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Preface

The ultimate goal of gene mapping is to identify the genes that play impor-
tant roles in the inheritance of particular traits (phenotypes) and to explain
the role of those genes in relation to one another and in relation to the envi-
ronment. In practice this ambition is often reduced to identifying the genomic
neighborhoods where one or a small number of the important genetic contrib-
utors to the phenotype are located.

Gene mapping takes place in many different organisms for many different
reasons. In humans one is particularly interested in inherited or partly inher-
ited diseases, and hopes that an identification of the responsible genes can
lead in the relatively short run to better diagnostics and in the long run to
strategies to alleviate the disease. In these cases the phenotype can be quali-
tative, whether an individual is affected with a particular disease, or it can be
quantitative, say the level of a biomarker like cholesterol level, blood pressure,
or body mass index, which is known or thought to be related to the disease.
In plants or animals gene mapping can be of interest in its own right, or to
produce more vigorous hybrid plants of agricultural value or farm animals
that are more productive or more disease resistant. It can also involve model
organisms, e.g., the plant arabidopsis, inbred strains of mice, or baker’s yeast
(S. cerevisiae), where one hopes to gain basic knowledge yielding insights that
are broadly applicable.

The traits, or phenotypes, can be essentially any reproducible quality of
an organism, and the goal of the mapping need not even be an actual gene.
An example of considerable recent interest is a phenotype measuring the level
of expression of some gene or genes under given experimental conditions, with
the goal of discovering whether the expression of the gene is controlled by
the immediate “upstream” region of the gene (cis control) or by some other
genomic region, perhaps a master control region for a number of genes that
must work in coordination (trans control).

There is variability in the expression of essentially any phenotype. There is
also variability in the inheritance of genotypes, first because of Mendel’s laws,
but equally important for gene mapping because of recombination. The level of
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variability is such that gene mapping necessarily has a statistical component,
which is the subject of this book. At its simplest, gene mapping involves the
correlation of the phenotype with the genotype of genetic markers, which are
themselves hoped to be located close to, hence correlated with, the genes (or
genomic regions) of interest.

Although gene mapping was practiced for a good part of the twentieth
century, the subject has changed and grown substantially since the late 1980s.
In the mid twentieth century the number of suitable markers was small, on
the order of a few per genome (and the genomic location of these markers was
often imprecise). As a consequence the principal impediment to gene mapping
was the usually large genomic distance between gene and marker, which leads
to small correlations between phenotype and marker genotype. The statistical
model developed in human genetics to deal with this situation assumed that
the mode of inheritance of a trait could be adequately modeled. The model
almost invariably involved a single gene with the mode of inheritance, usually
dominant or recessive, assumed to be known, and the penetrance, i.e., the
conditional probability of expressing the trait given the genotype, also known.
The unknown parameter of interest was the genetic distance from gene to
marker, as measured by the recombination fraction, which then allowed one
to test whether the trait was unlinked (recombination fraction = 1/2) or linked
(recombination fraction < 1/2) and to estimate the recombination fraction.

Since the explosion in the experimental techniques of molecular genetics
in the late twentieth century, it has become possible to cover the genome
with informative markers. As a consequence genes associated with many sim-
ple traits, which generate a large correlation between phenotype and markers
that are close to the gene, have been mapped successfully. For complex traits,
which may involve multiple genes, it is reasonable to assume that there is
some marker close to the gene or genes influencing the trait, but the contri-
bution of any particular gene may be small. This leads to small correlations
between marker and phenotype, even if the marker is close to the gene; and
this small correlation has now become the primary impediment to successful
gene mapping.

The principal goal of this book is to explain the statistical principles of
and problems arising in gene mapping. Particular emphasis is placed on the
ideas that have arisen with the recent experimental developments leading to
the availability of large numbers of molecular markers having known genomic
locations and the desire to map progressively more complex traits. Indeed,
the so-called “parametric” or “LOD” score method of human genetics, which
was the established paradigm in human genetics from the time of the classical
paper of N. Morton in 1955 [56] until quite recently and is still frequently
used, is mentioned only briefly. (See Ott [57] for a thorough discussion.)

We have attempted to keep the formal statistical and computational re-
quirements for reading the book as few as seems reasonable, with the hope
that the book can be understood by a diverse audience. It is not, however,
a handbook of methods, but a discussion of concepts, where we assume the
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reader wants to play an active role, particularly in performing computational
experiments and in thinking about the meaning of the results. Mathematical
details are omitted when we did not think they gave added insight into the
scientific issues. Since they can range from routine to difficult, we do not rec-
ommend that the reader expend effort to fill in the omitted details, unless he
or she finds that intellectual activity rewarding for its own sake.

The book is organized globally as follows. The first three chapters deal with
basic statistical, computational, and genetic concepts that are used later in
the book. The next five are concerned with mapping quantitative traits using
data from crosses of inbred strains. Chapters 9–13 involve primarily human
genetics. Of those, Chaps. 9 and 11 discuss gene mapping based on data from
pedigrees. This is conceptually similar to the first half of the book although
necessarily substantially more complicated. Chapters 12 and 13 discuss asso-
ciation analysis, where relations between individuals in pedigrees are replaced
by relations in populations. The discussion here is substantially less complete,
and is to some extent limited to pointing out certain difficulties arising from
complicated and uncertain population history. Chapter 10 involves admixture
mapping, which has some features in common with the earlier chapters on
gene mapping based on meiotic recombination and others related to popula-
tion based association analysis.

A more detailed road map is as follows.
Chapter 1 reviews basic statistical concepts that are used throughout the

book and explores these concepts computationally. It can be skipped or read
quickly by someone familiar with basic statistics and computation in the lan-
guage R.

In Chap. 2, we introduce our basic model relating the phenotype as depen-
dent variable to genotype(s) as independent variable(s). It is a simple linear
regression model having its origins in the classical paper of Fisher [30]. A
principal attraction of the model is that straightforward variations can be
developed to deal with quantitative or qualitative traits, which can be dom-
inant or recessive, and which can involve multiple genes that interact with
one another and/or with the environment. These variations are discussed at
different places in the book.

Chapter 3 deals with some fundamental concepts of population genetics,
and provides an opportunity to introduce some new programming techniques.
It contains some difficult material, and except for recombination, which plays
a central role throughout the book, most of the chapter is referenced only
occasionally. The reader may wish to read Chap. 3 selectively, to get a rough
idea of its contents and be prepared to refer to it occasionally.

For the experimental genetics of crosses of inbred lines, one can use the
regression model and standard statistical methods to develop direct robust
tests for linkage between phenotype and marker genotype. In Chap. 4 we
discuss the simplest case of testing a single marker, first when that marker
is itself a gene affecting the trait, and then when the marker is linked to a
gene affecting the trait; and we see quantitatively the (deleterious) effect of
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recombination between gene and marker on the power to determine if the
marker is linked.

Since we will usually have no good idea where a gene affecting the trait
is likely to be found, in Chap. 5 we introduce the notion of a genome scan,
where we test a large number of markers distributed throughout the genome
for linkage. This leads naturally to a problem of multiple comparisons that
is solved both by computational methods and by theoretical results involving
the maximum of a stochastic process. A systematic discussion of the power
of a genome scan and of the related idea of confidence intervals for locating a
linked gene as precisely as possible is given in Chap. 6.

Chapter 7 introduces in the simple context of experimental genetics the
problem of missing information and one simple statistical idea to recapture
that information. It turns out that in the context of that chapter, the solu-
tion is often more complicated than the problem warrants, but the problem
appears again in a more complex form in Chaps. 9, 10, and 13, where miss-
ing information poses unavoidable difficulties that require progressively more
complex algorithms to address.

Chapter 8 is concerned with more advanced problems in experimental
genetics. Our goal here is to introduce the reader to these problems and point
out which ones can in principle be dealt with by simple adaptations of methods
developed up to that point and which ones pose more serious challenges.

Starting in Chap. 9, we discuss gene mapping in human genetics, where it
is intrinsically more complicated, especially when there may be more than one
gene and uncontrolled environmental conditions. Our discussion here is less
complete than in the first eight chapters. It is essentially limited to pointing
out how the theoretical framework of earlier chapters can be adapted to the
more complex problems of human genetics and how the problem of missing
information, which here moves to center stage, can be addressed. Chapters 9
and 11 are concerned with gene mapping based on inheritance within fam-
ilies. The concepts developed in Chaps. 4–8 are used, somewhat indirectly.
Our presentation is designed to bring out the similarities while highlighting
important differences. One important conclusion is that because of one’s in-
ability to perform breeding experiments in humans, family based methods for
gene mapping are intrinsically less powerful than mapping in experimental
genetics based on crosses of inbred lines.

Chapters 12 and 13 contain a brief introduction to gene mapping in pop-
ulations, which is often called association analysis. It has the potential ad-
vantage over family based methods of substantially more power, providing
one can successfully overcome some potential difficulties arising from the un-
known population history. Our discussion is limited to describing a few simple
models, the reasons they are attractive, and the potential pitfalls.

Chapter 10 is something of a bridge between the earlier chapters and the
last two. While the methods discussed there are very similar to the methods
of earlier chapters, and the issue of missing information is closely related to
the same issue in Chap. 9, there are also complications of population history.
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As indicated above, the classical parametric method of linkage analysis in
human pedigrees is discussed only briefly. Also, in choosing to emphasize re-
gression based methods, we have limited our discussion of likelihood methods,
which can be very powerful when basic modeling assumptions are satisfied, to
cases where they seemed to offer distinct advantages. The modeling assump-
tions, often in the form that phenotypes are normally distributed, can fail
to hold, even approximately. When that happens, likelihood methods can be
less robust than regression methods, although no statistical method should be
regarded as so automatic that computer output is thought to speak for itself.

Finally, we would like to emphasize that the primary purpose of this book
is didactic. The concepts and many related details have been published else-
where by a large number of authors. We have provided some references to the
scientific literature, largely for the purpose of introducing the reader to the
substantial primary literature; but we have not tried to provide a complete
scholarly bibliography.

For feedback in classes where preliminary versions of this book were used,
we would like to thank students at The Hebrew University of Jerusalem,
the Weizmann Institute, Stanford University, and the National University of
Singapore. We also thank those universities, along with the Free University
of Amsterdam, the Israel–U.S. Binational Science Foundation, the NIH, and
the U.S. National Science Foundation for their support.

Stanford and Jerusalem, David O. Siegmund
October 2006 Benjamin Yakir
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Background and Preparations
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Background in Statistics

Statistics is the science that formalizes the process of making inferences from
observations. Basic to this process of formalization is the concept of a statis-
tical model. In general, a statistical model is an attempt to provide a mathe-
matical simplification of the mechanism that produced the observations. Sta-
tistical models are useful since they allow investigation and optimization of
the process of analyzing the observations in a context that is wider than the
context of the outcome of the specific trial that is being analyzed. For exam-
ple, it opens the door to considerations such as: “Had we had the opportunity
to try a specific inferential procedure on other datasets, all generated by the
same statistical mechanism as the one we observe, how would our procedure
perform on the average? What would be the probability of drawing an incor-
rect conclusion?” Such questions are impossible to address unless we adopt a
wider point of view.

Exploration of the properties of statistical procedures may be conducted
using mathematical and/or computational tools. In this book we will use
mathematical approximations and computerized Monte-Carlo simulations to
explore problems of statistical genetics. Monte-Carlo simulation can help one
explore scenarios where variability plays a role. The basic idea behind such
simulations is to generate a sequence of random datasets and use them to
mimic the actual distribution of repeated sampling of the data in the inves-
tigation of the statistical procedure. The simulation in this book will be con-
ducted in the R programming environment. We start the chapter with a small
introduction to R and then proceed with a discussion of statistical models and
statistical inference in a general framework.

Once a statistical model is set, quantities that connect the observations
and the model can be computed. A central one is the likelihood function. The
likelihood function is the probability density function of the observations given
the statistical model. It is the key for the derivation of efficient inferential tools.
In most cases, the statistical model is not confined to a unique distribution
function but can be any member of a given family of such distributions. In
such a case it is useful to think of the likelihood function as a function of
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the parameters that determine the distribution within the family. Varying
the values of the parameters will change the value of the likelihood function
according to the probability of the observations under the new distribution.

Throughout this book we will introduce statistical models that may fit
different scenarios in statistical genetics. We start this chapter by introduc-
ing three basic models, which apply not only in genetics: the normal model,
binomial model, and Poisson model. In order to illustrate the basic concepts
in statistical inference we will consider statistical testing of hypotheses as our
primary example. In this context another distribution, the chi-square distri-
bution, will also be introduced. The properties of a statistical test, e.g., its
significance level and power, will be discussed. A brief introduction to regres-
sion and the concept of a stochastic process, both given a central role in the
book, is provided. Later in the chapter we will examine general approaches
for constructing statistical tests.

1.1 Introduction to R

R is a freely distributed software for data analysis. In order to introduce R we
quote the first paragraphs from the manual Introduction to R, written by W.
N. Venables, D. M. Smith, and the R Development Core Team. (The full text,
as well as access to the installation of the software itself, are available online
at http://cran.r-project.org/):

“R is an integrated suite of software facilities for data manipulation,
calculation and graphical display. Among other things it has
• an effective data handling and storage facility,
• a suite of operators for calculations on arrays, in particular matri-

ces,
• a large, coherent, integrated collection of intermediate tools for

data analysis,
• graphical facilities for data analysis and display either directly at

the computer or on hardcopy, and
• a well developed, simple and effective programming language

(called S) which includes conditionals, loops, user defined recursive
functions and input and output facilities. (Indeed most of the sys-
tem supplied functions are themselves written in the S language.)

The term environment is intended to characterize it as a fully planned
and coherent system, rather than an incremental accretion of very
specific and inflexible tools, as is frequently the case with other data
analysis software.
R is very much a vehicle for newly developing methods of interactive
data analysis. It has developed rapidly, and has been extended by a
large collection of packages. However, most programs written in R are
essentially ephemeral, written for a single piece of data analysis.”
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The R system may be obtained as a source code or installed using a pre-
compiled code on the Linux, Macintosh, or Windows operating system. Pro-
gramming in R for this book was carried out under Windows. (A more-detailed
explanation regarding the installation of R under Windows may be found at
the URL http://www.biostat.jhsph.edu/˜kbroman/Rintro/Rwin.html.)

After the installation of R under Windows an icon will be added to the desk-
top. It is convenient to have a separate working directory for each project. For
that, one may copy the R icon into the new directory and set the working direc-
tory to be the new directory. (Right-click on the icon and choose Properties.
Copy the path of the directory to the "start in:" box of the Shortcut slip.
Consequently, the given directory will become the default location where R
expects to find input and to where it saves its output.) Double clicking on the
icon will set the R system going.

The R language is an interactive expression-oriented programming lan-
gauge. The elementary commands may consist of expressions, which are im-
mediately evaluated, printed to the standard output, and lost. Alternatively,
expressions can be assigned to objects, which store the evaluation of the ex-
pression. In the latter case the result is not printed out to the screen. These
objects are accessible for the duration of the session, and are lost at the end of
the session, unless they are actively stored. At the end of the session the user
is prompted to store the entire workspace image, including all objects that
were created during the session. If “Yes” is selected, then the objects used in
the current session will be available in the next. If “No” is selected, then only
objects from the last saved image will remain.

Commands are separated either by a semi-colon (;) or by a new line.
Consider the following example, which you should try typing into the window
of the R Console after the “>” prompt:

> x <- c(1,2,3,4,5,6)
> x
[1] 1 2 3 4 5 6

Note that the first line created an object named x (a vector of length 6, which
stores the value 1, . . . , 6). In the second line we evaluated the expression x,
which printed out the actual values stored in x. In the formation of the object
x we have applied the concatenation function “c”. This function takes inputs
and combines them together to form a vector.

Once created, an object can be manipulated in order to create new objects.
Different operations and functions can be applied to the object. The resulting
objects, in turn, can be stored with a new name or with the previous name.
In the latter case, the content of the object is replaced by the new content.
Continue the example:

> x*2
[1] 2 4 6 8 10 12
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> x
[1] 1 2 3 4 5 6
> x <- x*2
> x
[1] 2 4 6 8 10 12

Observe that the original content of x was not changed due to the multiplica-
tion by two. The change took place only when we deliberately assigned new
values to the object x using the assignment operator “<-”.

Say we want to compute the average of the vector x. The function “mean”
can be applied to produce:

> mean(x)
[1] 7

A more complex issue is to compute the average of a subset of x, say the values
larger than 6. Selection of a sub-vector can be conducted via the vector index,
which is accessible by the use of square brackets next to the object. Indexing
can be implemented in several ways, including the standard indexing of a
sequence using integers. An alternative method of indexing, which is natural
in many applications, is via a vector with logical TRUE/FALSE components.
Consider the following example:

> x > 6
[1] FALSE FALSE FALSE TRUE TRUE TRUE
> x[x > 6]
[1] 8 10 12
> mean(x[x > 6])
[1] 10

The vector created by the expression “x > 6”, and which is used in the ex-
ample for indexing, is a logical vector of the same length as the vector x. Only
the components of x having a “TRUE” value in the logical indexing vector are
selected. In the last line of the example above the resulting object is used as
the input to the function “mean”, which produces the expected value of 10.

For comparison consider a different example:

> x*(x > 6)
[1] 0 0 0 8 10 12
> mean(x*(x > 6))
[1] 5

In this example we multiplied a vector of integers x with a vector of logical
values “x > 6”. The result is a vector of length 6 with zero components where
the logical vector takes the value “FALSE” and the original values of x where
the logical value takes the value “TRUE”. Two points should be noted. Observe
that R can interpret a product of a vector with integer components and a
vector with logical components in a reasonable way. Standard programming
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languages may produce error messages in such circumstances. In this case, R
translates the logical vector into a vector with integer values – one for “TRUE”
and zero for “FALSE”. The outcome, a product of two vectors with integer
components, is a vector of the same type. A second point to make is that
multiplication of two vectors using “*” is conducted term by term. It is not
the inner product between vectors. A different operator is used in R in order
to compute inner products.

As in any programming langauge, R requires experience – something that
can be obtained only though practice. We will base simulations in this book
on R. Starting with very simple examples, we will gradually present more so-
phisticated code. Our hope is that during that process any reader who did not
have a previous exposure to R will learn to use the system and will share our
appreciation of the beauty of the langauge and its usefulness for conducting
simple simulations in statistics. Indeed, for understanding our exposition, an
ability to read R is more or less necessary. To solve exercises, programs may be
written in other programming languages. In the first chapters of the book we
do not assume familiarity with R. Thus, detailed explanations will accompany
code lines. These explanations will become less detailed as we progress through
the chapters. A reader who is interested in a more systematic introduction to
the system is encouraged to use any of the many introductory resources to
R that can be found in the form of books or online documents. (Consult, for
example, the contributed documentation in http://cran.r-project.org/.)

1.2 The Binomial, Poisson, and Normal Models

We now return to the main subject matter of this chapter by considering three
popular statistical models: the binomial, the normal, and the Poisson random
variables.

The Binomial Model

Assume that the observations can be represented as a sequence of n binary
outcomes. In such a case, the possible outcomes may be classified as success
or failure, or numerically coded as 1 or 0. Such a sequence is termed Bernoulli
trials if the trials are statistically independent of each other (i.e., the prob-
ability of success in one trial is not affected by the outcomes in the other
trials).

Suppose the probability of success is the same for all trials. Denote this
probability by p and let the random variable X denote the total number of
successes among the n trials. Then X is said to have a binomial distribution.
For future reference, it will be helpful to observe that X can be regarded as
the sum of n independent Bernoulli random variables, which are themselves
the special case of binomial random variables with n = 1. The probability
density function of X is given by:
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f(x) = Pr(X = x) =
(

n

x

)
px(1 − p)n−x, x = 0, 1, 2, . . . , n .

The short notation X ∼ B(n, p) is used to refer to this distribution. The
expectation of X (i.e., the average value of X, denoted “E(X)”) is equal to
np, and its variance (denoted “var(X)”) is equal to np(1−p) (with [np(1−p)]1/2

the standard deviation of X).
(A brief summary of some properties of expectations, variances, and co-

variances can be found at the end of the chapter. While not strictly necessary
for what follows, it will facilitate understanding of some calculations that
otherwise must be accepted “on faith.”)

The Normal Distribution

The normal distribution – also known as the Gaussian distribution – is a
very popular statistical model. The formula for the density of the normal
distribution is given by:

f(x) =
e−(x−µ)2/(2σ2)

√
2πσ2

, −∞ < x < ∞ ,

which forms the famous bell shape. The parameter µ is the mean, or the
location, of the distribution and σ2 is its variance (σ is the standard deviation
or the scale parameter). In particular, when µ = 0 and σ2 = 1 the distribution
is called the standard normal distribution. The density of the standard normal
distribution is symbolized by “φ(x)” and the cumulative distribution function
(cdf) is symbolized by

Φ(x) =
∫ x

−∞
φ(z)dz .

We denote the fact that X has a normal distribution with mean µ and variance
σ2 by the notation X ∼ N(µ, σ2).

An important property of the normal distribution is that if we add or sub-
tract independent, normally distributed variables, the result is again normally
distributed. Symbolically, if X1 and X2 are independent with Xi ∼ N(µi, σ

2
i ),

then X1 ± X2 ∼ N(µ1 ± µ2, σ
2
1 + σ2

2).
Statistics are quantities computed as functions of the observations. The

distribution of a statistic can be quite complex. Surprisingly, it is frequently
the case that the distribution of a statistic resembles the bell-shaped distri-
bution of the normal random variable, provided that the sample size is large
enough and the statistic is computed as an average or a function of averages.
One form of this result will be stated more formally later in this chapter when
we discuss the central limit theorem (CLT).
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The Poisson Distribution

The Poisson distribution is useful in the context of counting the occurrences
of rare events. Like the binomial distribution, it takes integer values. As we
will see later in this chapter, it can arise as an approximation to the binomial
distribution when p is small and n is large.

We say that a random variable X has a Poisson distribution with mean
value λ (written X ∼ Poisson(λ)) if the probability function of X has the
form

f(x) = e−λ λx

x!
, x = 0, 1, 2, . . . .

The expectation and the variance of X are both equal to λ.
If X1 and X2 are independent and Poisson distributed with parameters λ1

and λ2, the sum X1 + X2 is Poisson distributed with parameter λ1 + λ2.

1.3 Testing Hypothesis

Statistical inference is used in order to detect and characterize meaningful
signals that may be hidden in a environment contaminated by random noise.
Hypothesis testing is a typical step in the process of making inferences. In
this step one often tries to answer the simple question: “Is there any signal
at all?” In other words, can the observed data be reasonably explained by a
model for which there is no signal – only noise?

1.3.1 The Structure of a Statistical Test of Hypotheses

Assuming the statistical model has been set, we describe the process of testing
a statistical hypothesis in three steps: (i) formulation of the hypotheses, (ii)
specification of the test, and (iii) reaching the final conclusion. The first two
steps are carried out on the basis of the statistical model, and in principal can
be conducted prior to the collection of the observations. Only the third step
involves the actual data.

(i) Formulating the hypotheses: A model corresponds to a family of possi-
ble distributions. Some of the distributions describe signals in the data, while
others describe only noise (for example, when treatment and control data vary
but are on average the same). The set of the distributions where there is no
signal is called the null hypothesis or “H0”. The collection of distributions
containing signals is denoted the alternative hypothesis or “H1”.

In many cases the classification into the two possible hypotheses can be
based on some parameters. In such a case, we specify the hypotheses by a
partition of the space of parameters that determine the distribution into two
parts – one representing the null hypothesis and the other representing the
alternative. For example, the hypotheses can often be formulated in terms
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of the mean value µ of some observations. The null hypothesis may corre-
spond to µ = 0 (denoted “H0 : µ = 0”). The alternative hypothesis may
then correspond to the case where the expectation is not equal to zero. (The
alternative in this case is called two-sided and it is denoted by “H1 : µ �= 0”.)
In other cases there are scientific reasons why negative expectations cannot
occur and the alternative corresponds to positive values of the expectation
(“H1 : µ > 0”). Such an alternative hypothesis is termed one-sided.

(ii) Specifying the test: In this step one decides which statistic to use for
the test and which values of the statistic should correspond to rejection of the
null hypothesis. The selected statistic is called the test statistic and the set of
values for which the null hypothesis is rejected is called the rejection region.

For example, for testing whether the population mean µ is equal to zero
the average of the observations can be used as a test statistic. Large values
of this statistic indicate that the null hypothesis is not correct when a one-
sided alternative is tested. Similarly, large absolute values are an indication
for rejection if a two-sided alternative is considered. The error of rejecting
the null hypothesis when it is true is called a “Type I” error and is usually
considered more serious than the other type of error (failure to reject the null
hypothesis when it is false). Consequently, the selection of a threshold for the
rejection region is determined from the distribution of the test statistic under
the null hypothesis. The probability of a Type I error is called the significance
level of the test. The threshold is set to meet a required significance level
criteria, traditionally taken to be 5%.

(iii) Reaching a conclusion: After the stage is set, all that is left is to
carry out the test. The value of the test statistic for the observed data set is
computed. This is the observed value of the statistic. A verdict is determined
based on whether the observed value of the statistic falls inside or outside the
rejection region. Failing to reject the null hypothesis often means dropping
the line of investigation and looking for new directions. Rejection of the null
hypothesis is a trigger for the initiation of more statistical analysis aimed at
a characterization of the signal.

1.3.2 Testing Genetic Identity by Descent of Affected Siblings

This book summarizes an array of strategies for learning relations between
expressed heritable traits and genes – the carrier of the genetic information
for the formation of proteins. One of these strategies, called the affected sib-
pairs (ASP) approach, calls for the collection of a large number of nuclear
families, each with a pair of affected siblings that share the condition under
investigation. Chapter 9 goes into details in describing statistical issues re-
lated to this design. Here we consider an artificial, but somewhat simpler,
scenario where all the sibling pairs are actually half-siblings, who share only
one parent in common, and we concentrate on a single gene, which may or
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may not contribute to the disease. The aim is to test the null hypothesis of
no contribution.

The gene may be embodied in any one of several variant forms, called alle-
les. On autosomal chromosomes an individual carries two homologous copies
of the gene, one inherited from the mother and the other from the father.
Therefore, each offspring carries two versions of the given gene, which may
not be identical in form. Still, one of the genes is an identical copy of one of
the two homologous genes in the common parent while the other is a copy of
one of the homologous genes in the other parent. Concentrate on the copies
in the half-siblings that originated from the common parent. There are two
possibilities: both half-siblings’ copies emerge from a common ancestral source
or else each was inherited from a different source. In the former case we say
that the two copies are identical by descent (IBD), and in the latter case we
say that they are not IBD. It is natural to model the IBD status of a given
pair as a Bernoulli trial, with an IBD event standing for success. Counting the
number of half-sibling pairs for which a gene is inherited IBD would produce
a binomial random variable.

At a locus unrelated to the trait, Mendel’s laws governing segregation of
genetic material from parent to offspring will produce IBD or not with equal
probabilities, since whichever gene the first child inherited, the second child
has a 50% chance of inheriting the same gene. This probability of IBD is the
probability of success when the gene does not contribute to the trait. Suppose,
however, that the gene does contribute to the trait. Since both siblings share
the trait one may reasonably expect an elevated level of sharing of genetic
material within the pair, thus an elevated probability of IBD. Denote by J
the IBD count for a given pair, with J = 0 or J = 1, and let π be the
probability that J = 1. A natural formulation of the statistical hypothesis is
given by H0 : π = 1/2 versus H1 : π > 1/2. Given a sample of n pairs of
half-siblings who share the trait, one may use as a test statistic the number of
pairs that share an allele IBD. Since each pair can be regarded as a Bernoulli
trial, if we also assume the parents are unrelated to one another, the trials
are independent, so the sum is binomially distributed with paramters n and
π. One may standardize this binomially distributed statistic by subtracting
out the expectation and dividing by the standard deviation, both computed
under the null distribution: B(n, 1/2). The standardized statistic is:

Zn =
∑n

i=1 Ji − n/2
(n/4)1/2 .

A common recommendation is to reject the null hypothesis if Zn exceeds a
threshold of z = 1.645, since according to the central limit theorem (discussed
below) this will produce a significance level of about 0.05. Values of the test
statistic Zn above that threshold lead to the rejection of the null hypothesis
and to the conclusion that the gene contributes to the trait.
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Let us investigate the significance level of the proposed test. Assume that
a total of n = 100 pairs were collected and that in fact π = 1/2. Then the
results of the test may look like this:

> n <- 100
> J <- rbinom(1,n,0.5)
> J
[1] 44
> Z <- (J-n/2)/sqrt(n/4)
> Z
[1] -1.2
> Z > 1.645
[1] FALSE

The number of pairs that share an IBD copy of the gene was 44 (which is
actually less than the expected value of 50). This result was generated using
the function “rbinom”, which simulates the binomial distribution. The first
argument of the function is the number of independent copies to produce;
a single copy in our case. The second argument is the number of Bernoulli
trials. In this example, the number is n, which was assigned a value of 100.
The third argument is the probability of success, π = 1/2. The statistic Z
was computed by standardizing the statistic J, which in this case equals the
negative value -1.2. Obviously, the null hypothesis is not rejected. Note that
the function “rbinom” simulates random occurrences of a binomial random
variable. Running the same code again may produce different outcomes.

In order to evaluate the significance level of the test it is not enough to
simulate a single trial. Consider the following code:

> J <- rbinom(10ˆ6,n,0.5)
> Z <- (J-n/2)/sqrt(n/4)
> mean(Z > 1.645)
[1] 0.044226

In this case the function “rbinom” produces one million independent copies of
the binomial distribution, all stored in a vector J of that length. Each of the
components of the vector J is then standardized in the same way as the single
number was in the previous example. The result is the vector Z, which contains
the standardized values. The last line of code involves an application of the
function “mean”, which computes, as we have previously seen, the average
value of its input. Note that the input here is a vector with logical TRUE/FALSE
components. A component takes the value “TRUE” if the null hypothesis is
rejected and “FALSE” when it is not. When introduced to the function “mean”,
the logical values are translated into numerical values: one for “TRUE” and zero
for “FALSE”. As a result, the function “mean” produces the relative frequency
of rejecting the null hypothesis, which is an approximation of the significance
level. Observe, that the resulting number is 0.044226. This is close, but not
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identical, to the nominal significance level of 0.05, which was based on the
central limit theorem, discussed next.

1.4 Limit Theorems

The rationale behind the selection of 1.645 as a threshold in the test discussed
above lies in the similarity between the standardized binomial distribution
and the standard normal distribution. The given threshold is the appropriate
threshold in the normal case. This similarity is justified by the central limit
theorem (CLT). In this section we will formulate (without proof) the CLT in
the context of sums of independent and identically distributed (i.i.d.) random
variables. Actually, the scope of central limit theorems is much wider. It in-
cludes multivariate distributions as well as sums of non-identical and weakly
dependent random variables. When rare events are considered, the Poisson
distribution may provide a better approximation than the normal. A Pois-
son limit theorem will be presented here in the context of binomial random
variables. Again, generalizations of the basic theorem in various directions
exist.

The central limit theorem states that the distribution function of a stan-
dardized sum of independent and identically distributed random variables
converges to the standard normal distribution function. More precisely (recall
that Φ denotes the distribution function of the standard normal distribution):

Central Limit Theorem: Let X1, X2, . . . , be a sequence of inde-
pendent and identically distributed random variables. Denote the ex-
pectation of these random variables by µ and the variance by σ2. Let
X̄ = n−1 ∑n

i=1 Xi. Consider, for each n, the random variable:

Zn =
∑n

i=1 Xi − nµ

(nσ2)1/2 =
(X̄ − µ)
(σ/n1/2)

=
1

n1/2

n∑
i=1

Xi − µ

σ
.

Then, for any −∞ < x < ∞,

lim
n→∞ Pr(Zn ≤ x) = Φ(x) .

As an example of the application of the central limit theorem consider the
binomial distribution. Recall that if X ∼ B(n, p), then X can be represented
as a sum of n Bernoulli variables. Moreover, it is easy to see that the expec-
tation of each of these Bernoulli variables is p and the variance is p(1 − p).
Hence the distribution of Zn = (X − np)/[np(1 − p)]1/2 can be approximated
by the standard normal distribution. In particular, when n is large,

Pr(Zn > 1.645) ≈ 1 − Φ(1.645) = 0.05 .

For the example of the preceding section, where n = 100 and π = 1/2, we
can actually calculate the exact probability by using the binomial distribution.
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The inequality Zn > 1.645 is equivalent to J > 50 + 1.645 × (100/4)1/2 =
58.225. The R command “1 - pbinom(58.225,100,.5)” shows that the exact
probability of this event is 0.044313, which is very close to the simulated value
found earlier. In more complicated cases it may not be possible to evaluate
a probability of interest exactly, and then simulation and/or approximations
like those based on the CLT are especially useful.

The normal approximation to the binomial distribution works best when
p is not too close to 0 or to 1. When this is not the case the Poisson approx-
imation will tend to produce better results. We can state the theorem that
establishes the Poisson approximation as follows:

Poisson Approximation: Let Xn ∼ B(n, pn) be a sequence of bi-
nomial random variables. Assume that the sequence of pn of suc-
cess probabilities obeys the relation npn → λ, as n → ∞, where
0 < λ < ∞. Then, for any x = 0, 1, 2, . . .,

lim
n→∞ Pr(Xn = x) = e−λ λx

x!
.

Note that the requirement npn → λ is equivalent to stating that the prob-
ability of success, pn, converges to zero at a rate that is inversely proportional
to the number n of Bernoulli trials. In practice, we have only a single value
of n and of p. The Poisson approximation is appropriate when n is large, p is
small, and the product λ = np is neither very large nor very small, say about
0.5 or 1 to about 5 or 6.

Let us demonstrate both the normal and the Poisson approximation in the
binomial setting. The following lines of code will produce the plot in Fig. 1.1:

> n <- 100; p <- 0.5
> X <- rbinom(10ˆ6,n,p)
> Z <- (X-n*p)/sqrt(n*p*(1-p))
> z <- seq(-4,4,by=0.01)
> plot(z,pnorm(z),type="l")
> lines(ecdf(Z))
> x <- z*sqrt(n*p*(1-p)) + n*p
> lines(z,ppois(x,n*p),type="s")

The first three lines of code require no explanation. They are essentially iden-
tical, with J replaced by X, to the code that was used in order to generate the
distribution of the test statistic.

In the forth line we generate a sequence of numbers, ranging between -4
and 4, in jumps of size 0.01. This sequence is generated with the aid of the
function “seq”. The first argument to the function is the starting point of the
sequence and the second argument is the ending point. The third argument
is the jump size, and it is introduced using the name of the argument “by”.
The rule in the introduction of arguments to functions is that arguments may
be set either by placing them in the same order in which they appear in
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Fig. 1.1. Normal and Poisson approximations: p = 0.5, n = 100

the definition of the function, or by using the argument assignment format
“par name = par value”. If not all preceding arguments are assigned, then
the argument must be assigned using the argument assignment format.

The subsequent line produces a plot. The function “plot” is a generic
function for making plots. In its simplest application it requires as input a
sequence of x values and a sequence of y values, both of the same length.
It produces the appropriate scatter plot of the points. This basic behavior
may be modified by setting arguments. For example, the argument “type”
determines the plotting style. Setting its value to "l" will result in sequentially
connecting the points by segments, which will produce a curve. The y values
are produced here by the function “pnorm”. This function takes as input real
values and produces as output the normal cumulative distribution function at
these values. Execution of the code will result in opening a graphical window
within R and the generation of the plot of the normal cumulative distribution
function over the range of z.

The function “plot” is classified as a high-level plotting function, since
it independently produces a plot. Low-level plotting functions add features
to existing plots. The function “lines” is a low-level function. In its generic


