logic of the system. 

Suppose now tha t @ is a system which does not follow the laws of 
classical mechanics. Then one cannot associate with it a phase space in 
general. I t is nevertheless meaningful to consider the totali ty of experi­
mentally verifiable statements which may be made about the system. 
This collection, which may be called the logic of @, comes equipped with 
the relations of implication and negation which convert it into a com­
plemented partially ordered set. For a classical system this partially 
ordered set is a Boolean algebra. Clearly, it is possible to conceive of 
mechanical systems whose logics are not Boolean algebras. We take the 
point of view that quantum mechanical systems are those whose logics form 
some sort of projective geometries and which are consequently nondistributive 
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lattices. With such a point of view it is possible to understand the role 
played by simultaneously observable quantities, the uncertainty relations, 
and the complementarity principles. These phenomena, which are so 
peculiar to quantum systems, will then be seen to be consequences of the 
nondistributive nature of the logic in the background of the system (&. 

I t might seem a bit surprising tha t the basic assumption on a quantum 
system is tha t its logic is not a distributive lattice. I t would be natural to 
argue tha t statements about a physical system should obey the same 
rules as the rules of ordinary set theory. The well known critiques of von 
Neumann and Heisenberg address this question (von Neumann [1], 
Birkhoff-von Neumann [1], Heisenberg [1]). The point is tha t only 
experimentally verifiable statements are to be regarded as members of the 
logic of the system. Consequently, as it happens in many questions in 
atomic physics, it may be impossible to verify experimentally s tatements 
which involve the values of two physical quantities of the system—for 
example, measurements of the position and momentum of an electron. 
One can verify statements about one of them but not, in general, those 
which involve both of them. What the basic assumptions imply is tha t 
the statements regarding position or momentum form two Boolean sub-
algebras of the logic but tha t there is in general no Boolean algebra which 
contains both of these Boolean subalgebras. 

Before beginning an analysis of the logic of general quantum mechanical 
systems it would be helpful to recast at least some of the features of the 
formulation given in section 1 in terms of the logic of the classical system. 
In the first place it is natural to strengthen the hypothesis and assume 
tha t the logic of a given classical system © is a Boolean cr-algebra, say j£?, 
of subsets of 8, the phase space of <S. Suppose now, tha t an observable 
associated with the system is represented by the real valued function / on 
8. The statements concerning the observable are then those which assert 
tha t its value lies in an arbitrary Borel set E of the real line and these are 
represented by the subsets f~x(E) of 8. The observable can thus be repre­
sented, without any loss of physical content, equally by the map 
E -^f~1(E) of the class of Borel subsets of the real line into ££. The range 
of this mapping is a sub-a-algebra, say 3Pf. Suppose g is a real valued Borel 
function on the real line. Then, the observable represented by the function 
g of (s ->g(f(s))) can also be represented by the map E ->f~1(g"1(E)) 
from which we conclude tha t J?gof is contained in Jjff. 

In order to formulate the general features of a classical mechanical 
system in terms of its logic J?, it is therefore necessary to determine to 
what extent an abstract a-algebra ££ can be regarded as a a-algebra of 
subsets of some space 8; further to determine the class of mappings from 
the a-algebra of Borel sets of the real line into S£ which correspond to 
real valued functions on 8; and to clarify the concept of functional 
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dependence in this general context. We shall now proceed to a discussion 
of these questions. 

3. BOOLEAN ALGEBRAS 

Let j£? be a nonempty set. ££ is said to be 'partially ordered if there is a 
relation < between some pairs of elements of j£? such tha t (i) a < a for all 
a in S£\ (ii) a < b and b < a imply a = b; (hi) a < b and b < c imply a<c. If ££ 
is partially ordered, there is at most one element called the null or zero 
element and denoted by 0, such tha t 0 < a for all a in <£. Similarly there 
is at most one element called the unit element and denoted by 1, such tha t 
a < 1 for all a in ££\ More generally, for any nonempty subset F of j£? there 
exists at most one element c of ££ such tha t (i) a<c for all a e F; (ii) if d 
is any element of ££ such tha t a<d for all ae F, then c<d. We shall 
write \J aeFa for c whenever it exists. If F is a finite set, say F={alf • • •, an}, 
it is customary to write \/?= I a i o r ai v a 2 V • • • V an instead of \/aeF a. 
In an analogous fashion, for any subset F of ££ there exists at most one 
element c such tha t (i) c < a for all a e F; (ii) if d is any element of J£? such 
tha t d<a for all a e F, then d<c; we denote it by /\aeF a whenever it 
exists. If F is a finite set, say F = {alf • • •, an}, we often write /\"=:i at or 
a1Aa2A'-'Aan instead of /\aGF a- The partially ordered set ££ is called 
a lattice if 

(i) 0 and 1 exist in j£? and 0 ^ 1 , 
(ii) \] a and f\ a exist for all finite subsets F of «£?. 

aeF aeF 

Suppose tha t j£? is a lattice. Given any element a of j£?, an element a' of 
j£? is said to be a complement of a if a A a' = 0 and a v a' = 1. a is then a 
complement of a'. j£? is said to be complemented if, given any element, 
there exists at least one complement of it. I t is obvious tha t 0 and 1 have 
the unique complements 1 and 0, respectively. A lattice ££ is said to be 
distributive if for any three elements a, 6, c of j£?, the identities 

a A (b v c) = (a A b) v (a A c), 

a V (b A c) = (a V b) A (a V c) 

are satisfied. A complemented distributive lattice is called a Boolean 
algebra. A Boolean a-algebra J? is & Boolean algebra in which /\aeF a and 
N/aeF a exist for every countable subset F of j£\ 

Every element in a Boolean algebra has a unique complement. Suppose 
in fact tha t j£? is a Boolean algebra and tha t a is an element with two 
complements a± and a2. Then, one has 

a1 = ax A (a v a2) = ( a i A a) v (#i A a2) = «i A a2 < a2; 
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similarly, a2<a±, so tha t a1 = a2. The unique complement of a is denoted 
by a'. Using the standard manipulations of set theory it is easy to show 

tha t (AaeFaY= VaeFa' and (\ZaeF^Y = A 

aep o/ for any finite subset F 
of J*f. If j£? is a Boolean cx-algebra, then the same identities remain valid 
even when F is countably infinite. If ££ is any Boolean algebra and a, b 
are elements in it with a<b, c = a' Ab is the unique element of S£ such tha t 
a A c = 0 and a Vc — b\ c is called the complement of a in b. Since c = b A a', 
c<a' (cf. Birkhoff [1] and Sikorski [1] for the general theory of Boolean 
algebras and a-algebras). 

A homomorphism of a Boolean algebra ££ 1 into a Boolean algebra S£2 is 
a map h of S£x into j£?2 such tha t (i) &(0) = 0, A(l) = l ; (ii) h{a') — h(a)' for 
all a in jSfx; (hi) h(avb) = h(a)v h(b), h(a Ab) = h(a) Ah(b) for all a, b i n ^ . 
If h is a homomorphism and a < b, then ft(a) < h(b). An isomorphism of ^ 
onto j£?2 is a homomorphism h of J ^ onto jSf2 such tha t A(a) = 0 if and only 
if a = 0; in this case h is also one-one. 

The class of all subsets of any set is a Boolean algebra under set 
inclusion and set complementation. However, obviously this is not the 
most general Boolean algebra since infinite unions and intersections exist 
in it. Suppose now tha t X is a topological space. The class of subsets of X 
which are both open and closed (open-closed) is obviously a Boolean 
algebra. A well known theorem of Stone [1] asserts tha t every Boolean 
algebra is isomorphic to one such and that , if we require the topological 
space to be compact Hausdorff as well as totally disconnected, it is 
essentially uniquely determined by the Boolean algebra. We recall tha t a 
compact space is said to be totally disconnected if every open subset of it 
can be written as a union of open-closed subsets. We shall call a compact 
Hausdorff totally disconnected space a Stone space. 

Let j£? be a Boolean algebra. A subset Ji of ££ is called a dual ideal if 
the following properties are satisfied: 

(i) 0 ^ ^ , 
(ii) if a e Jt and a < b, then b e J£, 

(iii) if a, b e Jt, then a A b e Jt. 
Jt is said to be maximal if it is properly contained in no other dual ideal. 

The naturalness of the notion of maximal dual ideals can be seen in the 
following way. Let X be a Stone space and 3? = ££(X) the Boolean algebra 
of all open-closed subsets of X. Then, for any x e X, the collection Jf(x), 
where 

Jt(x) = {A : A e £>, x e A}, 

is easily seen to be a maximal dual ideal; it is also easy to check tha t the 
correspondence x -> Jt{x) is one-one if we notice tha t X is Hausdorff. 
The concept of maximal dual ideals is central in the proof of Stone's 
theorem. 
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Suppose that j£? is an arbitrary Boolean algebra. Using Zorn's lemma 
one can show easily that maximal dual ideals of -£? exist. Let X — X(S£) 
be the set of all maximal dual ideals of ££\ For any a G ^ w e define Xa by 

Xa = {Jt : Jt e X, a e Jt), 

X0= 0, the null set, and X± = X. We shall say that a subset A^X is 
open if A is the union of sets of the form Xa. This definition defines the 
structure of a topology on X called the Stone topology. We now have: 

Theorem 1.1 (Stone [1]). Let ££ be a Boolean algebra and let X = X(JP) 
be the space of all maximal dual ideals of ££\ Then, equipped with the Stone 
topology, X becomes a Stone space. The map a -> Xa is then an isomorphism 
of ££ with the Boolean algebra of all open-closed subsets of X. X is determined 
by ££, among the class of Stone spaces, up to a homeomorphism. More 
generally, let X and Y be Stone spaces and let J?(X) and <¥{Y) be their 
respective Boolean algebras of open-closed subsets. If u is any isomorphism 
of &{Y) onto S£(X), there exists a homeomorphism h of X onto Y such that 

(12) u(A) = h-\A) {A e &(Y))\ 

moreover, h is uniquely determined by (12). 

This theorem is very well known and we do not give its proof. The 
reader may consult the books of Birkhoff [1], Sikorski [1], and the paper 
of Stone [1] for the proof. 

Corollary 1.2. Let X be a Stone space and let <£ = J£(X) be the Boolean 
algebra of open-closed subsets of X. If t -> Dt(— oo<t < oo) is any one-
parameter group of automorphisms of j£f, there exists a unique one-parameter 
group t -> ht of homeomorphisms of X onto itself such that for all t and 
AeJ?,Dt(A) = ht-HA). 

Proof. Theorem 1.1 ensures the existence and uniqueness of each ht. If 
tl9 t2 are real, then htl+t2 and htl o hi2 induce the same automorphism 
Dtl +t2 of Se, so that htl +t2 =hh o hh. 

The theorem of Stone shows that there is essentially no distinction 
between an abstract Boolean algebra and a Boolean algebra of sets. If 
one deals with Boolean cr-algebras, the situation becomes somewhat less 
straightforward. We shall now describe the modifications necessary when 
one replaces Boolean algebras by Boolean cr-algebras. 

If o^! and o£?2
 a r e Boolean cr-algebras, and h a map of J ^ into j£?2> ^ is 

called a a-homomorphism if (i) A(0) = 0, h(l) = l; (ii) h(a') = h(a)' for all 
a e ££x; and (hi) if F is any subset of ££x which is finite or countably 
infinite, h(\JaeF a) = \JaeF h(a) and h{/\aeF a) = /\aeF h(a). Suppose S£x 
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and j£?2 are two Boolean cr-algebras and h a cr-homomorphism of ££x onto 

££2. The set tA
r = {a : a e ££x, h(a) = 0} is a subset of Sff

1 with the properties: 

(i) 0 e ./T, 1 ^ JV\ (ii) if a e JV and b < a, then b e Jf\ (iii) if F is a countable 

subset of JV, \/a€F a e JV*. ^ is called the kernel of &. Suppose conversely 

££ is a Boolean cr-algebra and i/T a subset of ££ with properties (i) to (iii) 

listed above. We shall say tha t elements a and b of 3? are equivalent, 

a~b, if a A b' and 6 A a' are in c/T. I t is easily verified tha t ~ is an equiv­

alence relation. Let J^ be the set of all equivalence classes, and for any a 

in «£?, let a denote the unique equivalence class containing a. We define 

a<b whenever there are elements a in a, and 6 in 5 such tha t a<b. I t is 

then easily shown tha t ££ is a Boolean cr-algebra whose zero and unit 

elements are, respectively, 0 and 1, and tha t the map a->a is a a-

homomorphism of 3? onto ££ with kernel JV*. We write JS? = ££\Jf. 

Theorem 1.3 (Loomis [1]). Let 3? be a Boolean a-algebra. Then there 
exists a set X, a a-algebra Sf of subsets of X, and a a-homomorphism h of 
Sf onto &. 

Proof. Let X be a Stone space such tha t the lattice <JS?' = J?(X) of open-
closed subsets of X is isomorphic to the Boolean algebra j£?. Let Sf 
denote the smallest cr-algebra of subsets of X containing ££'. We denote 
by U and n the operations of set union and set intersection for subsets of 
X, and by V and A the lattice-theoretic operations in J£ and S£'. 

If Al9 A2, - • - is any sequence of sets in j£?', then \/n An = A exists in 
££' since ££' is isomorphic to ££ and 3? is a cr-algebra. Since A is the smallest 
element of ££' containing all the An, it follows tha t the set A — {Jn An 

cannot contain any element of ££' as a subset. The sets in 3" form a 
base for the topology of X and hence we conclude tha t A — [Jn An cannot 
contain any nonnull open set. Since ( J n An is open, this shows tha t 
A — U n ^ 4 n i s a closed nondense set. 

Consider now the class y x of all sets A e Sf with the property tha t for 
some B in J*?', (A — B) U (B — A) is of the first category. If Bx and B2 

are elements of j£?' such tha t (A — Bt) U (Bi — A) is of the first category 
(i = l , 2), then it will follow tha t (Bx-B2) U (B2-B±) is of the first 
category, which is not possible (by the category theorem of Baire) unless 
BX = B2. Thus, for any A in S^1 there exists a unique B = hx(A) in <£' 
such tha t (A-B)U(B-A) is of the first category. Clearly <£''c^, 
and for 4 e-Sf", ^ ( ^ ) = ^ 1 . 

We claim tha t ^ is a cr-algebra. Since 

(A-B) u ( J 3 - 4 ) = ( ^ ' - 5 ' ) u ( £ ' - . 4 ' ) 

(primes denoting complementation in X), we see tha t for any A in ,9^, 
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A' is in Sf-L and h^A^ — h^A)'. Suppose Al9 A2i • • • is any sequence in 
yx. Write J8n = * 1(4 n)> A = \Jn An, B=\/n Bni B0 = {Jn Bn. By what we 
said above, B — B0 is a closed nondense set. Moreover, as B0^B, we have 

(A-B) U (B-A) £ { ( i l - B o ) U ( £ 0 - 4 ) } U ( B - B 0 ) 

£ U Un-Bn) U ( B » - i i n ) } U ( B - B 0 ) -
n 

As all members of the right side are of the first category, this proves tha t 

A e £fx and h1(A) = \/nh1(An). In a similar fashion we can show tha t 

p |n An lies in Sfx and ^ ( f l n An) = /\n h^An)-
The conclusions of the preceding paragraph show tha t £Pl9 is a Boolean 

cr-algebra <^<Sf. Since ^ contains JSP', S?1 = Sf. Moreover, we see at the 
same time tha t hx is a cr-homomorphism of Sf onto JS?'. If we write h = koh± 

where k is an isomorphism of JSf" onto <£?, then & is a or-homomorphism 
of y onto if . 

Remark. Let £f be the cr-algebra of Borel sets on the unit interval [0,1], 
JV the class of Borel sets of Lebesgue measure 0, and S£ — SPjJf. Then 3? 
is a Boolean cr-algebra. We can obviously define Lebesgue measure A as a 
countably additive function A on jSf; A is strictly positive in the sense tha t 
for any a^O of j£f, A(a) is positive. From this it follows tha t any family 
of mutually disjoint elements of ££ is countable. On the other hand, since 
£f is countably generated, so is ££. However, any cr-algebra of subsets of 
some space X which is countably generated can be proved to have atoms, 
tha t is, minimal elements. Since j£? does not have atoms, j£? cannot be 
isomorphic to any cr-algebra of sets. 

4. FUNCTIONS 

We now take up the second question raised in section 2, namely, the 
problem of describing the calculus of functions on a set X entirely in 
terms of the Boolean a-algebra of subsets of X with respect to which all 
these functions are measurable. The results are summarized in theorems 
1.4 and 1.6 of this section. 

Let X be any set of points x and Sf a Boolean cr-algebra of subsets of X. 
A funct ion/from X into a complete separable metric space Y is said to be 
^ -measurable iff~1{E) e ¥ for all Borel sets E^ Y. I f / i s ^-measurable , 
the mapping E ->f~x(E) is a cr-homomorphism of the cr-algebra 3S(Y) of 
Borel subsets of Y into £P. Suppose now £f is an abstract Boolean cr-
algebra. We shall then define a Y-valued observable associated with S£ to be 
any cr-homomorphism of 38 (Y) into ££. If Y = B1, the real line, we call 
these observables real valued and refer to them simply as observables. 
From our definition of cr-homomorphisms we see tha t a map u(E -> u(E)) 
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of «̂ ( Y) into ££ is a Y-valued observable associated with 3? if and only if 
(i) u(0) = O, u(Y) = l; (ii) u(Y-E) = u(E)f for all E in ^ ( 7 ) ; (iii) if 
Elt E2, • • • is any sequence of Borel sets in Y, u([Jn En) = \/n u(En) and 
u(C)nEn) = /\nu(En). 

Theorem 1.4 Let X be a set, £f a Boolean a-algebra of subsets of X and 
h a a-homomorphism of 6? onto a Boolean a-algebra ££\ Suppose further 
that u(E -> u(E)) is any (real valued) observable associated with <£?. Then 
there exists an 6f-measurable real valued function f defined on X such that 

(13) u(E) = h{f-\E)) 

for all Borel sets E^R1. f is essentially unique in the sense that if g is any 
^-measurable real valued function defined on X such that u(E) = h(g~1(E)) 
for all Borel sets E^R1, the set {x : x e X, f{x)^g(x)} belongs to the kernel 
ofh. 

Proof. We begin with a simple observation. Suppose A and B are two 
subsets of X in £f such that A^B, and c any element of j£f such that 
h(A)<c<h(B). Then we can select a set C in £f such that A ^C^B and 
h(C) = c. In fact, since h maps Zf onto »£?, there exists Cx in ^ such that 
hiCJ^c. If we define C = (C1 n B) U A, then A ^C^B while 

h(C) = (hiCJ A h(B)) v h(A) = (c A b) v a = c. 

We now come to the proof of theorem 1.4. Let rl9 r2, • • • be any distinct 
enumeration of the rational numbers in R1 and let Dt be the interval 
{t : t e R1, t<ri}. Evidently, u(Dt)<u(Dj) whenever r{<rj. We shall now 
construct sets Alt A2, • • • in Sf such that (a) h(A^) — u(D^) for all i = 1, 2, 3, 
•••; (b) A^Aj whenever r^r^ Let A± be any set in Sf such that 
h(A1) = u(D1). Suppose Al9 A2, A3i • • •, An in £f have been constructed 
such that (i) h(Ai) = u(Di) for i = l, 2, • • •, n; (ii) A^Aj whenever rt<rjt 

1 <i, j<n. We shall construct An + 1 as follows. Let (il9 i2, • • •, in) be the 
permutation of (1, 2, • • •, n) such that ri± <ri2 < • • • <rin. Then, there 
exists a unique k such that ^ik<^n + i<rik+1 (w e define rio = — oo and 
rin+i — +oo), and by the observation made in the preceding paragraph, 
we can select An + 1 in £f such that Ailc^An + 1^Aik+i (we define Aio = 0 , 
^ =Jf). The collection {Alf A2, • • •, An + 1} then has the same pro­
perties relative to rl9 r2, • • •, rn + 1 as {Alt • • •, An} had relative to 
ri> ri-> ' ' •> ?V It thus follows by induction that there exists a sequence 
^4^ A2- • - of sets in ^ with the properties (a) and (b). As 

A(fV,) = A «W) = «(A *>/) = 0, 

we may, by replacing Ak by Ak — f\jAi if necessary, assume that 
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p | ; Aj = 0. Further h{[Jj A5) = N/y u(D,) = u(V, Dt) = 1 so that h(N) = 0, 
where N = X — (Jj Aj. We now define a function/ as follows: 

TO if zeiV, 
(14) /(a?) = | i n f ^ :xeAj} if ^ e g ^ 

Clearly, / is finite everywhere. Moreover, for any k, 

f-i(Dk)n(X-N)= (J Ap 

so that / is ^-measurable. Further, 

Hf-W*)) = M U A,\ 
\y.rj<rk ) 

= V «W 
i:ry<rfc 

so that h(f~1(E)) = u(E) whenever E = Dk for some &. Since the class of 
all E for which this equation is valid is a Boolean a-algebra, we conclude 
that h(f~1(E)) = u(E) for all Borel sets E. 

It remains to examine the uniqueness. Let g be any real valued im­
measurable function on X such that h(g~1(E)) = u(E) for all Borel sets E. 
Then, if we write Dk for R1 - Dkt 

M = {x:xeX,f(x) * g{x)} 

= U {(/"MAc) n <r W ) ) U (/"W) n <r\Dk))}> 
k 

so that 
A(J0 = V {«(£*) Au(Dk')} 

k 
= 0. 

This shows that M belongs to the kernel of h. This completes the proof 
of the theorem. 

Lemma 1.5. Let X be a set, Sf a o-algebra of subsets of X and f an Im­
measurable making of X into Rn. Suppose £f~ ={f~1(F) : F e &(Rn)}. 
Then to any £f ~-measurable real function c on X there corresponds a real 
valued Borel function c~ on Rn such that c(x) = c~(f(x)) for all x e X. 

Proof. Since c is £f~ -measurable, there exists a sequence cn (?i = 1, 2, • • •) 
of ^"-measurable functions such that (i) each cn takes only finitely many 
values; (ii) cn(x) -> c(x) for all x e X. For any n, let Anl, An2, • • •, Ank be 
disjoint subsets of X whose union is X such that cn is a constant, say ani, 
on Ani, the ani being distinct for i = 1, 2, • • •, kn. Since cn is ^ ~ -measurable, 
Anie Sf~\ so there exists a Borel set Bni of Rn such that ^4ni=/_1(jBni) 
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(* = 1, 2, • • •, kn). Replacing Bni by Bni — \Jj<iBnj if necessary, we may 
assume that the Bni are disjoint. Let us define the function cn~ on Rn as 
follows: 

Cani if teBni, 
c»~W = J0 if t$[JBni. 

Clearly cn~ is Borel and cn(x) = cn~(f(x)) for all x in X. Let us define c~ 
on Rn as follows: 

{ lim cn~(t) if the limit exists, 
n->oo 

0 otherwise. 

Clearly c~ is Borel. Since cn(x) = cn~(f(x)) and lim cn(x) exists and is equal 
to c(x) for all a: in X, c~(f(x)) = c(x) for all x in JT. 

Let = ^ b e a Boolean a-algebra. ££x<^££ is said to be a sub-a-algebra if 
(i) 0, 1 e jSfij (ii) if a e S?^ then a' e ££^\ (iii) if a1? a2, • • • are in ££x, then 
\/n an a n d An an a r e m «^i- A sub-d-algebra J^x is said to be separable if 
there exists a countable subset D of j£? such that j£?x is the smallest sub-a-
algebra of <£ containing D. 

Theorem 1.6. (i) Let ££ be a Boolean a-algebra and u(E -> u(E)) an 
observable associated with ££\ Then the range J?u = {u(E) : E e ^(R1)} of u 
is a separable Boolean sub-a-algebra of ££. Conversely, if ££x is a separable 
Boolean sub-a-algebra of ££, there exists an observable u associated with ££ 
such that S£x is the range of u. 

(ii) Let ut (i = l, 2, • • •, n) be observables associated with <Sf, and S^{ 

(i = ly 2, • • •, n) their respective ranges. Suppose j£?0 is the smallest sub-a-
algebra of ££ containing all the J^. Then there exists a unique o-homomorphism 
u of &(Rn) (the a-algebra of Borel subsets of the n-dimensional space Rn) 
onto J£Q such that for any Borel set E of R1, ui(E) = u(pi~

1(E)), where p{ is 
the projection (t1,t2,- • •, tn) -» tt of Rn onto R1. If y is any real valued Borel 
function on Rn, the map E->u(<p~1(E))(E e ^(R1)) is an observable 
associated with & whose range is contained in J?0. Conversely, if v(E -> v(E)) 
is any observable associated with j£? such that the range of v is contained in 
j£?0, there exists a real valued Borel function 9 on Rn such that v(E) — u(y ~ 1(E)) 
for all E. 

Proof. If u is an observable with range ££u, S£u is obviously the smallest 
sub -a- algebra of ££ containing all the u(E), where E is any open interval 
of R1 with rational end points. This shows that ££u is separable. 

Suppose conversely that ££x<=,££ is a separable sub-a-algebra of ££. 
By theorem 1.3 there exists a set X, a a-algebra £f of subsets of X, and a 
(T-homomorphism h of Sf onto J^. Let {^4n:% = l , 2 , - - - } b e a countable 
family of sets of Sf such that ££^ *s the smallest sub a-algebra of ££ 
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containing all the h(An). We denote by £P0 the smallest a-algebra of subsets 
of X containing all the An. The function 

c : a - > (XA^*), XA2{*)> •" •, XAS*)> "') 

(where XA denotes the function which is 1 on A, and 0 on X — A) is im­
measurable from X into the compact metric space Y which is the product 
of countably many copies of the 2-point space consisting of 0 and 1. 
Moreover, it is obvious that each An is of the form c~1(F) for some Borel 
set J ^ c 7 , and hence £f0 = {c-1(F) : F Borel in 7}. Now, by a classical 
theorem (Kuratowski [1]), there exists a Borel isomorphism d of Y onto 
R1, so that the function cx : x -> d(c(x)) is an ^-measurable real valued 
function and 6^0 = {c1~

1(E) : E Borel in R1}. If we now define, for any 
Borel set E of R1, u(E) by the equation 

u(E) = McrHE)), 
then u is an observable associated with ££ whose range is ££x. This proves (i). 

We now come to the proof of (ii). Suppose ult u2, • • •, un are observables 
associated with j£?, having ranges Sfl9 • • •, j£?n, respectively. Each j£?t is 
separable and hence j£?0, the smallest sub-a-algebra of ££ containing all 
the ££{, is also separable. Let X, £f\ and h have the same significance 
as in the proof of (i). By theorem 1.4, there exists a real valued im­
measurable function ft on X such that ui(E) = h(fi~

1(E)) for all Borel 
subsets E of R1. Let / be the map x-> (fx(x), • • -,/n(#)) of X into Rn. 
Then / is ^-measurable. The map u : F ->h(J~1(F)) is then a a-
homomorphism of &(Rn) into <£ such that ui(E) = u{pi-

1(E)) for all 
E etffliR1). Since &(Rn) is the smallest cr-algebra of subsets of Rn con­
taining all the sets pi~

1(E)) it is clear that the range of u is j£?0. The 
uniqueness of u is obvious. 

For any real Borel function <p on Rn, E -^u{q>~1(E)) is an observable 
associated with j£? whose range is obviously contained in j£?0. Suppose 
now that v is an observable associated with 3? whose range «5?vcjg?0. 
If we use the notations of the previous paragraph, and define £f~ by 

&>- = { / - i ( J p ) :Fe@{Rn)}, 
then h maps £f~ onto J5?0. Applying theorem 1.4 to £f~ and v9 we infer 
the existence of a real valued y ~ -measurable Borel function c o n l 
such that h(c~1(E)) = v(E) for all Borel sets E of R1. By lemma 1.5, since 
c is S?~ -measurable, there exists a real valued Borel function <p on Rn 

such that c(x) — q>(?{x)) for all x e X. If now 2£ is any Borel set on the line, 
we have: 

u(<p-l(E)) = Hf-Hy-HE))) 
= Mc"1^)) 
= v(E). 

This proves (ii) and completes the proof of the theorem. 


